

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Differentiation II [2.2]

**Homework Solutions** 

### **Homework Outline:**

| Compulsory Questions    | Pg 2 – Pg 14  |
|-------------------------|---------------|
| Supplementary Questions | Pg 15 – Pg 25 |





### Section A: Compulsory Questions



### <u>Sub-Section [2.2.1]</u>: Evaluate Limits and Find Points Where the Function is not Continuous

### **Question 1**



Evaluate the following limits:

**a.** 
$$\lim_{x\to 2} (x^2 - 3)$$

As  $x^2-3$  is continuous at x=2, we may substitute x=2 to obtain  $\lim_{x\to 2} (x^2-3)=1$ .

**b.** 
$$\lim_{x\to 3} (3^x - 2x^2 + 3)$$

As  $3^x - 2x^2 + 3$  is continuous at x = 3, we may substitute x = 3 to obtain  $\lim_{x \to 3} \left(3^x - 2x^2 + 3\right) = 12$ 

c. 
$$\lim_{x\to 1} (f(x))$$
, where,

$$f(x) = \begin{cases} 2x + 1, & x < 1 \\ 5x - 2, & x \ge 1 \end{cases}$$

At x=1 we see that both the left and right limits are equal and so  $\lim_{x\to 1} f(x)=3$ 





Find the points x for which the following functions are **discontinuous** and state a reason as to why they are discontinuous.

**a.** 
$$f(x) = \begin{cases} 2x, & x < 2\\ 2x + 1, & x \ge 2 \end{cases}$$

Note that  $\lim_{x\to 2^-} f(x) = 4$  but  $\lim_{x\to 2^+} f(x) = 5$ . Since the left and right limits are not equal at x=2, we conclude that f(x) is discontinuous at x=2.

**b.** 
$$f(x) = \frac{6}{x^2 - x - 2}$$

We solve  $x^2 - x - 2 = 0$  to find that x = -1 or x = 2. Thus, f(x) is discontinuous at x = -1 and x = 2 as the function is not defined at these points.

**c.** 
$$f(x) = \begin{cases} 2x, & x > 0 \\ -2x, & x < 0 \end{cases}$$

The function is not defined at the point x = 0 and is therefore not continuous at x = 0.

### **CONTOUREDUCATION**

### **Question 3**



Consider the following function f(x) with rule:

$$f(x) = \begin{cases} 2x^2 - 4x + 3, & x < 2\\ ax + 4, & x \ge 2 \end{cases}$$

Find the value of a such that f(x) is continuous for all  $x \in \mathbb{R}$ .

Note that f(x) is already continuous for all  $x \neq 2$ , and all that remains is to make f(x) continuous at x = 2. Thus, we need  $3 = 2a + 4 \implies a = -\frac{1}{2}$ .

#### **Ouestion 4 Tech-Active.**

Consider the following function f(x) with rule:

$$f(x) = \begin{cases} x^2 - 3x + 2, & x < 2\\ a^2 - ax - 3, & 2 \le x < 4\\ 2x - 14, & x \ge 4 \end{cases}$$

Find the value of a such that f(x) is continuous for all  $x \in \mathbb{R}$ .

We have  $f(2^-) = 0$  then  $f(2^+) = a^2 - 2a - 3 = 0 \implies a = -1, 3$ . But also  $f(4^+) = -6$  so  $f(4^-) = a^2 - 4a - 3 = -6 \implies a = 1, 3$ . Only a = 3 satisfies both of these equations.



# <u>Sub-Section [2.2.2]</u>: Apply Differentiability to Find Points Where Functions are not Differentiable, Domain of the Derivative and Unknowns of a Function

### **Ouestion 5**



Find the values of x such that the following functions are not differentiable.

**a.** 
$$f(x) = \begin{cases} -x + 2, & x < 1 \\ x, & x \ge 1 \end{cases}$$

A rough sketch shows that there is a sharp point x = 1. Hence, the function is not differentiable at x = 1.

**b.** 
$$f(x) = \frac{1}{x-3}$$

The function is not defined whenever the denominator vanishes, i.e. at x = 3. Thus, the function is not differentiable at x = 3.

