CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation Exam Skills [2.3]

Workbook

Outline:

Recap Pg 02-37

- First Principle
- Product Rule
- Quotient Rule
- Chain Rule
- Stationary Points
- Strictly Increasing and Decreasing
- Graphs of Derivative Function
- Defining Derivative Functions

Warmup Test Pg 38-41

<u>Differentiation Exam Skills</u> Pg 42-47

- Functional Notational Derivatives with Nested Chain and Product Rule
- Apply Differentiability to Join Two Functions Smoothly

Exam 1

Pg 48-53

Tech-Active Exam Skills

➤ Finding A Derivative Function

Pg 54-59

- Solve for Strictly Increasing and Decreasing Using Technology
- Find Derivatives with Functional Notation
- Joining Smoothly

<u>Exam 2</u> Pg 60-66

Learning Objectives:

MM34 [2.3.1] - Find derivatives with functional notation

MM34 [2.3.2] - Apply differentiability to join two functions smoothly

Section A: Recap

If you were here last week, skip to Section B - Warmup Test.

Average and Instantaneous Rate of Change

Average Rate of Change

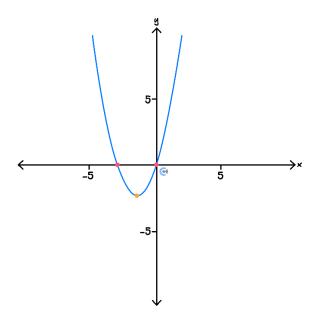
(b, f(b))
(a, f(a))

The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

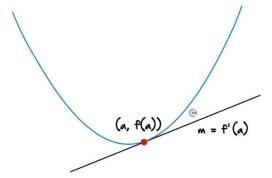
Average rate of change =
$$\frac{f(b) - f(a)}{b - a}$$

It is the gradient of the line joining the two points.

Find the average rate of change of $y = x^2 + 3x$ over the interval $x \in [-1, 2]$.



Instantaneous Rate of Change



Instantaneous Rate of Change is a gradient of a graph at a single point/moment.

Instantaneous Rate of Change = f'(x)

Differentiation is the process of finding the derivative of a function.

Alternative Notation for Derivative

$$f'(x) = \frac{dy}{dx}$$

How do we find derivative functions?

Derivatives of Functions

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
x^n	$n \times x^{n-1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
e ^x	e^x
$\log_e(x)$	$\frac{1}{x}$

S

_		
On	estion	-2

Consider the function $f(x) = x^3 - 4x$.

Find the gradient of the function at x = 2.

On	iestion	่ 3

Consider the function $f(x) = 2e^x - 4$.

Find the gradient of the function at x = 3.

O 4.	4
Question	4

Consider the function $f(x) = 2 \log_e(x)$.

Find the gradient of the function at x = 2e.

~	_
Onestion	า 5

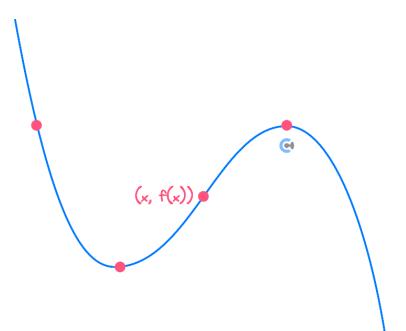
Consider the function $f(x) = \cos(x) + \sin(x)$.

Find the gradient of the function at $x = \frac{\pi}{4}$.

Sub-Section: First Principle

Where do all the derivative rules come from?

First Principle



$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

The fundamental method of differentiation.

Sub-Section: Product Rule

How do we find the derivative when two functions are multiplied? For example: $x^2 \sin(x)$.

The Product Rule

The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x)$$

Or, in another form:

$$\frac{d}{dx}(u\cdot v)=u'v+v'u$$

NOTE: We never differentiate two functions at once!

Find the derivatives of:

$$\mathbf{a.} \quad f(x) = x^2 e^x$$

b.
$$y = 3\sin(x)\cos(x)$$

$$\mathbf{c.} \quad g(x) = \log_e(x) \cdot x$$

Sub-Section: Quotient Rule

Definition

The Quotient Rule

The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$$

Always differentiate the top function first.

Find the derivatives of:

 $\mathbf{a.} \quad \frac{e^x}{4x^3}$

b. $\frac{\log_e(x)}{x}$

$$\mathbf{c.} \quad g(x) = \frac{\sin(x)}{\cos(x)}$$

NOTE: The last question is a derivative of tan.

How does the quotient rule work? (Extended)

Sub-Section: Chain Rule

The Chain Rule

$$y = f(g(x))$$

$$y = f(g(x))$$

$$\frac{dy}{dx} = f'(g(x))g'(x)$$

The process for finding derivatives of **composite functions**.

