CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation II [2.2]

Workbook

Outline:

Limits

Pg 2-7

- Understanding Limits
- Validity of Limits

Continuity and Differentiability

Pg 8-23

- Continuity
- Differentiability
- Domain of the Derivative Function
- Defining Derivative Functions

Concavity and Points of Inflection

Pg 24-33

- Concavity and Second Derivative
- Points of Inflection
- Second Derivative Test

Learning Objectives:

- MM34 [2.2.2] Apply Differentiability to Find Points Where Functions are Not Differentiable, Domain of the Derivative and Unknowns of a Function
- MM34 [2.2.3] Identify Concavity and Find Inflection Points

Section A: Limits

Context: Limits and its Link to Calculus

Sub-Section: Understanding Limits

What is a limit?

Limits

$$\lim_{x\to a} f(x) = L$$

"The function f(x) approaches ______as x approaches _____."

 \blacktriangleright Limit is the value that a function (y-value) ______ as the x-value approaches a value.

Question 1 Walkthrough.

Evaluate the following limit:

$$\lim_{x\to -2}(x^3+2)$$

Question 2

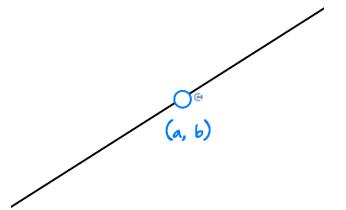
Evaluate the following limit:

$$\lim_{x \to 1} \left(3 + \frac{1}{x^2} \right)$$

What is the difference between a limit and simply finding the y-value?

Exploration: Purpose of Limits

Consider the following graph:



- \blacktriangleright What is f(a) equal to?
- What about $\lim_{x\to a} (f(x))$?
- > Does the function need to be defined for the limit to be defined? [yes/no]

Question 3

Evaluate
$$\lim_{x \to -2} \left(\frac{-1}{(x+2)^2} + 4 \right)$$
.

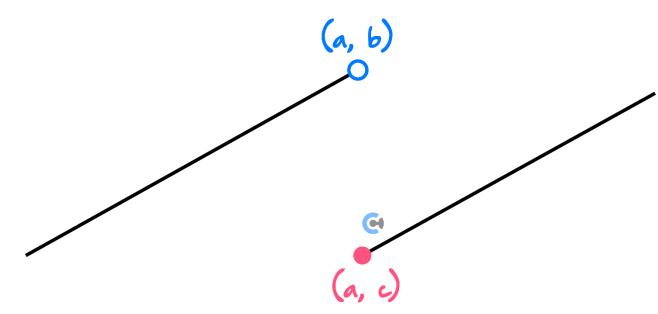
TIP: Sketch the function and see the *y*-value that the function approaches.

Sub-Section: Validity of Limits

Limit $\lim_{x\to a} f(x)$ seems invincible compared to the actual f(a)!

Do limits themselves also break?

Exploration: Validity of Limits



What does the above function approach from the left-hand side of x = a? (Left Limit)

$$\lim_{x\to a^-} f(x) = \underline{\hspace{1cm}}$$

What does the above function approach from the right-hand side of x = a? (Right Limit)

$$\lim_{x \to a^+} f(x) = \underline{\qquad}$$

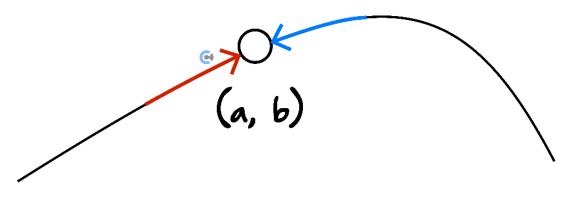
Hence, what is the overall limit?

$$\lim_{x\to a} f(x) = \underline{\hspace{1cm}}$$

Hence, for an overall limit to exist:

Right Limit = Left Limit

Validity of Limits



$$\lim_{x \to a} f(x) \text{ exists if } \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Limit is defined when the left limit equals to the right limit.