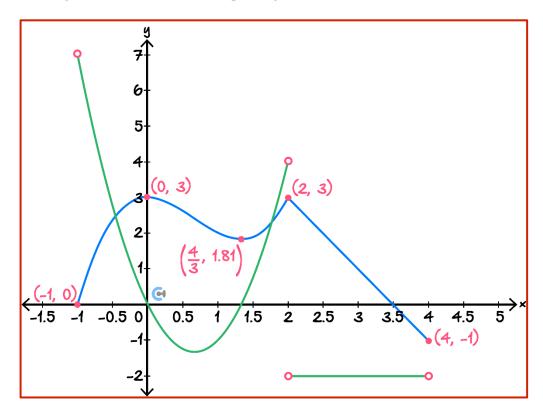
**c.** 
$$f(x) = \begin{cases} 2x - 4, & x < -1 \\ 2x - 6, & x \ge -1 \end{cases}$$

By inspection, we can see a discontinuity at x = -1. If a function is not continuous at a given point, it is also not differentiable there either.





Consider the following function. Sketch the corresponding derivative function on the same set of axes.



- **a.** Sketch the corresponding derivative function on the same set of axes above.
- **b.** Furthermore, state the domain of the derivative function.

The function will be differentiable everywhere except the endpoints and the discontinuity, i.e. dom  $f' = (-1, 4) \setminus \{2\}$ .







Consider the following function f(x) with rule:

$$f(x) = \begin{cases} x^2 - 4x + 3, & x < 1\\ ax + b, & x \ge 1 \end{cases}$$

Find the value of a and b such that f(x) is differentiable at x = 1.

Since the two rules must join at x = 1, imposing  $f(1^+) = f(1^-)$  gives a + b = 0. Also,  $f'(1^+) = f'(1^-)$  gives a = -2. By solving the resulting system of equations, we conclude

that a = -2 and b = 2.



### **Question 8 Tech-Active.**

Consider the following function f(x) with rule:

$$f(x) = \begin{cases} x^3 - x^2 - 2x + 3, & x < 2 \\ -x^2 + bx + c, & x \ge 2 \end{cases}$$

Find the value of a and b such that f(x) is differentiable at x = 2.

Let 
$$f(x) = x^3 - x^2 - 2x + 3$$
 and let  $g(x) = -x^2 + bx + c$ .  
We must have  $f(2) = g(2)$  and  $f'(2) = g(2)$ . Solve using CAS to obtain

$$b = 10 \text{ and } c = -13$$

In[36]:= 
$$f[x_{]} := x^3 - x^2 - 2x + 3$$
  
In[37]:=  $g[x_{]} := -x^2 + bx + c$   
In[38]:=  $Solve[f[2] := g[2] \&\& f'[2] := g'[2]]$   
Out[38]:=  $\{\{b \to 10, c \to -13\}\}$ 

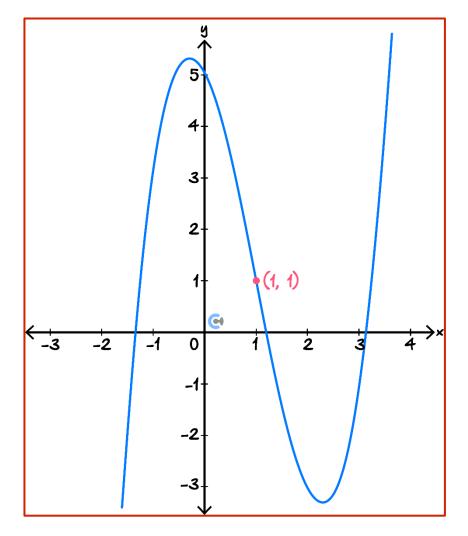




### Sub-Section [2.2.3]: Identify Concavity and Find Inflection Points

### **Question 9**

Consider the following graph for f(x).



- **a.** Circle the point of inflection on the above graph.
- **b.** State the values of x such that the function is concave up.

Notice how the gradient of the function increases after x = 1 (i.e. it is becoming less negative, and after the turning point becomes more positive). So, the answer is x > 1.

**c.** State the values of x such that the function is concave down.

Similar to above, x < 1.