Find the derivatives of:

a.
$$e^{x^2 + \frac{1}{2}x}$$

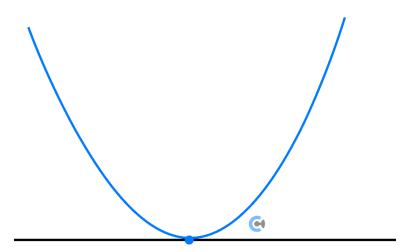
b.
$$\left(4x + \frac{1}{x}\right)^3$$

c.
$$\log_e(x^2 - 4)$$

Sub-Section: Stationary Points

What would be the gradient of a point that is neither increasing nor decreasing?

Stationary Points



> The point where the gradient of the function is zero.

$$f'(x)=0, \frac{dy}{dx}=0$$

Types of Stationary Points

Local Maximum	Local Minimum	Stationary Point of Inflection
+ 0	- G +	- 0 - + 0 +

Sign Test

We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing Curve	Stationary Point	∪ - Increasing Curve

Find the gradient of the neighbouring points.

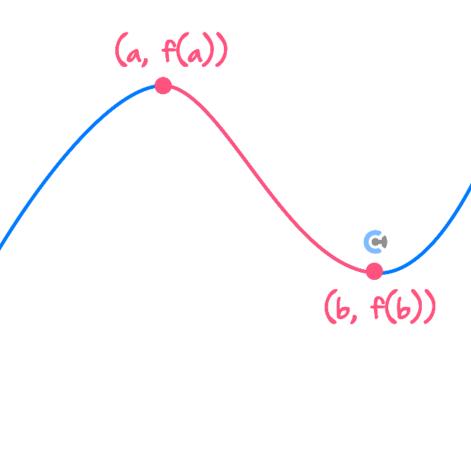
Space for Personal Notes

Question	9
Vaccion	_

Find and identify the nature of the stationary points of $y = -e^{x^2+4}$.

Sub-Section: Strictly Increasing and Decreasing

Strictly Increasing and Strictly Decreasing Functions



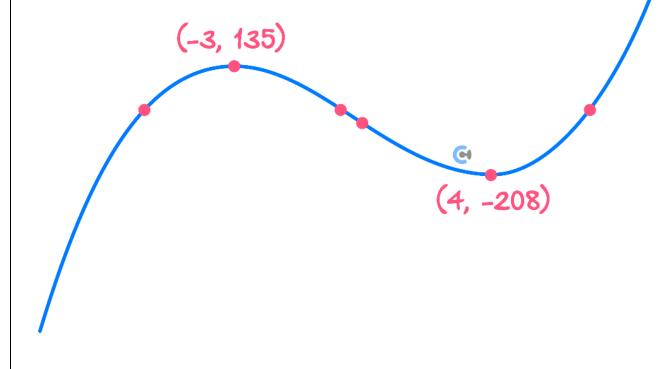
Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

Strictly Decreasing: $x \in [a, b]$

- Steps:
 - 1. Find the turning points.
 - 2. Consider the sign of the derivative between/outside the turning points.

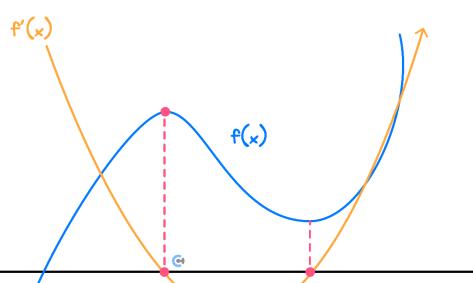
State the value(s) of x for the function below for which it is strictly increasing and strictly decreasing.

$$y = -72x - 3x^2 + 2x^3$$



Sub-Section: Graphs of Derivative Function

Graphs of the Derivative Function



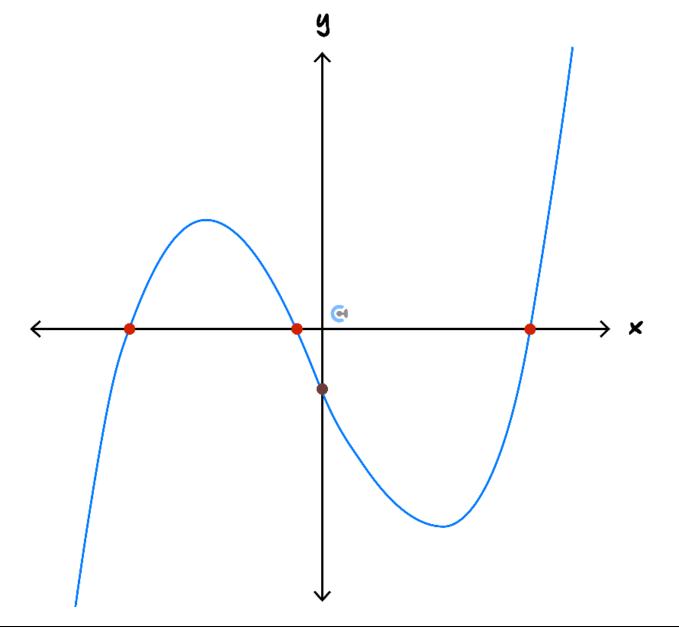
f(x)	f'(x)
Stationary Point	<i>x</i> -intercept
Increasing	Positive
Decreasing	Negative

y value of f'(x) = Gradient of <math>f(x)

Steps

- 1. Plot x-intercept at the same x value as the stationary point of the original.
- 2. Consider the trend of the original function and sketch the derivative.
 - ▶ Original is increasing \rightarrow Derivative is above the x-axis.
 - ▶ Original is decreasing \rightarrow Derivative is below the x-axis.

