

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation II [2.2]

Test

20.5 Marks. 10 Minutes Writing.

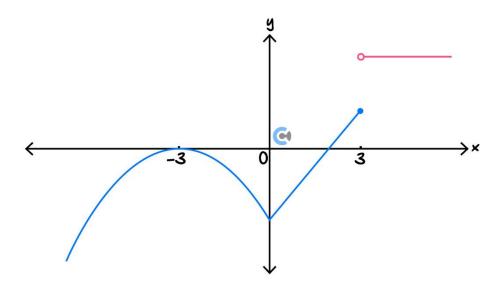
Results:

Test Questions	/ 13.5	
Extension Test Questions		

Section A: Test Questions (13.5 Marks)

Question	1	(3.5)	marks))

Tick whether the following statements are **true** or **false**.


		True	False
a.	If the function is undefined at $x = a$, the limit is also always undefined at $x = a$.		
b.	A function is continuous if the limit is defined.		
c.	For a function to be differentiable, it must be continuous and the gradient from the left and right must be the same.		
d.	When joined smoothly, the function is NOT differentiable.		
e.	When the function's positive gradient is getting steeper, then it is concave down.		
f.	Points of inflection occur when the concavity of the function changes.		
g.	Not all points of inflection are stationary points of inflection. However, all stationary points of inflection are points of inflection.		

_	_		
Space	for	Personal	Notes

Question 2 (4 marks)

The diagram below shows the graph of a function with domain R.

a. For the graph shown above, sketch, on the same set of axes, the graph of the derivative function. (3 marks)

b. Hence, state the domain of the derivative function. (1 mark)

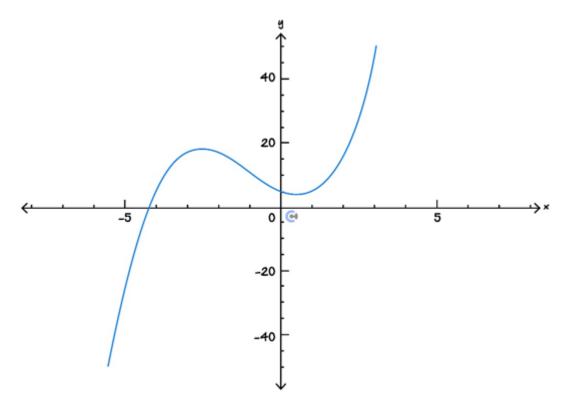
Space 1	for Pers	onal N	lotes
---------	----------	--------	-------

Question 3 (3 marks)

Consider the function:

$$f(x) = \begin{cases} ax^2 + 4 & -5 \le x \le 1\\ \sin(x - 1) + b & 1 < x \le 3 \end{cases}$$

a. Find the value of a and b such that the graph joins smoothly at x = 1. (2 marks)

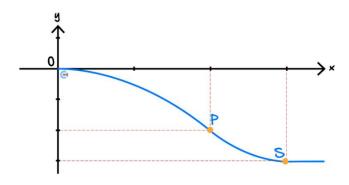

b. Hence, state the domain of the derivative function. (1 mark)

Space for Personal Notes

Question 4 (3 marks)

a. Circle the point of inflection on the graph below. (1 mark)

b. State whether at x = -3 the gradient is increasing or decreasing. Hence, state the concavity at x = -3. (2 marks)


Space for Personal Notes

Section B: Extension Test Questions (7 Marks)

Question 5 (7 marks) **Tech-Active.**

Engineers are designing a track for a new railway station to be built underground.

The coordinates of the station, to be positioned at S, are (300, -3). The floor at S is **parallel** to the ground.

Two separate pieces of track OP and PS are to be built, that join smoothly at P:(200,-2).

The rule that defines the track PS is given by $f_2(x) = a(x-h)^2 + k$, where $a, h, k \in R$.

a. Solve for the values of a, h and k. (2 marks)

b. Find the gradient of the track at point P. (1 mark)

The rule defining track <i>OP</i> is given by $f_1(x) = mx^2 + nx + k$, where $m, n, k \in R$.				
c. Cons	Construct three equations involving m , n and k . (2 marks)			
d. Henc	e, find the values of m , n and k . (1 mark)			
	idered too dangerous if the magnitude of the gradient of the track exceeds 0.05 at any point.			
e. Does	the design of this track meet the safety requirements? (1 mark)			
1				
Space fo	Space for Personal Notes			

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