Consider a function  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^4 + 2x^3 - 12x^2 + 6x + 4$ .

**a.** Calculate the second derivative of the function f(x).

$$f''(x) = 12x^2 + 12x - 24 = 12(x+2)(x-1).$$

**b.** Find the points of inflection of the function f(x).

The points of inflection occur where f''(x) = 0. This is easily solved from our factored form  $f(x) = 12(x+2)(x-1) = 0 \implies x = -2, 1$ .

Therefore points of inflection at x = -2, 1

**c.** Find the values of x where the function is concave up.

We solve for the values of x such that f''(x) > 0. Thus, the function is concave up whenever x < -2 or x > 1





Suppose that a function f(x) is double differentiable for all  $x \in (0,2)$ , and satisfies the following properties:

- f''(1) = 0
- f'(0) = 2
- f'(0.5) = 0
- f'(0.75) = -0.5
- f'(1) = -2
- f'(1.25) = -0.5
- f'(1.5) = 0
- f'(1.75) = 0.5

Find the values of x such that the function is concave down.

Point of inflection occur at x=1. Note that the gradient is decreasing for x<1 and increasing for x>1 Thus, the values of x such that the function is concave down is  $x\in(0,1)$ .



### Question 12 Tech-Active.

Find a rule of a polynomial f(x) so that f(0) = 3, f(1) = 2, f'(2) = -8, and so that there is a point of inflection when x = 2.

Since there are four equations, we should use a polynomial that involves four parameters – i.e. a cubic. Hence, assume  $f(x) = ax^3 + bx^2 + cx + d$ .

We solve these equations using CAS.

Solving these equations gives us the following solution a = 1, b = -6, c = 4 and d = 3. Therefore, a possible rule for the cubic could be  $x^3 - 6x^2 + 4x + 3$ .

```
In[96]:= f[x_{-}] := ax^3 + bx^2 + cx + d

In[97]:= Solve[f[0] == 3 && f[1] == 2 && f'[2] == -8 && f''[2] == 0]

Out[97]:= {\{a \to 1, b \to -6, c \to 4, d \to 3\}}
```



### Sub-Section: The 'Final Boss'

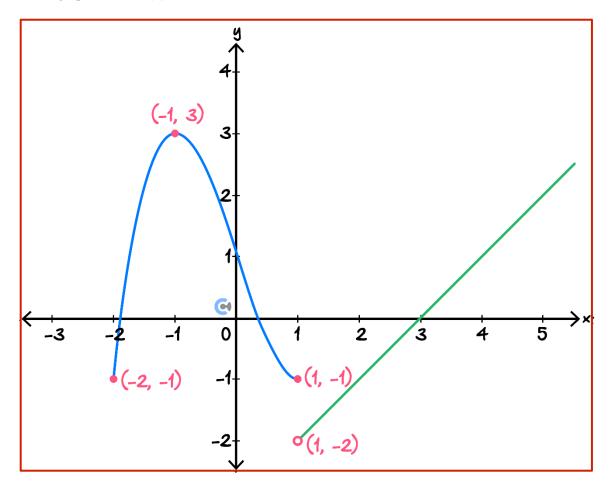


**Question 13** 

Consider the hybrid function:

$$f(x) = \begin{cases} x^3 - 3x + 1, & -2 \le x \le 1\\ x - 3, & x > 1 \end{cases}$$

**a.** Sketch the graph of y = f(x) on the axes below.



**b.** Define the derivative function f'(x), specifying its domain.

$$f'(x) = \begin{cases} 3x^2 - 3 & -2 < x < 1 \\ 1 & x > 1 \end{cases}$$



**c.** State the point of inflection for the function  $f_1(x) = x^3 - 3x + 1$ .

$$f_1''(x) = 0 \implies 6x = 0 \implies x = 0$$

**d.** The function:

$$g(x) = \begin{cases} x^3 - x^2 + a - 2, & x \le 1\\ x^2 + bx + 3, & x > 1 \end{cases}$$

is continuous and differentiable for all  $x \in \mathbb{R}$ . Find the values of a and b.