Sketch the derivative graph of the function shown below, on the same set of axes.



Limits

$$\lim_{x\to a} f(x) = L$$

"The function f(x) approaches L as x approaches a."

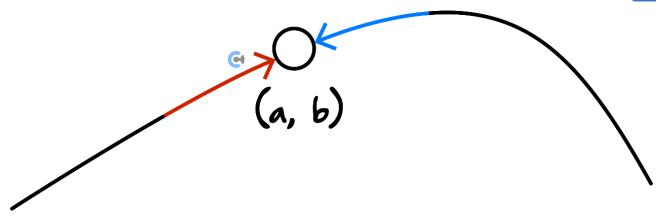
 \blacktriangleright Limit is the value that a function (y-value) approaches as the x-value approaches α value.

Evaluate the following limit:

$$\lim_{x \to 1} \left(3 + \frac{1}{x^2} \right)$$

Evaluate
$$\lim_{x \to -2} \left(\frac{-1}{(x+2)^2} + 4 \right)$$
.

TIP: Sketch the function and see the y-value that the function approaches.



$$\lim_{x \to a} f(x) \text{ exists if } \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Limit is defined when the left limit equals the right limit.

Consider $f(x) = \frac{1}{x-2} + 4$.

Evaluate the left and right limits of f(x) for x = 2, and hence, state whether the limit is defined.

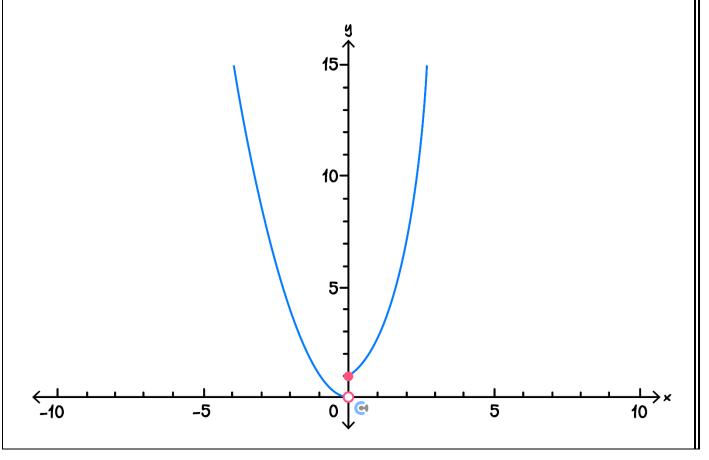
Continuity

A function f is said to be continuous at a point x = a if:

- 1. f(x) is defined at x = a.
- 2. $\lim_{x\to a} f(x)$ exists.
- $3. \quad \lim_{x \to a} f(x) = f(a).$

Find the values of x for which the following functions have a discontinuity, and state the reason.

$$f(x) = \begin{cases} x^2, & x \in (-\infty, 0) \\ e^x, & x \in [0, \infty) \end{cases}$$

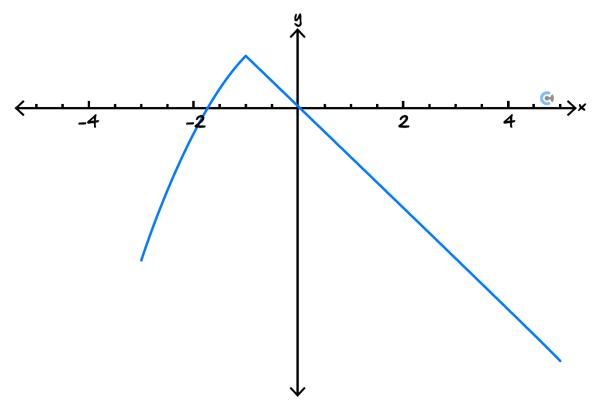


Differentiability

(a, f(a))

- A function f is said to be differentiable at a point x = a if:
 - 1. f(x) is continuous at x = a.
 - 2. $\lim_{x\to a} f'(x)$ exists.
 - Limit exists when the left and right limits are the same.
 - Gradient on the _____ must be the same.
- We cannot differentiate:
 - 1. Discontinuous Points
 - 2. Sharp Points
 - 3. Endpoints

Consider the function below:



$$f(x) = \begin{cases} -x^2 + 3, -3 \le x \le -1 \\ -2x, & x > -1 \end{cases}$$

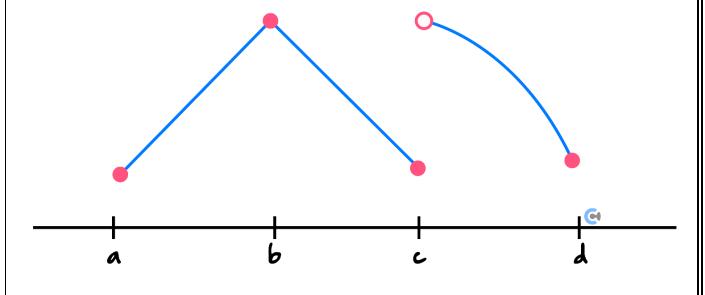
State the points that are not differentiable and state the reason.