Question 4 Walkthrough.

Consider
$$f(x) = \frac{1}{x-2} + 4$$
.

Evaluate the left and right limits of f(x) for x = 2, and hence, state whether the limit is defined.

Question 5

Evaluate the left and right limits for each of the following, and hence, state whether the limit is defined.

a.
$$f(x) = \frac{3}{x-1}$$
 for $x = 1$.

b.
$$g(x) = \frac{1}{(x-3)^2}$$
 for $x = 3$.

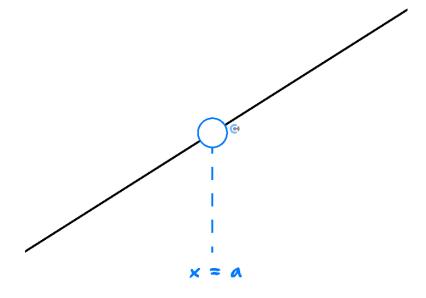
Section B: Continuity and Differentiability

Sub-Section: Continuity

What condition does the function need to satisfy for it to be continuous at a point?

Exploration: Case 1 of Continuity of a Function at x = a

Consider the function below.

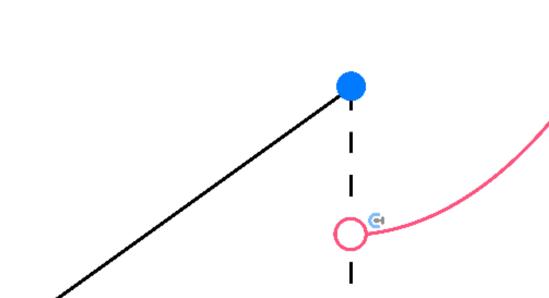


- ls the function continuous at x = a? [yes/no]
- \blacktriangleright What is missing at x = a?
- How could we have prevented this?

f(a) needs to be _____.

Exploration: Case 2 of Continuity of a Function at x = a

Consider the function below.

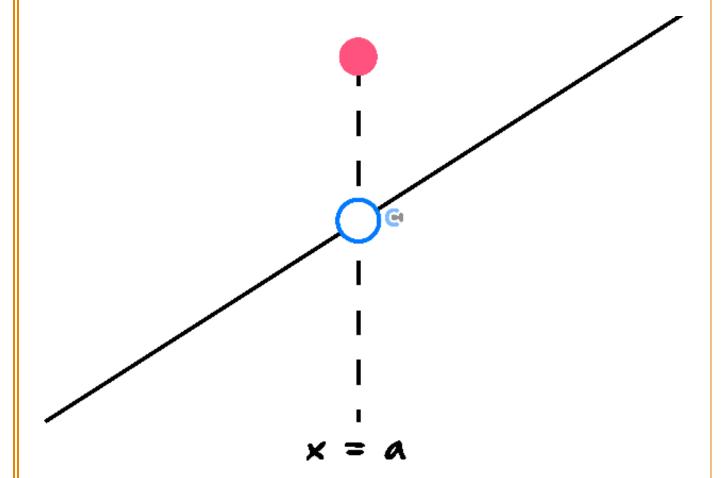


- Is the function continuous at x = a? [yes/no]
- What is missing at x = a?
- How could we have prevented this?

 $\lim f(x)$ needs to be _____.

Exploration: Case 3 of Continuity of a Function at x = a

Consider the function below.



- Is the function continuous at $x = \alpha$? [yes/no]
- What is missing at x = a?
- How could we have prevented this?

Let's summarise!