Let  $g_1(x) = x^2 - x^2 + a - 2$  and  $g_2(x) = x^2 + bx + 3$ . We have  $g_1(1) = a - 2$  and  $g_1'(1) = 1$ .  $g_2(1) = 4 + b$  and  $g_2'(1) = 2 + b$  We need  $g_1'(1) = g_2'(1) = \implies 1 = 2 + b \implies b = -1$  Then  $a - 2 = 4 + b \implies a = 5$ 



### Section B: Supplementary Questions



## <u>Sub-Section [2.2.1]</u>: Evaluate Limits and Find Points Where the Function is not Continuous

### **Question 14**



Evaluate the following limits:

**a.**  $\lim_{x \to 3} (x^3 - 2x^2 + 5)$ 

As  $x^3 - 2x^2 + 5$  is continuous at x = 3, we may substitute x = 3 to obtain  $\lim_{x \to 3} (x^3 - 2x^2 + 5) = 14$ .

**b.**  $\lim_{x \to 4} (2^{\sqrt{x}} + \log_3(x^3 + 2x))$ 

As  $2^{\sqrt{x}} + \log_3(x^3 + 2x)$  is continuous at x = 4, we may substitute x = 4 to obtain  $\lim_{x \to 4} \left(2^{\sqrt{x}} + \log_3(x^3 + 2x)\right) = 4 + \log_3(72)$ 

c.  $\lim_{x\to 3} (f(x))$ , where,

$$f(x) = \begin{cases} 2x + 1, & x < 3 \\ 3x - 2, & x \ge 3 \end{cases}$$

At x=3, we can check that  $\lim_{x\to 3^-}f(x)=2(3)+1=7$  and  $\lim_{x\to 3^+}f(x)=3(3)-2=7$ . As the left and right limits are equal, we may conclude that  $\lim_{x\to 3}f(x)=7$ .





Find the points x for which the following functions are **discontinuous** and state a reason as to why they are discontinuous.

**a.** 
$$f(x) = \begin{cases} x, & x < 1 \\ x + 1, & x \ge 1 \end{cases}$$

Note that  $\lim_{x\to 0^-} f(x) = 1$  but  $\lim_{x\to 0^+} f(x) = 2$ . Since the left and right limits are not equal at x = 1, we conclude that f(x) is discontinuous at x = 1.

**b.** 
$$f(x) = \frac{50}{x^2 - 7x + 6}$$

We solve  $x^2 - 7x + 6 = 0$  to find that x = 1 or x = 6. Thus, f(x) is discontinuous at x = 1 and x = 6 as the function is not defined at these points.

$$c. \quad f(x) = \frac{x^2 - 4x + 3}{x - 3}$$

We solve x - 3 = 0 to find that x = 3. Thus, f(x) is not continuous at x = 3 as it is not defined at this point.

Note that  $\lim_{x\to 3} f(x)$  exists, but the function is not defined at x=3.





Consider the following function f(x) with rule:

$$f(x) = \begin{cases} 3^{x-2} + 5x, & x < 2\\ ax + 6, & x \ge 2 \end{cases}$$

Find the value of a such that f(x) is continuous for all  $x \in \mathbb{R}$ .

Note that f(x) is already continuous for all  $x \neq 2$ , and all that remains is to make f(x) continuous at x = 2. Thus, we need  $3^{2-2} + 5 \cdot 2 = 2a + 6$ , so that a = 5/2.





Consider the following function f(x) with rule:

$$f(x) = \begin{cases} x^2 - 4x - 12, & x < 7\\ a^2 - ax + 1, & 7 \le x < 10\\ -x - 5, & x \ge 10 \end{cases}$$

Find the value of a such that f(x) is continuous for all  $x \in \mathbb{R}$ .

Since f(x) is continuous, we require that the right and left limits for x = 7 should be equal – i.e.  $f(7^+) = f(7^-)$ . Hence, we obtain the equation  $9 = a^2 - 7a + 1$ , i.e.  $a^2 - 7a - 8 = 0$ . Thus, a = -1 or a = 8.

Furthermore, we require that the right and left limits for x = 10 should be equal – i.e.  $f(10^+) = f(10^-)$ . Hence, we obtain a new equation  $-15 = a^2 - 10a + 1$ , i.e.  $a^2 - 10a + 16 = 0$ . Therefore, a = 2 or a = 8.

