

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation Exam Skills [2.3]

Homework

Homework Outline:

Compulsory Questions	Pg 2-Pg 17
Supplementary Questions	Pg 18-Pg 37

Section A: Compulsory Questions

<u>Sub-Section [2.3.1]</u>: Find General Derivatives With Functional Notation

Question 1	
If f is a differentiable function, find $\frac{dy}{dx}$ for the following:	
$\mathbf{a.} y = \sin(f(x))$	
b. $y = f(2x^3)$	

If f and g are differentiable functions, find $\frac{dy}{dx}$ for the following:

 $\mathbf{a.} \quad y = \log_e(f(x)) \cdot \cos(x)$

CONTOUREDUCATION

 $\mathbf{b.} \quad y = \frac{xf(x)}{g(x)}$

Question 3

If f and g are differentiable functions, find $\frac{dy}{dx}$ for the following:

- $\mathbf{a.} \quad y = e^{f(x)g(x)} \cdot \sin(x^2)$
- **b.** $y = \frac{\log_e(f(g(x)))}{[g(x)]^2}$

<u>Sub-Section [2.3.2]</u>: Apply Differentiability to Join Two Functions Smoothly

Question	4
A	

Ó

A hybrid function is defined as:

$$f(x) = \begin{cases} ax + b, & x < 3\\ x^2 - 3x + 4, & x \ge 3 \end{cases}$$

Find the values of a and b such that f(x) is smooth and continuous at x = 3.

Question	5
Question	2

A function f(x) is given by:

$$f(x) = \begin{cases} ax^2 + bx + 1, & x < 2\\ x^3 - 2x + 3, & x \ge 2 \end{cases}$$

Find the values of a and b such that f(x) is both continuous and differentiable at x = 2.

$\mathbf{\alpha}$	4.	
Ou	estion	O

Consider the hybrid function:

$$f(x) = \begin{cases} 2\sin(x-a) + b, & x < 1 \\ x^2 - 2x + 2, & x \ge 1 \end{cases}$$

all possible values of	a and b so that f is	a smooth and contr	nuous function for all a	ζ∈ ℝ.

Sub-Section: Exam 1 Questions

Question 7

a. Let $f: (-2, \infty) \to \mathbb{R}$, $f(x) = \frac{x+3}{x+2}$.

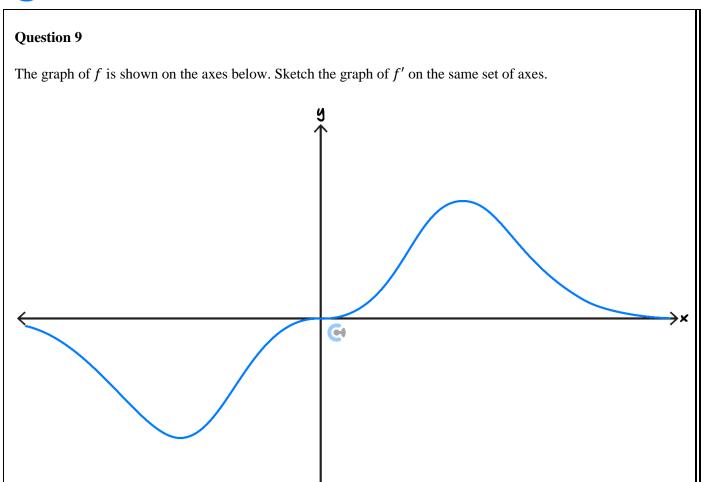
Find f'(x).

c. Evaluate $\lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$.

Let $f(x) = 2x^3 + 3x^2 - 12x + 12$.

a. Find the coordinates of all stationary points of f.

- **b.** State the nature of any stationary points found in **part a.**



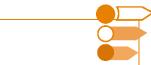
Onestion	1	O

Consider the function $f(x) = x^3 e^{-x^2}$.

a. Find f'(x) in the form $ax^2e^{-x^2}(b-cx^2)$ for positive integers a, b, and c.

b. Hence, find the coordinates for any stationary points of f.

c.		
	Determine the nature of any stationary points of f .	
•	Determine the nature of any stationary points of f.	
Sr	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
Sţ	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
Sp	pace for Personal Notes	
St	pace for Personal Notes	
St	pace for Personal Notes	
Sţ	pace for Personal Notes	
St	pace for Personal Notes	
Sţ	pace for Personal Notes	
Sţ	pace for Personal Notes	
Sţ	pace for Personal Notes	
St	pace for Personal Notes	
St	pace for Personal Notes	
Sţ	pace for Personal Notes	
Sţ	pace for Personal Notes	
Sţ	pace for Personal Notes	
St	pace for Personal Notes	
Sţ	pace for Personal Notes	
St	pace for Personal Notes	
St	pace for Personal Notes	
St	pace for Personal Notes	



Sub-Section: Exam 2 Questions

Question 11

If $y = 2x^2 + 4x + 3$, the rate of change of y with respect to x at x = k is:

- **A.** 4k + 4
- **B.** 2k + 4
- C. $k^2 + 4$
- **D.** $k^3 + 4$

Question 12

Let $f(x) = (ax + b)^3$ and let g be the inverse function of f.