Continuity

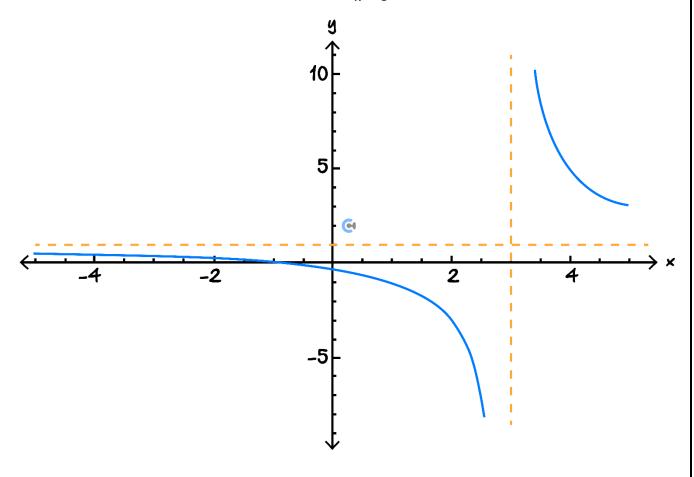
(a, f(a))

- A function f is said to be continuous at a point x = a if:
 - 1. f(x) is defined at x = a.
 - 2. $\lim_{x\to a} f(x)$ exists.
 - $3. \quad \lim_{x \to a} f(x) = f(a).$

Question 6 Walkthrough.

Find the values of x for which the following function has a discontinuity, and state the reason.

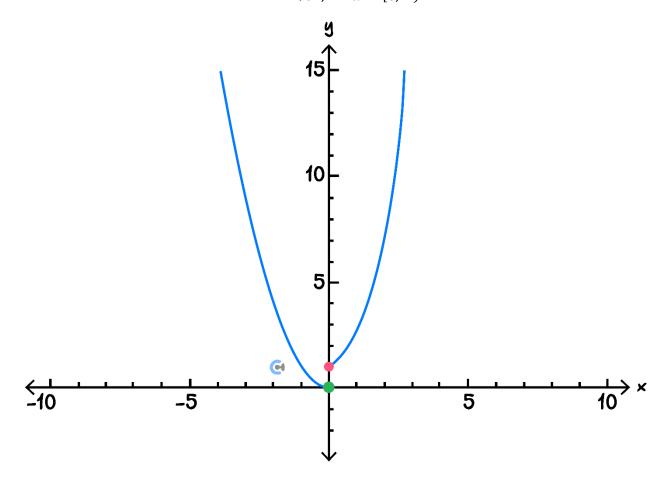
$$f(x) = \frac{x+1}{x-3}$$



Question 7

Find the values of x for which the following functions have a discontinuity, and state the reason.

$$f(x) = \begin{cases} x^2, & x \in (-\infty, 0) \\ e^x, & x \in [0, \infty) \end{cases}$$



Question 8 Extension.

Find the values of x for which the following functions have a discontinuity, and state the reason.

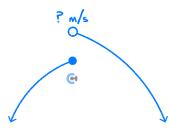
$$f(x) = \begin{cases} \sin(2x), x \in \left(-\infty, \frac{\pi}{2}\right) \\ \frac{3x}{\pi} - \frac{5}{2}, x \in \left[\frac{\pi}{2}, \pi\right] \\ \sin(2x) + \frac{1}{2}, x \in (\pi, \infty) \end{cases}$$

Sub-Section: Differentiability

<u>Discussion:</u> What do you think the word differentiability means?

What conditions do the points need to satisfy to have a valid gradient?

- Richard has a special power.
 - He can teleport from place to place!
- What is his speed when he teleports?



- Similarly, what is the gradient of a function when it teleports to another point (Not Continuous)?
- Therefore, for a point to be differentiable, what must it be with the rest of the function?