NOTE: Left and right limit of the gradient is simply the gradient from the LHS and RHS.

ALSO NOTE: We call this a sharp point!

NOTE: We cannot differentiate endpoints as they only have a left or right limit.

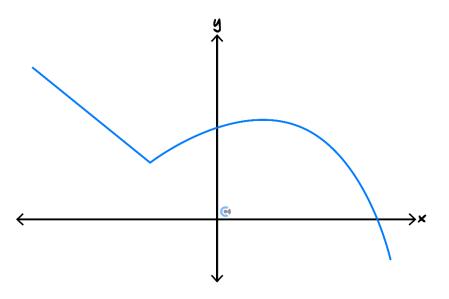
Find the domain of the derivative function for the function shown below.



NOTE: Endpoints, sharp points, and points of discontinuity need to be taken out.

Sub-Section: Defining Derivative Functions

Finding the Derivative of Hybrid Functions



- 1. Simply derive each function.
- **2.** Reject the values for x that are not differentiable from the domain.

For the following function, define the derivative function.

$$f(x) = \begin{cases} x^2 - 4, & x \le 0 \\ 3x - 4, & x > 0 \end{cases}$$

CONTOUREDUCATION

Second Derivatives

- The derivative of the derivative.
- To get the second derivative, we can differentiate the original function twice.

$$\frac{d^2y}{dx^2} = f''(x)$$

Concavity

Concave up is when the gradient is increasing.

$$f''(x) > 0 \rightarrow \text{Concave Up}$$

Concave down is when the gradient is decreasing.

$$f''(x) < 0 \rightarrow \text{Concave Down}$$

Zero concavity is when the gradient is neither increasing nor decreasing.

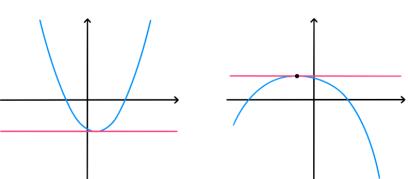
$$f''(x) = 0 \rightarrow \mathsf{Zero} \; \mathsf{Concavity}$$

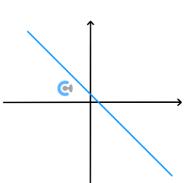
Bends Upwards f">0

Concave Down

Bends Downwards f"<0

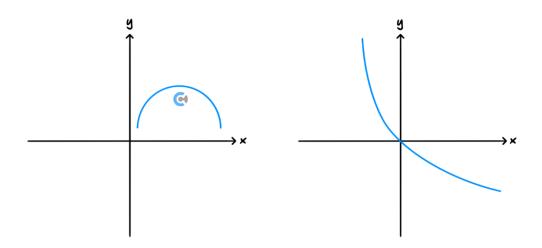
No bending f"=0





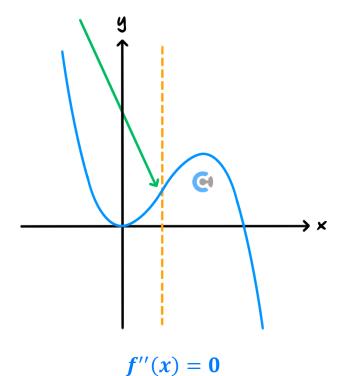
• Concavity is also linked to how the curve is bent.

Classify the following curves as concave up or down.



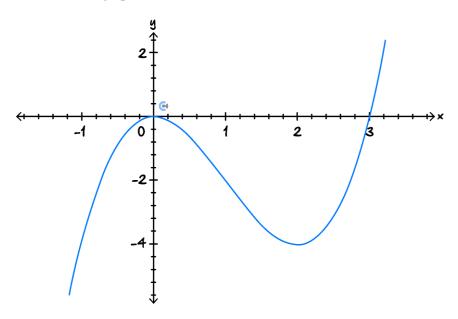
Points of Inflection

A point at which a curve **changes concavity** is called a **point of inflection**.

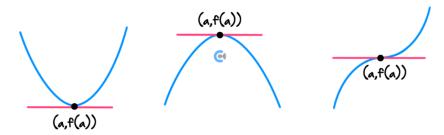


Simply, it is when the bending changes.

Circle the point of inflection on the graph below.