Given that f(0) = 1, what is the value of g'(1)?

- A. $\frac{3}{a}$
- **B.** 1
- C. $\frac{1}{3a}$
- **D.** 0

Question 13

If $f(x) = e^{g(x^3)}$, where g is a differentiable function, then f'(x) is equal to:

- **A.** $3x^2e^{g(x^3)}$
- **B.** $3x^2g(x^3)e^{g(x^3)}$
- **C.** $3x^2g'(x^3)e^{g(x^3)}$
- **D.** $3x^2g'(3x^2)e^{g(x^3)}$

For two differentiable functions f and g the derivative of $f(3x) \times g(x^2)$ is:

- **A.** $6xf'(3x)g'(x^2)$
- **B.** $x^2 f(3x)g'(x^2) + 3xf'(3x)g(x^2)$
- C. $3f(3x)g'(x^2) + 3xf'(3x)g(x^2)$
- **D.** $2xf(3x)g'(x^2) + 3f'(3x)g(x^2)$

Question 15

Consider the function:

$$f(x) = \begin{cases} 2x^2 + ax + 1 & x \le 2\\ x^2 + 3x + b & x > 2 \end{cases}$$

If f is a smooth and continuous function for all $x \in \mathbb{R}$ then the values of a and b are:

- **A.** a = 1, b = 3
- **B.** a = -1, b = -3
- C. a = 1, b = -3
- **D.** a = -1, b = 3

Tammy Jones is exploring the jungle looking for a lost civilisation when she is struck by a blowgun dart, fired by the local tribesman.

The dart is poisoned and the concentration of poison, in mg/L, in Tammy's blood t minutes, after she is hit, is given by the continuous function:

$$C(t) = \begin{cases} \frac{350}{70 - t} & 0 \le t \le k\\ m, & k < t \le 60 \end{cases}$$

a.	what is the initial concentration of poison in Tahiniy's blood:

b.	Find an expression for m in terms of k .

c.	Find the minimum and maximum values of m .						

_	
-	
-	
_	
-	
1	If the rate at which the concentration of poison in Tammy's blood was increasing was $2 mg/L$ per minute, find the value of t . Express your answer correct to two decimal places.
1	and the value of t. Express your answer correct to two decimal places.
-	
_	
-	
_	
-	
-	
n	my will not survive if the concentration of poison in her blood exceeds $12 mg/L$.
(Given that Tammy is unable to receive any treatment for 60 minutes, find the possible values of k in order
	her to survive.
ł	
l	
_	
-	
-	
-	
-	
-	

a. Let $f(x) = (x^2 + bx + c)\sqrt{3x - 4}$.

i. Use calculus to find f'(x).

ii. Hence, express the derivative of $(x^2 + bx + c)\sqrt{3x - 4}$ in the form $\frac{q(x)}{2\sqrt{3x - 4}}$ where q(x) is a quadratic function.

CONTOUREDUCATION

b.	b. Let $g(x) = (x^2 + bx - 1)\sqrt{3x - 4}$.							
	i. State the domain of $g(x)$.							
	ii.	Find the values of b for which g has a stationary point.						

Section B: Supplementary Questions

Sub-Section [2.3.1]: Find General Derivatives With Functional Notation

4		
\sim	_1	
_		

Question 18

If f is a differentiable function, find $\frac{dy}{dx}$ for the following:

a. $y = f(x) \tan(x)$

			,		
b.	y	=		f	(x)

Question 19

If f and g are differentiable functions, find $\frac{dy}{dx}$ for the following:

 $\mathbf{a.} \quad y = f(e^x) \cdot g(x)$

CONTOUREDUCATION

b.	$y = f(g(\cos(3x)))$		

Question 20

If f and g are differentiable functions, find $\frac{dy}{dx}$ for the following:

a. $y = \sqrt{f(3x^2) + g(2x + f(x))}$

b. $y = \frac{e^{f(x^2)}}{g(f(x^2)) + f(x^2)}$

Question 21		
	ferentiable increasing functions, with $g'(x)$ also being that $y = f(x) + 3x + g(-f(x) - 3x)$ has?	ng one-to-one, what is the maximum amount

Space for Personal Notes

<u>Sub-Section [2.3.2]</u>: Apply Differentiability to Join Two Functions Smoothly

Question 22
A hybrid function is defined as:
$f(x) = \begin{cases} e^{2x} - 2, & x < 0 \\ ax + b, & x \ge 0 \end{cases}$
Find the values of a and b such that $f(x)$ is smooth and continuous at $x = 0$.