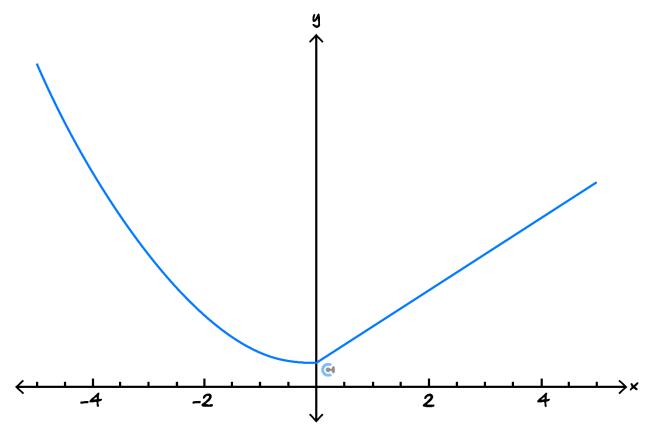
Differentiability

(a, f(a))

- A function f is said to be differentiable at a point x = a if:
 - 1. f(x) is continuous at x = a.
 - 2. $\lim_{x \to a} f'(x)$ exists.
 - Limit exists when the left and right limits are the same.
 - Gradient on the _____ must be the same.
- We cannot differentiate:
 - 1. Discontinuous Points
 - 2. Sharp Points
 - **3.** Endpoints

Question 9 Walkthrough.

Consider the function below:



$$f(x) = \begin{cases} x^2 + 2, & x \le 0 \\ 3x + 2, & x > 0 \end{cases}$$

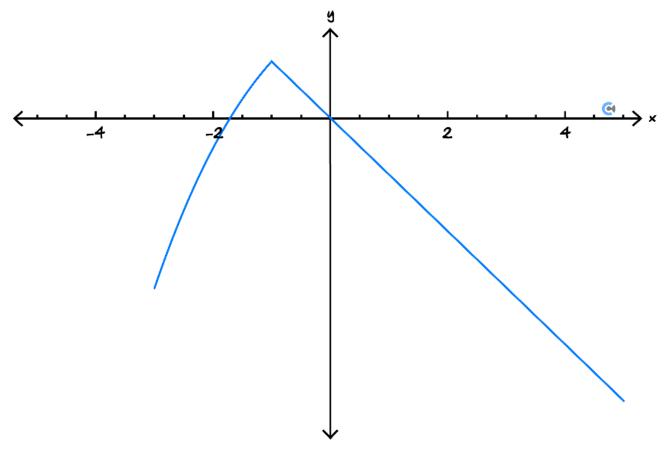
State the points that are not differentiable and state the reason.

NOTE: Left and right limit of the gradient is simply the gradient from the LHS and RHS.

ALSO NOTE: We call this a sharp point!

Question 10

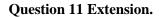
Consider the function below:



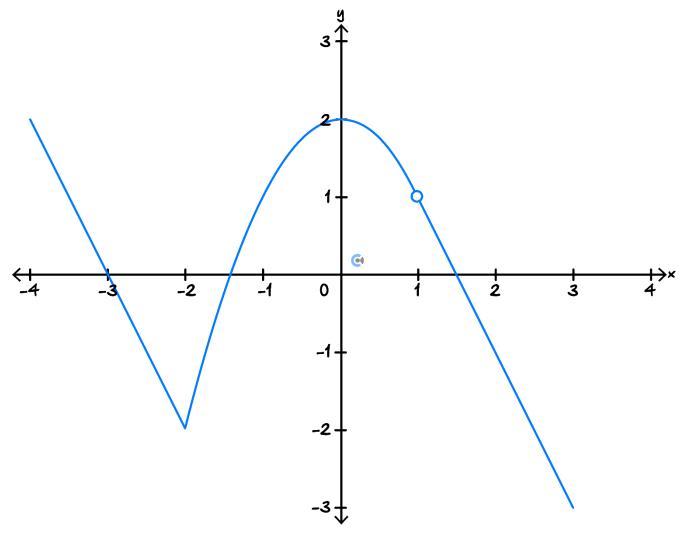
$$f(x) = \begin{cases} -x^2 + 3, -3 \le x \le -1\\ -2x, & x > -1 \end{cases}$$

State the points that are not differentiable and state the reason.