The Second Derivative Test



- Suppose that f'(a) = 0 and hence, f has a stationary point at x = a. The second derivative test states:
 - Concave up gives us a local minimum.

$$f''(x) > 0 \rightarrow \text{Local Minimum}$$

Concave down gives us a local maximum.

$$f''(x) < 0 \rightarrow \text{Local Maximum}$$

G Zero concavity gives us a stationary point of inflection.

$$f''(x) = 0$$
 \rightarrow Stationary Point of Inflection

A	21
Onestion	7.1

Consider the function $f(x) = \log_e(x^2 + 4)$.

Find the stationary point and identify its nature by using the second derivative test.

NOTE: This is much faster than using the table (comparing neighbouring gradients) from [2.1].

Section B: Warmup Test (14 Marks)

INSTRUCTION: 14 Marks. 11 Minutes Writing.

Question 22 (3 marks)

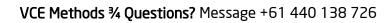
a. Let $y = x^3 \cos(2x)$.

Find $\frac{dy}{dx}$. (1 mark)

b. Evaluate f'(3), where $f: R \to R$, $f(x) = e^{-x^2 + 4x}$. (2 marks)

Space for Personal Notes

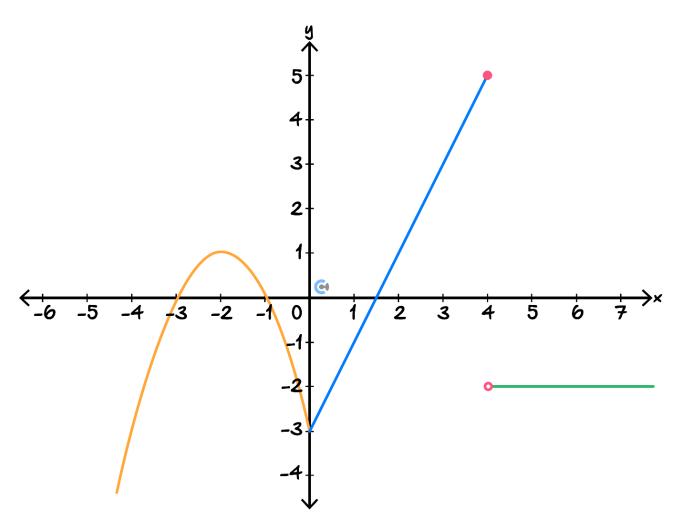
•



Qu	nestion 23 (4 marks)
Co:	$\operatorname{nsider} f(x) = xe^{2x}.$
a.	Find the stationary point and its nature. (3 marks)
•	Hence, state the value(s) of x where the function is strictly increasing. (1 mark)
	ace for Personal Notes
'Ρ	ace for Fersonal Notes

Question 24 (4 marks)

The diagram below shows the graph of a function with domain R.

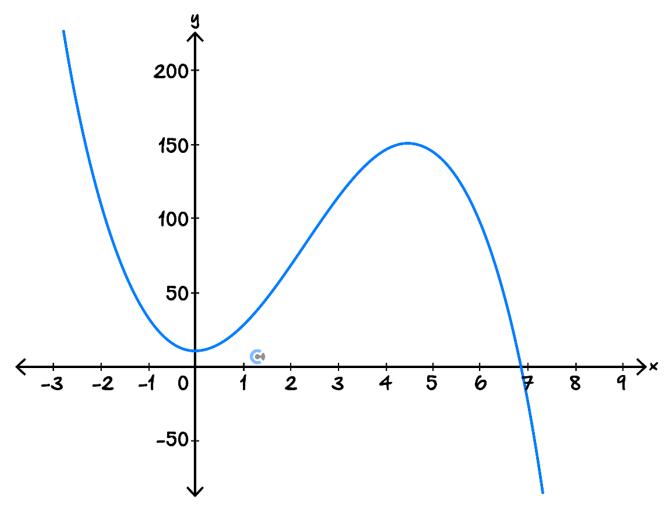


- **a.** For the graph shown above, sketch on the same set of axes, the graph of the derivative function. (3 marks)
- **b.** Hence, state the domain of the derivative function. (1 mark)

._____

Question 25 (3 marks)

a. Circle the point of inflection on the graph below. (1 mark)



b. State whether at x = 1 the gradient is increasing or decreasing. Hence, state the concavity at x = 1. (2 marks)

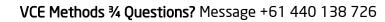
Section C: Differentiation Exam Skills

<u>Sub-Section</u>: Functional Notational Derivatives with Nested Chain and Product Rule

What happens when $\log_eig(f(x)ig)$ becomes $\log_eig(fig(g(x)ig)ig)$?

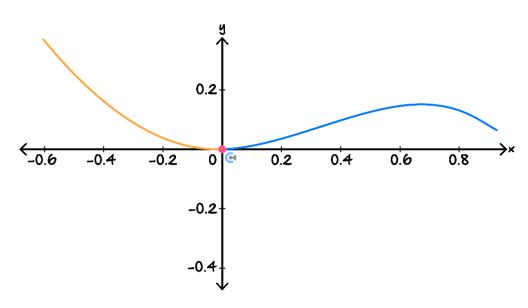
Question 26 Walkthrough.