Ouestion	23
Oucsuon	4.

A hybrid function is defined as:

$$f(x) = \begin{cases} \log_e(ax), & x < 1 \\ bx^2, & x \ge 1 \end{cases}$$

A hybrid function, $f : \mathbb{R} \to \mathbb{R}$, is defined as:

$$f(x) = \begin{cases} 2x+4 & x < -2 \\ ax^3 + bx^2 + cx + d & -2 \le x \le 2 \\ x^2 - 6x + 10 & x > 2 \end{cases}$$

the values of a, b, c and d such that $f(x)$ is both continuous and smooth over its entire domain.			
			

CONTOUREDUCATION

Question 25 Tech-Active.

a. A hybrid function $f : \mathbb{R} \to \mathbb{R}$, is defined as:

$$f(x) = \begin{cases} \sin(x) + 3 & x < 0 \\ g_1(x) & 0 \le x < 1 \\ g_2(x) & 1 \le x < 2 \\ g_3(x) & 2 \le x < 3 \\ \log_e\left(\frac{e^2x^3}{27}\right) & x \ge 3 \end{cases}$$

Where g_1, g_2 and g_3 are cubic polynomials. Find g_1, g_2, g_3 if both f and f' are smooth on \mathbb{R} .				

b. A different hybrid function, $h : \mathbb{R} \to \mathbb{R}$, is defined as:

$$h(x) = \begin{cases} \sin(x) + 3 & x < 0 \\ g_4(x) & 0 \le x < 3 \\ \log_e\left(\frac{e^2x^3}{27}\right) & x \ge 3 \end{cases}$$

Where g_4 is a polynomial. If both h and h' are smooth on \mathbb{R} , what is the minimum degree of $g_4(x)$?

Sub-Section: Exam 1 Questions

Question 26

a. Let $f:(1,\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 - 2x}{(x-1)^2}$. Differentiate f with respect to x.

b. Let $g(x) = (x-3)^3(x+1)^2$. Solve g'(x) = 0 for x.

		e^{x^3+2x}	dν
c.	If $y =$	$\frac{e^{x^3+2x}}{\sin(x^3+2x)},$	find $\frac{dy}{dx}$.

ONTOUREDUCATION

d.	Let $h: [1, \infty) \to \mathbb{R}, h(x) = \sqrt{\log_e(x)}$. Evaluate $h'(e)$.

Question 27

Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 e^{kx}$.

Find the value of k for which f(x) and f'(x) have exactly one point of intersection.

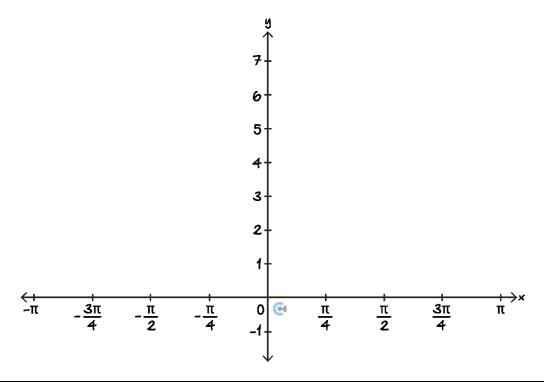
Let $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = e^x \sin(x)$.

a. Find f'(x).

b. Show that f(x) has a stationary point when $x = -\frac{\pi}{4}, \frac{3\pi}{4}$.

c. On the set of axes below, sketch the graph of y = f'(x) on the domain $\left[-\pi, \frac{3\pi}{4}\right]$, labelling the endpoints and

points of intersection with the graph of y = f(x) with their co-ordinates.



Consider the piecewise function, $f : \mathbb{R} \to \mathbb{R}$, with the following rule;

$$f(x) = \begin{cases} 0 & x \le 0 \\ x^n \log_e(x) & 0 < x \le 1 \\ ax + b & x > 1 \end{cases}$$

a. Find the values of a and b such that the graph of y = f(x) is smooth at x = 1.

b. It is known that $\lim_{x\to 0^+} x^k \log_e(x) = 0$ if and only if k > 1.

i. For what values of n is the graph of y = f(x) continuous at x = 0?

ii. For what values of n is the graph of y = f(x) smooth at x = 0?

Sub-Section: Exam 2 Questions

Question 30

The gradient of the graph of $y = \log_e(2x)$ at the point where the graph crosses the horizontal axis is equal to:

- **A.** 1
- **B.** 2
- **C.** *e*
- **D.** 2*e*

Question 31

Let f and g be differentiable functions.

If f'(2) = 3, f'(5) = -1, g(1) = 5 and g'(1) = 2, then what is the value of $(f \circ g)'(1)$?