NOTE: We cannot differentiate endpoints as they only have a left or right limit.



Consider the function below:



$$f(x) = \begin{cases} -2x - 6, & -4 \le x \le -2\\ -x^2 + 2, & -2 < x < 1\\ -2x + 3, & x > 1 \end{cases}$$

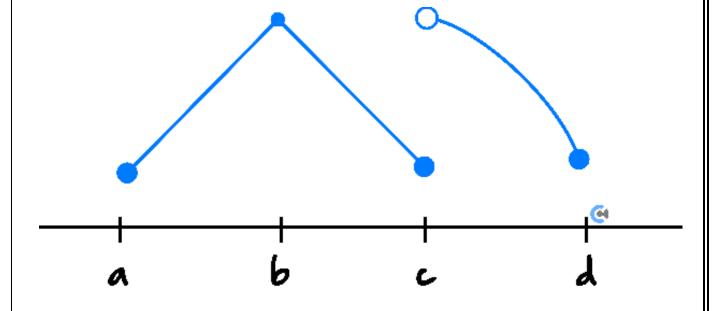
State the points that are not differentiable and state the reason.

Sub-Section: Domain of the Derivative Function

<u>Discussion</u>: If a point is not differentiable, can its x value be part of the derivative's domain? Does the derivative function exist at that x-value?

Question 12 Walkthrough.

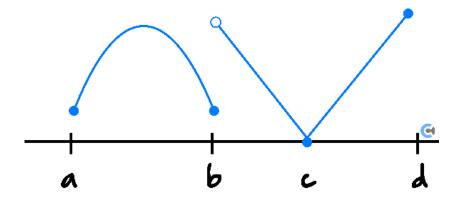
Find the domain of the derivative function for the function shown below.



NOTE: Endpoints, sharp points, and points of discontinuity need to be taken out.

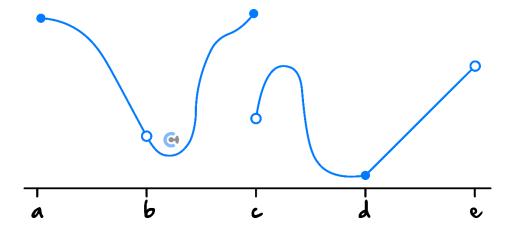
Question 13

Find the domain of the derivative function for the function shown below.



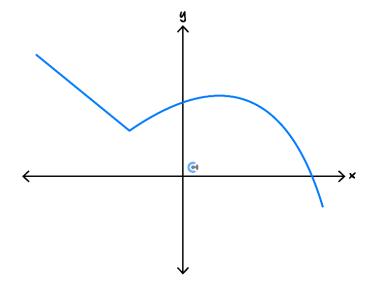
Question 14 Extension.

Find the domain of the derivative function for the function shown below.



Sub-Section: Defining Derivative Functions

Finding the Derivative of Hybrid Functions



- 1. Simply derive each function.
- **2.** Reject the values for x that are not differentiable from the domain.

Question 15 Walkthrough.

For the following function, define the derivative function.

$$f(x) = \begin{cases} x^2 - 4, & x \le 0 \\ 3x - 4, & x > 0 \end{cases}$$

Question 16

For the following function, define the derivative function.

$$f(x) = \begin{cases} 3\cos\left(\frac{x}{2}\right) + 1, & x \le 0\\ 3x + 4, & x > 0 \end{cases}$$

Question 17 Extension.

For the following function, define the derivative function.

$$f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

Section C: Concavity and Points of Inflection

Sub-Section: Concavity and Second Derivative

Discussion: What would the derivative's derivative represent?

Second Derivatives

- ➤ The ______.
- > To get the second derivative, we can differentiate the original function twice.

$$\frac{d^2y}{dx^2} = f''(x)$$

<u>Discussion:</u> What does it mean when the second derivative is negative? (Gradient's gradient is negative.)