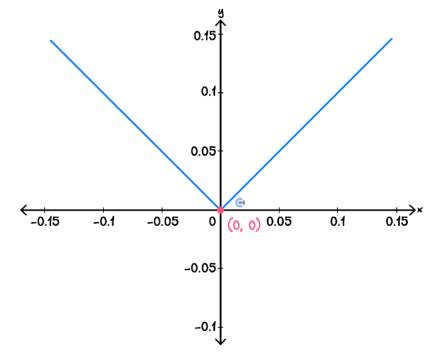
Find the derivative of sin(f(2x)) with respect to x.



Question 27	
Find the derivative of $\log_e(x)f(x^2+1)$ with respect to x .	

Exploration: Joining Smoothly





- For these two hybrid functions, which one of the functions looks like it joins smoothly at (0,0)?
- ▶ Both graphs have different branches with the same value at (0,0), but for the first graph, the two branches also have the same ______.

Joining Smoothly

- Let two different curves be defined as f(x) and g(x). For these two curves to join smoothly at x=a, they have to satisfy:
 - (a) = g(a)
 - f'(a) = g'(a)
- In other words, the function must be **continuous** and **differentiable** at that point!

Question	28	Walkthrough
Question	40	vv ankun vugn

Consider the function:

$$f(x) = \begin{cases} x^2 + 4x + a, & x < 0 \\ -x^2 + bx + 3, & x \ge 0 \end{cases}$$

Find the values of a and b such that the graph of f is joins smoothly at x = 0.

Question	29
Oucouon.	

Consider the function:

$$f(x) = \begin{cases} x - a, & x < 2 \\ x^2 - bx + 2, & x \ge 2 \end{cases}$$

Find the real integer values of a and b such that the graph of f is joining smoothly at x = 2.

Section D: Exam 1 (22 Marks)

INSTRUCTION: 22 Marks. 26 Minutes Writing.

Question 30 (4 marks)

a. Let $y = x^3 \sin(2x)$. Find $\frac{dy}{dx}$. (2 marks)

b. Evaluate f'(2) where $f(x) = e^{-3x^2+4x+3}$. (2 marks)

Space for Personal Notes

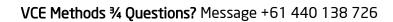
MM34 [2.3] - Differentiation Exam Skills - Workbook

Question 31 (4 marks)

Let $f(x) = x^3 - 3x^2 - 4x + 2$.

a. Find the average rate of change of f over the interval $x \in [-1, 2]$. (2 marks)

b. The gradient of f when x = a is the same as the average rate of change of f over the interval $x \in [-1, 2]$. Find the possible values of a. (2 marks)



Question 32 (4 marks)					
Let $f(x) = x^3 - 6x^2 + 9x + 3$.					
a. Find the coordinates of all stationary po	point(s) of f . (3 marks)				
b. State the nature of any stationary point	found in part. a. (1 mark)				
Space for Personal Notes					

Question 33 (4 marks)

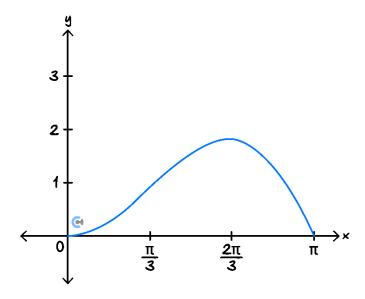
Let $f: \left(-\infty, \frac{1}{2}\right] \to R$, where $f(x) = \sqrt{1 - 2x}$.

a. Define f'(x). (2 marks)

b. Find the angle θ from the positive direction of the *x*-axis to the tangent to the graph of *f* at x = -1, measured in the anti-clockwise direction. (2 marks)

Question 34 (6 marks)

Part of the graph of $f: [-\pi, \pi] \to R$, $f(x) = x \sin(x)$ is shown below.



a.

i. Find f'(x). (1 mark)

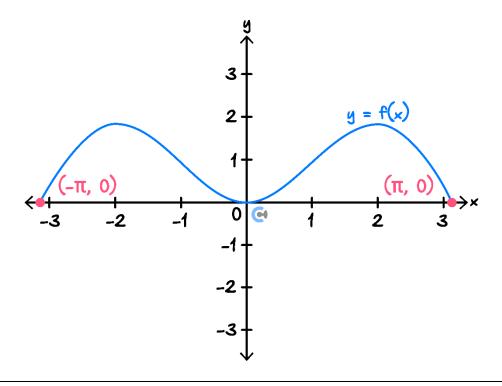
ii.	Determine the range of $f'(x)$ over the interval	$\left[\frac{\pi}{2}\right]$	$\frac{2\pi}{3}$.	(1 mark)

iii.	Hence, verify that $f($	x) has a stationary point for x	$\in \left[\frac{\pi}{2}\right]$	$\left(\frac{2\pi}{3}\right]$. (1 n	nark)
------	-------------------------	-----------------------------------	----------------------------------	--------------------------------------	-------

CONTOUREDUCATION

b. On the set of axes below, sketch the graph of y = f'(x) on the domain $[-\pi, \pi]$, labelling the endpoints with their coordinates.

