

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Applications of Differentiation [2.4]

Homework

Homework Outline:

Compulsory Questions	Pg 2 - Pg 11	
Supplementary Questions	Pg 12 - Pg 20	

Section A: Compulsory Questions

<u>Sub-Section [2.4.1]</u>: Find Tangents and Normals

uestion 1	Ó
and the equation of the tangent to the graph of $f(x) = 2x^2 + 4x + 3$ at the point $x = 2x^2 + 4x + 3$	= 1.
pace for Personal Notes	

Ouestion	1
Question	_

1	tion of the tangent that passes through the point (6,3).
uestion 4 Tec	ch-Active.
ind the equation	on of the line tangent to $y = 2 \log_e(2x - 1)$ when $x = 1$.
-	

Sub-Section [2.4.2]: Find Minimum and Maximum

uestion 5
nd the maximum and minimum values of the function $f(x) = x^3 + 3x^2 - 9x - 10$ with domain $x \in [-3,2]$.
pace for Personal Notes

Qu	nestion 6
A f	farmer is building a rectangular pen for his pigs using 40 metres of fencing.
a.	Write down a function $A(x)$ which gives the area of the pen.
	·
b.	Hence, determine the side lengths of the pen to maximise the area and give this maximum area.
	·
Sp	ace for Personal Notes

Question 7					رازار
ind the maximu	n positive rate of chang	ge for the function	$\inf f(x) = -x^3 + \frac{1}{2}$	$9x^2 + 6x - 10$	
	-Active. m and minimum values	of the function f	$f(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2,7].
		of the function f	$f(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2,7].
		of the function f	$f(x) = -x^3 + 6$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2, 7].
		of the function f	$F(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2, 7].
		of the function f	$F(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2,7].
		of the function f	$f(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2, 7].
		of the function f	$f(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	c ∈ [−2, 7].
Question 8 Tech		of the function f	$F(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2,7].
Find the maximu	m and minimum values	of the function f	$F(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	<i>c</i> ∈ [−2, 7].
	m and minimum values	of the function f	$f(x) = -x^3 + 6x$	$x^2 + 4x - 10 \text{ for } x$	ε ∈ [−2, 7].

Sub-Section [2.4.3]: Apply Newton's Method to Find the Approximation of a Root and its Limitations

)ue	stion 9			
Approximate the root of the equation $x^3 - 5x + 3$ using Newton's method with an initial value of $x_0 = 1$ and a olerance level of 0.01. Leave your answer correct to two decimal places.				
	ce for Personal Notes			
Ja	ce for Fersorial Motes			

	imate a solution of the equation $e^x = \sin(x)$ using Newton's method with an initial value of $x_0 = -2$.
Jse a	plerance level of 0.01 and give your answer correct to two decimal places.
_	
_	
_	
onsi	on 11 er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in
onsi	er the function $f(x) = x^3 - 6x$. Determine two possible initial values which are not suitable to use in

Sub-Section: The 'Final Boss'

Question 12

A piece of wire is 16 metres long. The wire is cut into two pieces and used to form two squares.

a. If one piece of wire has length x metres, show that the combined area of the two squares is given by $A = \frac{1}{8}x^2 - 2x + 16 = \frac{1}{8}(x^2 - 16x + 128).$

b. Find $\frac{dA}{dx}$.

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Find the value of x that minimises A and gives this minimum value.
d.	Find the maximum possible area of the two squares if $x \in [1, 12]$.
	pace for Personal Notes
 	ace for Personal Notes

Section B: Supplementary Questions

<u>Sub-Section [2.4.1]</u>: Find Tangents and Normals

	π	
ind	the equation of the normal to the graph of $f(x) = \cos(5x)$ at the point $x = \frac{\pi}{4}$.	
_		
_		
_		
-		
_		
ues		
	tion 14	
		J
	the equation of the normal to the graph of $f(x) = x^2 - 3x - 1$ which has a gradient of $-\frac{1}{5}$.	J.
		<i>J.</i>
) .
		<i>リ.</i>
		<i>),</i>
) .
)
		<u>)</u>
		<i>).</i>

d the equation of the norr				$\operatorname{nt} x = a. \operatorname{Hence}$
ng a CAS, obtain the equa	ation of the normal tha	t passes through the	point $(-1,4)$.	
				·
,				