<u>Discussion:</u> What does it mean when the second derivative is positive? (Gradient's gradient is positive.)

The trend of the gradient is given by concavity!

Concavity

Concave up is when the gradient is increasing.

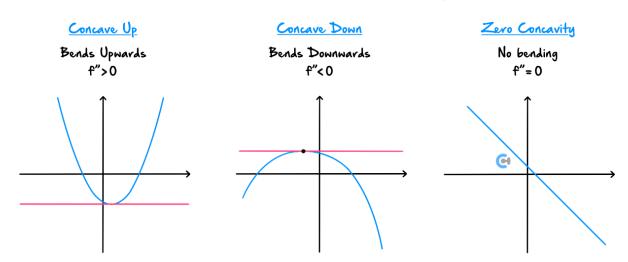
$$f''(x) > 0 \rightarrow \text{Concave Up}$$

Concave down is when the gradient is decreasing.

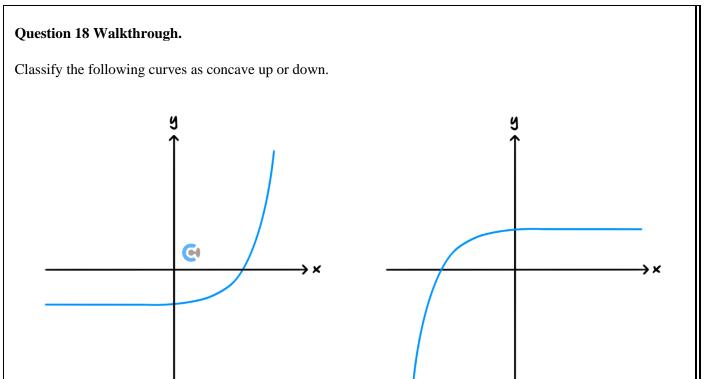
$$f''(x) < 0 \rightarrow \text{Concave Down}$$

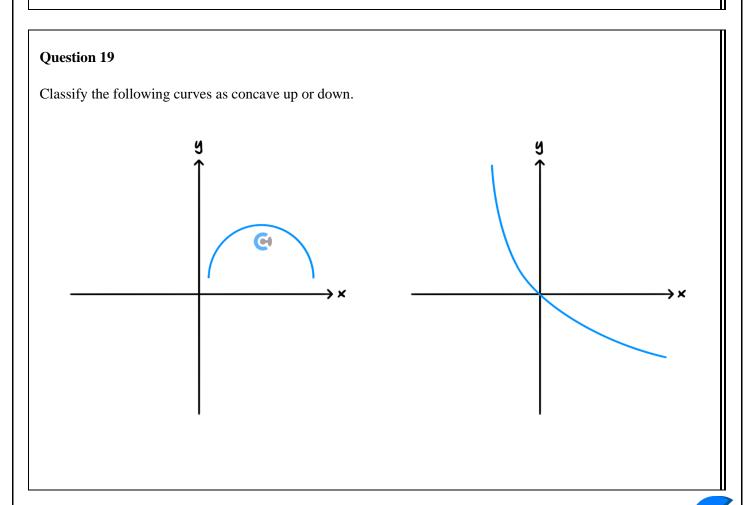
Zero concavity is when the gradient is neither increasing nor decreasing.

$$f''(x) = \mathbf{0} \rightarrow \mathsf{Zero}$$
 Concavity



Concavity is also linked to how the curve is bent.





Remember that concavity is dictated by the sign of the double derivative!

Active Recall: Concavity and Double Derivative

$$f''(x) > 0 \rightarrow \mathsf{Concave}$$

$$f''(x) < 0 \rightarrow \mathsf{Concave}$$

Question 20

Consider the function $f(x) = x^3 + 4x^2 - 5x + 6$. Find the second derivative and, hence, find the value(s) of x for which the function is concave down.