Since we require that f(x) is continuous for all  $x \in \mathbb{R}$ , we need the value of a which satisfies the equations at both x = 7 and x = 10, so the final answer is a = 8.



# <u>Sub-Section [2.2.2]</u>: Apply Differentiability to Find Points Where Functions are not Differentiable, Domain of the Derivative and Unknowns of a Function

### **Question 18**



Find the values of x such that the following function are not differentiable.

**a.** 
$$f(x) = \begin{cases} -x + 5, & x < 2 \\ x + 1, & x \ge 2 \end{cases}$$

By inspection of the sketch, there is a sharp point x = 2. Hence, the function is not differentiable at x = 2.

**b.** 
$$f(x) = \frac{1}{x^2 - 4x + 3}$$

By inspection of the sketch, the function is not defined whenever the denominator vanishes, i.e. at x = 1 and x = 3. Thus, the function is not differentiable at x = 1 and x = 3.

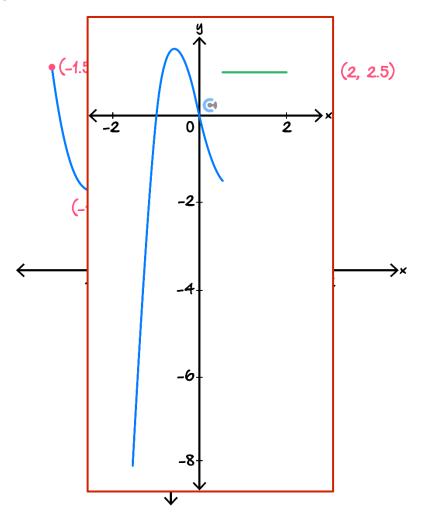
**c.** 
$$f(x) = \begin{cases} 2x, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$

By inspection, we can see a discontinuity at x = 0. If a function is not continuous at a given point, it is also not differentiable there either.





Consider the following function.



- **a.** Sketch the corresponding derivative function on the same set of axes above.
- **b.** Furthermore, state the domain of the derivative function.

The function will be differentiable everywhere except the endpoints and the discontinuity, i.e. dom  $f' = (-1.5, 2) \setminus \{0.5\}$ .





Consider the following function f(x) with rule:

$$f(x) = \begin{cases} 2x^2 - 6x + 5, & x < 2\\ ax + b, & x \ge 2 \end{cases}$$

Find the value of a and b such that f(x) is differentiable at x = 2.

Since the two rules must join at x = 2, imposing  $f(2^+) = f(2^-)$  gives 2a + b = 1. Also,  $f'(2^+) = f'(2^-)$  gives a = 2. By solving the resulting system of equations, we conclude that a = 2 and b = -3.





Consider the following function f(x) with rule:

$$f(x) = \begin{cases} x^3 - 3x + 5, & x < -1\\ g(x), & -1 \le x < 1\\ x^2 - 5x + 2, & x \ge 1 \end{cases}$$

The goal for this question is to find a suitable rule g(x) making f(x) differentiable for all  $x \in \mathbb{R}$ .

**a.** State the four equations that g(x) and g'(x) must satisfy at x = 1 and x = -1.

$$g(1) = -2, g'(1) = -3, g(-1) = 7$$
 and  $g'(-1) = 0$ .

**b.** A natural choice would be to let g(x) be a polynomial. As there are four equations that need to be satisfied, explain why it is suitable to set g(x) to be a cubic polynomial.

A cubic polynomial  $y = ax^3 + bx^2 + cx + d$  has four parameters, which should possibly give a unique solution for a, b, c and d based on the system of four equations obtained in the previous part.

**c.** Hence, find a suitable rule for  $g(x) = ax^3 + bx^2 + cx + d$  assuming g(x) is a polynomial. It may be necessary to use a CAS to solve the system of equations obtained in the working.