- **A.** -2
- **B.** −5
- **C.** 15
- **D.** There is insufficient information to determine the correct answer.

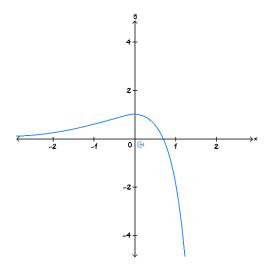
Consider the function:

$$f(x) = \begin{cases} e^{x-1} & x \le 1\\ ax^2 + bx & x > 1 \end{cases}$$

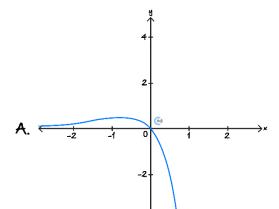
If the derivative of f is a smooth function for all $x \in \mathbb{R}$, then the values of a and b are:

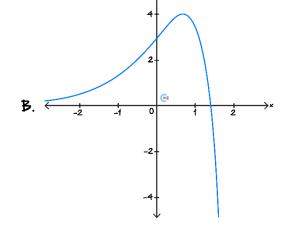
- **A.** a = 0 and b = 1.
- **B.** a = 1 and b = 1.
- **C.** a = 2 and b = 1.
- **D.** $a = \frac{1}{2}$ and b = 0.

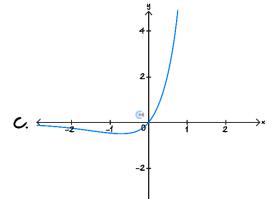
The graph of y = f(x) is shown below.

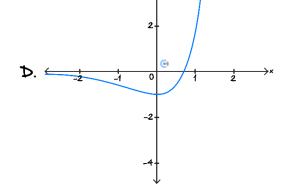


The graph of y = f'(x), the first derivative of f(x) with respect to x, could be:









Suppose a function $f: [-2,2] \to \mathbb{R}$ and its derivative $f': [-2,2] \to \mathbb{R}$ are defined and continuous in their domains.

If f'(x) > f(x) for all x and f'(0) = 0, which one of these statements must be true?

- **A.** f is increasing on [0, 2].
- **B.** f is increasing on [-2, 0].
- C. f is decreasing on [0, 2].
- **D.** f is decreasing on [-2, 0].

Question 35

The population of cockatiels (in thousands) living in Australia, t years after 1800, is modelled by the smooth piecewise function:

$$f(t) = \begin{cases} 800 + 100 \cos\left(\frac{\pi t + 10\pi}{30}\right) & 0 \le t < 100\\ g(t) & 100 \le t < 145\\ 1000e^{0.02(t - 145)} + 120 \sin\left(\frac{\pi t + 10\pi}{30}\right) & t \ge 145 \end{cases}$$

a. Write f'(t) as a piecewise function in terms of g'(t).

b. If $g(t) = a(t - 100)^3 + b(t - 100)^2 + c(t - 100) + d$, construct simultaneous equations to show that, $a = \frac{48 - \sqrt{3}\pi}{6075}$, $b = -\frac{42 + 4\sqrt{3}\pi}{135}$, $c = \frac{5\pi}{\sqrt{3}}$ and d = 850.

c. Let g be defined as in part b.

i. Solve f'(t) = 0 for $t \in [100, 145]$. Give your answer correct to 2 decimal places.

ii. Hence, state the values of $t \in [100, 145]$ for which f(t) is strictly decreasing.

Give your answer correct to 2 decimal places.

CONTOUREDUCATION

d.	Find the minimum value of $f'(t)$ for $t \in [100, 145]$ correct to 2 decimal places.
e.	We can approximate $g(t)$ using an alternative approximation, with:
	$g(t) = 850 + p\sin\left(\frac{\pi t}{30}\right) + q\cos\left(\frac{\pi t}{30}\right) + r\sin\left(\frac{\pi t}{15}\right) + s\cos\left(\frac{\pi t}{15}\right)$
	Find the values of p , q , r and s correct to 2 decimal places.

Consider the composite function $g(x) = f(\tan(2x))$, where the function f is an unknown but differentiable function, whose derivative, f'(x) is a decreasing function for all values of x.

Use the following table of values for f and f'.

x	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
f(x)	-2	5	-7
f'(x)	2	0	-3

a.	Express	g'(x)	in terms	of $f'(x)$.
----	---------	-------	----------	--------------

c	
u.	

i. Solve g'(x) = 0 for all $x \in \mathbb{R}$.

ii. Explain why there cannot be any more solutions to the equation g'(x) = 0, than those you have provided in the previous part.

iii. Find the maximal subset of $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ for which g(x) is decreasing.

d.	How many solutions are there to the equation $g(x) = 0$ over the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$? Explain your answer.

Space for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-methods-consult-2025