NOTE: Simply find the sign of the double derivative.

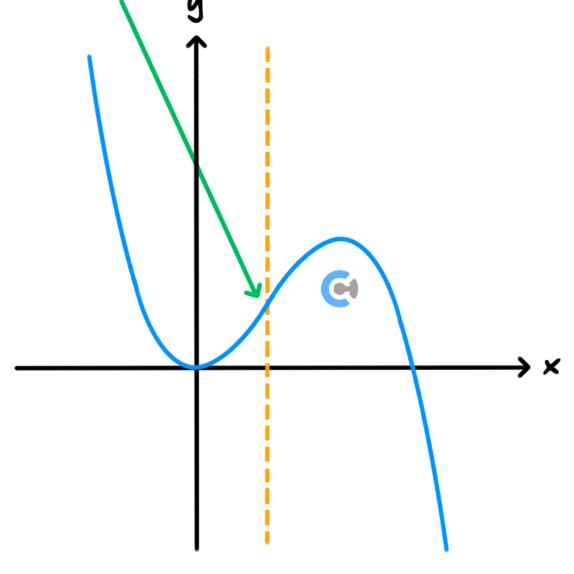
<u>Discussion</u>: For the previous question, what happens at $x = -\frac{4}{3}$?

Sub-Section: Points of Inflection

The point where the concavity changes is called the point of inflection!

Points of Inflection

A point at which a curve **changes concavity** is called a **point of inflection**.

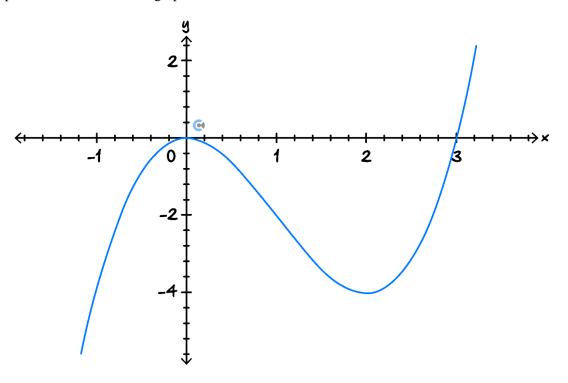


$$f''(x) = \mathbf{0}$$

⊙ Simply, it is when the _____ changes.

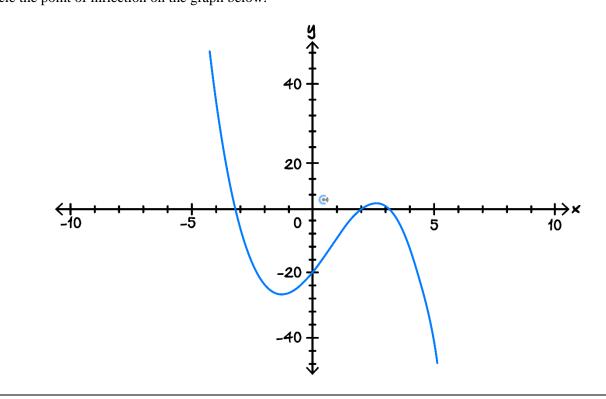
Question 21 Walkthrough.

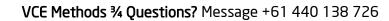
Circle the point of inflection on the graph below.



Question 22

Circle the point of inflection on the graph below.



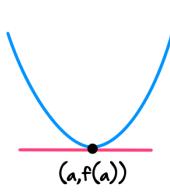


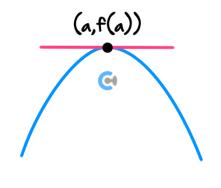
Let $f(x) = xe^{-x}$ where $x \in R$. The graph of f has exactly one point of inflection. Determine its coordinates.

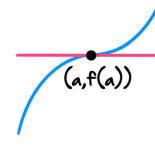
Sub-Section: Second Derivative Test

Discussion: How can we use the concavity to identify the nature of the stationary point?