You may use the fact that the graph of y = f'(x) has a local minimum at approximately (-1.1, -1.4) and a local maximum at approximately (1.1, 1.4). (3 marks)



Section E: Tech-Active Exam Skills

Sub-Section: Finding a Derivative Function

Calculator Commands: Finding Derivatives

Mathematica

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{d}{dx}(f(x))$$

<u>Sub-Section</u>: Solve for Strictly Increasing and Decreasing Using Technology

Definition

Steps for Finding Strictly Increasing/Decreasing Regions

- 1. Plot the graph on CAS.
- 2. Find stationary points.
- 3. Use a graph to determine which regions are increasing/decreasing.

Space for Persor	nal Notes		

Question	35
Oucsuon	

Find the values of x for which the function,

$$f:[0,8] \to R, f(x) = -2x^3 + 3x^2 + 36x - 13$$

is strictly increasing.

Sub-Section: Find Derivatives with Functional Notation

Simply derive on your technology!

Question 36 Walkthrough. Tech-Active.

If $y = e^{(f(x))^2}$ then, $\frac{dy}{dx}$ is equal to:

- **A.** $f(x)e^{f(x)}$
- **B.** $2f(x)f'(x)e^{(f(x))^2}$
- **C.** $f(x)f'(x)e^{(f(x))^2}$
- **D.** $f'(x)e^{(f(x))^2}$

Question 37

If $y = f(x)(g(x))^2$ then, $\frac{dy}{dx}$ is equal to:

- **A.** f(x)g(x)
- **B.** 2f'(x)g(x)
- C. $2f(x)g'(x)g(x) + f'(x)(g(x))^2$
- **D.** $2g'(x)g(x) + f'(x)(g(x))^2$

Sub-Section: Joining Smoothly

Calculator Commands: Joining Smoothly

Mathematica

$$f[x_{-}] := 0$$
ne Function $g[x_{-}] := A$ nother Function $g[x_{-}] := g[x]$ Solve $[f[x] = g[x]] = g[x]$ Solve $[f[x] = g[x]] = g[x]$ Solve $[f[x] = g[x]] = g[x]$

- > TI and Casio
 - lacktriangle Define each branch as f(x) and g(x).
 - \bullet TI: Define its derivative as df(x) and dg(x)

Casio: Define them as different names

Solve f(a) = g(a) and df(a) = dg(a) simultaneously.

Question 38 Tech-Active.	Ou	estion	38	Tech-	Active.
--------------------------	----	--------	----	-------	---------

Consider the function:

$$f(x) = \begin{cases} \log_e(x - a), & x < 2 \\ x^2 - bx + 2, & x \ge 2 \end{cases}$$

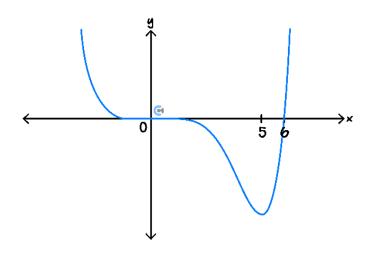
Find the real integer values of a and b such that the graph of f is joining smoothly at x = 2.

Section B: Exam 2 (21 Marks)

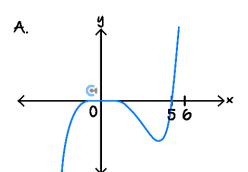
INSTRUCTION: 21 Marks. 25 Minutes Writing.

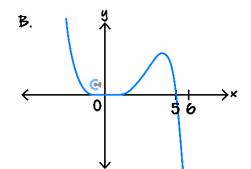
Question 39 (1 mark)

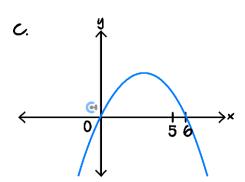
Part of the graph of y = f(x) is shown below.

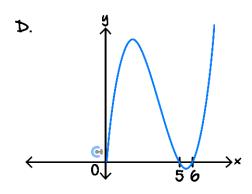


The corresponding part of the graph of y = f'(x) is best represented by:









Question 40 (1 mark)

If $y = f(x) \log_e(g(2x))$, then $\frac{dy}{dx}$ is equal to:

- **A.** $f'(x)\log_e(g(2x))$
- **B.** $f'(x)\log_e(g(2x)) + \frac{2f(x)g'(2x)}{g(2x)}$
- C. $f'(x) \log_e(g(2x)) + \frac{f(x)}{g(2x)}$
- **D.** $f(x)\log_e(g'(2x)) + f'(x)g(2x)$

Question 41 (1 mark)

Let f and g be two functions defined such that f(1) = 2, f'(1) = -8, g(1) = -1, and g'(1) = 3.