Space for Personal Notes

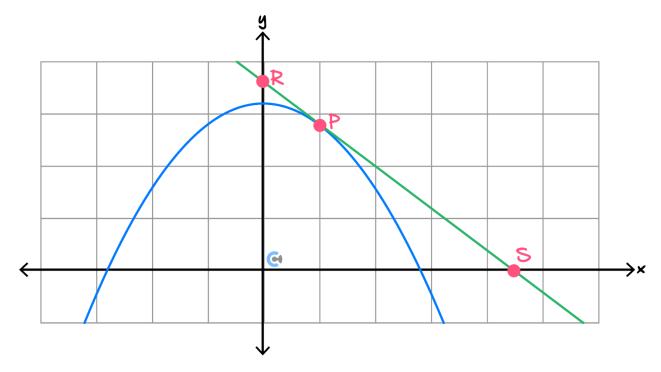
Qu	Question 16		
Consider the function given by $f(x) = e^{x^2} - \cos(x)$.			
a.	Find the equation of the tangent to the graph of $f(x)$ at the point $x = 1$.		
b.	Without needing to do any further differentiation/solving, find the equation of the normal that passes through the point $x = -1$.		
Sp	pace for Personal Notes		

MM34 [2.4] - Applications of Differentiation - Homework

Sub-Section [2.4.2]: Find Minimum and Maximum

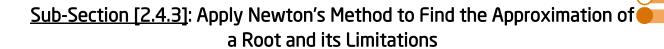
Question 17		
Find the maximum and minimum values of the function $f(x) = x^3 - 3x^2 - 24x + 15$ with domain $x \in [0,5]$.		
Question 18		
Find the maximum area of a rectangle with a perimeter equal to $18 m$.		
·		
Space for Personal Notes		

Question 19		
Find the maximum rate of change of the function $f(x) = -x^3 + 6x^2 + 10x - 5$.		


2	Space for Personal Notes

CONTOUREDUCATION

The diagram below shows the graph of the function $f(x) = 16 - 2x^2$.


The graph of the tangent to the curve at the point P(p, f(p)), where $p \in \left[\frac{1}{2}, \frac{5}{2}\right]$ is also shown.

Determine the equation of the tangent line in terms of p.

Space for Personal Notes

Question 21
Approximate the root of the equation $x^3 - 2x^2 + 5x - 6$ using Newton's method with an initial value of $x_0 = 1.2$ and a tolerance level of 0.01. Leave your answer correct to two decimal places.
Question 22
Approximate a solution of the equation $e^x = \cos(2x - 1)$ using Newton's method with an initial value of $x_0 = -2$. Use only one iteration for your approximation.

Question 23
Consider the function $f(x) = \sin(x) - e^{2x}$. Explain why it would be unsuitable to choose an initial value that solves the equation $\cos(x) - 2e^{2x}$.

Space for Personal Notes

Question 24

An issue that can arise when using Newton's method is that the derivative may not be easy to calculate.

- **a.** Explain why Newton's method is impractical for approximating the roots of $f(x) = \sin^{-1}(x^2 \frac{\pi}{2})$ within the context of VCE Mathematical Methods Units 3 and 4.
- **b.** Nevertheless, we can try to use a similar method known as the secant method with an initial guess of $x_0 = 1.5$. Approximate the tangent to $x_0 = 1.5$ by finding the equation of secant (i.e. the straight line) passing through the points (1.5, 0.7467) and (1.51, 0.7885). Your answer should be given to two decimal places.

c. Hence, obtain an approximation for a root of $f(x) = \sin^{-1}(x^2 - \frac{\pi}{2})$ based on the line obtained above.

Note that this method approximates the root which is $x = \sqrt{\pi/2} \approx 1.2533$.

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