The Second Derivative Test







- Suppose that f'(a) = 0 and hence, f has a stationary point at x = a. The second derivative test states:
 - Concave up gives us a local minimum.

$$f''(x) > 0 \rightarrow \text{Local Minimum}$$

• Concave down gives us a local maximum.

$$f''(x) < 0 \rightarrow \text{Local Maximum}$$

Zero concavity gives us a stationary point of inflection.

$$f''(x) = 0$$
 \rightarrow Stationary Point of Inflection

Question	24	Walkthrough
Question	47	vv aikuli vugii

Consider the function $f(x) = \log_e(x^2 + 4)$.

Find the stationary point and identify its nature by using the second derivative test.

NOTE: This is much faster than using the table (comparing neighbouring gradients) from [2.1].

Question 25

Consider the function $f(x) = e^{x^2+4}$.

Find the stationary point and identify its nature by using the second derivative test.

Onestion	26	Extor	acion

Consider the function $f(x) = xe^{-x^2 - x + 3}$.

Find the stationary points and identify their nature by using the second derivative test.

Contour Checkoff

□ <u>Learning Objective</u>: [2.2.1] – Evaluate Limits and Find Points Where the Function is Not Continuous

Key Takeaways

Limit Definition:

$$\lim_{x\to a} f(x) = L$$

"The function f(x) approaches _____ as x approaches _____."

Validity of Limit:

$$\lim_{x \to a} f(x) \text{ exists if } \lim_{x \to a} f(x) = \lim_{x \to a} f(x)$$

- O Limit is defined when the _____ limit equals to _____ right limit.
- Continuity:
 - A function f is said to be continuous at a point x = a if:
 - 1. *f*(*x*) is defined at ______.
 - $2. \lim_{x\to a} f(x) \underline{\hspace{1cm}}.$
 - 3. $\lim_{x \to a} f(x) =$ ______.

Learning Objective: [2.2.2] - Apply Differentiability to Find Points Where Functions are Not Differentiable, Domain of the Derivative and Unknowns of a Function
Key Takeaways
Differentiability:
• A function f is said to be differentiable at a point $x = a$ if:
1. $f(x)$ is continuous at $x = a$.
2. $\lim_{x \to a} f'(x)$ exists.
 Limit exists when the left and right limits are the same.
O Gradient on the must be the same.
We cannot differentiate:
1
2
3
Finding the Derivative of Hybrid Functions
1. Simply each function.
2. Reject the values for <i>x</i> that are from the domain.

	Learning Objective :	[2.2.3]	- Identify	Concavity	and Find	Inflection	Points
--	-----------------------------	---------	------------	-----------	----------	------------	---------------

Key Takeaways

ond.	Dorive	a+iv.ac

O The

O To get the second derivative, we can **differentiate the original function twice**.

$$\frac{d^2y}{dx^2} = f''(x)$$

Concavity

O Concave up is when the gradient is ______.

$$f''(x) > 0 \rightarrow \text{Concave Up}$$

O Concave down is when the gradient is ______.

$$f''(x) < 0 \rightarrow \text{Concave Down}$$

o ______ is when the gradient is neither increasing nor decreasing.

$$f''(x) = 0 \rightarrow \mathsf{Zero} \ \mathsf{Concavity}$$

Points of Inflection

• A point at which a curve ______ is called a **point of inflection**.

- The Second Derivative Test
 - O Suppose that f'(a) = 0 and hence, f has a stationary point at x = a. The second derivative test states:
 - Concave up gives us ______

$$f''(x) > 0 \rightarrow \text{Local Minimum}$$

☐ Concave down gives us _____

$$f''(x) < 0 \rightarrow \text{Local Maximum}$$

Zero concavity gives us ______

$$f''(x) = 0$$
 \rightarrow Stationary Point of Inflection

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