If k(x) = f(x)g(x), then the value of k'(1) is equal to:

- **A.** 12
- **B.** 14
- **C.** 6
- **D.** 4

Question 42 (1 mark)

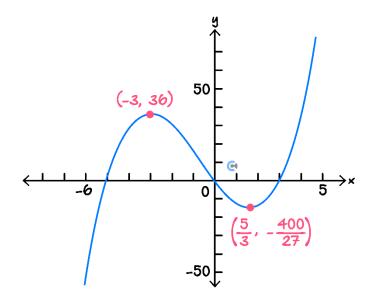
The average rate of change of the function with the rule $f(x) = x^2 - 2x$ over the interval [1, a], where a > 1, is 8.

The value of a is:

- **A.** 9
- **B.** 8
- **C.** 7
- **D.** 4

Question 43 (1 mark)

Part of the graph of a cubic polynomial function f and the coordinates of its stationary points are shown below.



f'(x) < 0 for the interval:

- **A.** (0, 3)
- **B.** $(-\infty, -5) \cup (0, 3)$
- C. $(-\infty, -3) \cup \left(\frac{5}{3}, \infty\right)$
- **D.** $\left(-3, \frac{5}{3}\right)$

Question 44 (1 mark)

The function $f(x) = x^3 - 5x^2 + 6x + 4$ is strictly decreasing for:

A.
$$\frac{5-\sqrt{7}}{3} \le x \le \frac{5+\sqrt{7}}{3}$$

B.
$$\frac{5-\sqrt{7}}{3} < x < \frac{5+\sqrt{7}}{3}$$

C.
$$\frac{5-\sqrt{3}}{3} \le x \le \frac{5+\sqrt{3}}{3}$$

D.
$$\frac{5-\sqrt{3}}{3} < \chi < \frac{5+\sqrt{3}}{3}$$

Question 45 (7 marks)

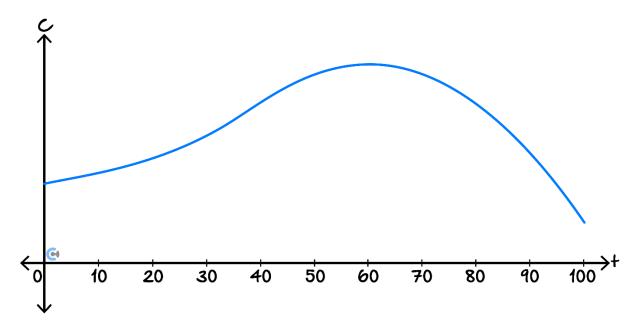
Special agent Jane Blonde has been trapped in a chamber where poisonous gas is leaking.

The concentration C, in mg/m^3 , of the gas, t minutes after Jane becomes trapped is given by the smooth and continuous function:

$$C(t) = \begin{cases} \frac{320}{80 - t}, & 0 \le t \le 40\\ a(t - 60)^2 + b, & 40 < t \le 100 \end{cases}$$

where a and b are constants.

A graph of the function is shown below.



a. What is the initial concentration of the gas in mg/m^3 ? (1 mark)

VCE Methods 3/4 Questions? Message +61 440 138 726

	Show that $a = -\frac{1}{200}$ and $b = 10$. (3 marks)
	** C 14 '
	Hence, find the maximum concentration of the gas in mg/m^3 . (1 mark)
,	The gas is lethal if exposed to a concentration greater than $9 mg/m^3$ for a duration greater than 30 minutes
•	
	Will Jane survive the gas? (2 marks)

Qu	estion 46 (8 marks)				
Th	The population of rats on an island t days after a virus is introduced is modelled by $P = 5000e^{-\frac{t}{10}}$.				
a.	Find the initial number of rats on the island. (1 mark)				
b.	Find the time it takes for the population of rats to halve. Give your answer correct to the nearest day. (1 mark)				
c.	Write down an expression to calculate the rate of decrease of the population at a time t . (1 mark)				
d.	Find the rate of decrease of the population after 18 days. Give your answer to the nearest whole number of rats/day. (1 mark)				
giv	her 20 days, the remaining rats begin to build an immunity to the virus and start to breed. The population is now en by $P_1 = 5000 e^{-\frac{t}{10}} + 2(t - 20) \log_e(t - 15)$, where t is the number of days since the virus was first roduced.				
e.	State the domain of P_1 . (1 mark)				

VCE Methods ¾ Questions? Message +61 440 138 726

f.	Find, to the nearest day, the time it takes for the rat population to reach the same number as when the virus was first introduced. (1 mark)
g.	Determine the lowest population of rats that the island ever has. Give your answer correct to the nearest rat. (2 marks)
Sp	ace for Personal Notes

Contour Checklist

Learning Objective: [2.3.1] - Find Derivatives with Functional Notation		
Key Takeaways To derive composite functions like $\sin(f(x))$, apply the rule.		
To derive composite reflections like sin() (x)), apply therule.		
Learning Objective: [2.3.2] - Apply Differentiability to Join Two Functions Smoothly		
Key Takeaways		
When two functions join smoothly at a point, the and of each function are both equal at that point.		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