By using the first question, we see that a,b,c and d must satisfy

$$a+b+c+d = -2$$
$$3a+2b+c = -3$$

$$-a+b-c+d = 7$$

$$3a-2b+c = 0$$

- Hence,  $a = \frac{3}{2}$ ,  $b = -\frac{3}{4}$ , c = -6 and  $d = \frac{13}{4}$ . Furthermore,  $g(x) = \frac{3}{2}x^3 \frac{3}{4}x^2 6x + \frac{13}{4}$  is a possible rule for the polynomial.
- Note: This is a common technique called cubic splines used for interpolation.

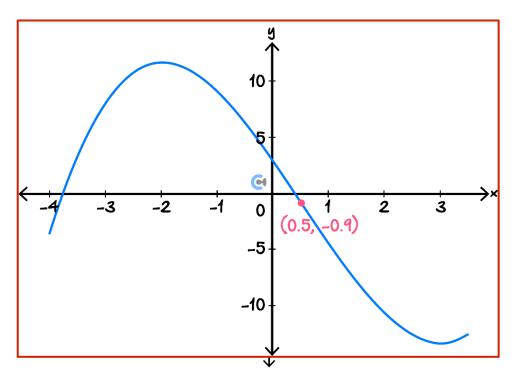




### Sub-Section [2.2.3]: Identify Concavity and Find Inflection Points

**Question 22** 

Consider the following graph for f(x).



**a.** Circle the point of inflection on the above graph.

**b.** State the values of x such that the function is concave up.

Notice how the gradient of the function increases after x=1/2 (i.e. it is becoming less negative, and after the turning point becomes more positive). So, the answer is x>1/2.

**c.** State the values of x such that the function is concave down.

Similar to above, x < 1/2.





Consider a function  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^4 - 2x^3 - 36x^2 + 5x + 1$ .

**a.** Calculate the second derivative of the function f(x).

$$f''(x) = 12x^2 - 12x - 72 = 12(x^2 - x - 6) = 12(x - 3)(x + 2).$$

Note: You did not need to factorise the final answer, but it is helpful for the following question where you need to solve for the points of inflection.

\_\_\_\_\_\_

**b.** Find the points of inflection of the function f(x).

The points of inflection occur where f''(x) = 0, i.e. when 12(x-3)(x+2) = 0. Therefore, the points of inflection occur when x = -2 or x = 3. Note also that f''(2.9) < 0, f''(3.1) > 0, f''(-2.1) > 0 and f''(-1.9) < 0, so f''(x) does indeed switch signs around x = -2 and x = 3.

**c.** Find the values of x where the function is concave up.

We solve for the values of x such that f''(x) > 0. Thus, the function is concave up whenever x < -2 or x > 3

Note: Remember to exclude the endpoints!





Suppose that a function f(x) is double differentiable for all  $x \in (0,2)$ , and satisfies the following properties:

- f''(1) = 0
- f'(0) = 1
- f'(0.5) = 0
- f'(0.75) = -0.71
- f'(1) = -1
- f'(1.25) = -0.71
- f'(1.5) = 0

Find the values of x such that the function is concave up.

Notice that the point of inflection occurs at x = 1 and that the gradient starts increasing after x > 1 (e.g. it becomes less negative). Thus, the values of x such that the function is concave up is  $x \in (1, 2)$ .

#### **Question 25**



Find a rule of a polynomial g(x) so that g(0) = 12, g(1) = 9, g(2) = 0, and so that there is a point of inflection when x = 2.

Since there are four equations, we should use a polynomial that involves four parameters – i.e. a cubic. Hence, assume  $g(x) = ax^3 + bx^2 + cx + d$ . Based on the conditions, we obtain four equations

$$\begin{array}{rcl} d & = & 1 \\ a+b+c+d & = & 9 \\ 8a+4b+2c+d & = & 0 \\ 12a+2b & = & 0 \end{array}$$

The last equation comes from substituting x = 2 into g''(x) = 6a + 2b. Solving these equations gives us the following solution a = 1, b = -6, c = 2 and d = 12. Therefore, a possible rule for the cubic could be  $x^3 - 6x^2 + 2x + 12$ .



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

### VCE Mathematical Methods 3/4

## Free 1-on-1 Support

### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                                    | <u>Text-Based Support</u>                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message +61 440 138 726 with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

