CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation I [2.1]

Workbook

Outline:

Introduction to Differentiation

- Average Rate of Change
- Instantaneous Rate of Change
- Differentiation
- Understanding Differentiation

Advanced Differentiation

- Product Rule
- Quotient Rule
- Chain Rule

Pg 2-13

Stationary Points and Strictly Increasing Pg 31-35

- Stationary Points
- Strictly Increasing and Decreasing

Pg 14-30 | Graphs of the Derivative Function

Pg 36-39

Graphs of Derivative Function

Learning Objectives:

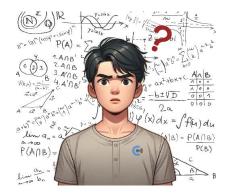
- MM34 [2.1.1] Find the instantaneous rate of change and average rate of change.
- nd
- MM34 [2.1.2] Identify the nature of stationary points and trends (strictly increasing and decreasing).
- MM34 [2.1.3] Graph Derivative Functions.

Section A: Introduction to Differentiation

A

What in the world is differentiation?

Context: Calculus and Sam's Weight



- Sam as usual loses control and eats 100 chocolates.
- \blacktriangleright He wants to find out how many kg he gained with respect to the chocolates.

How many kilograms did I gain with respect to 100 chocolates?

Sam is getting even more curious and asks the following equation:

How many kilograms did I gain with respect to 10 chocolates?

Even more curious!

How many kilograms did I gain with respect to 1 chocolate?

How many kilograms did I gain with respect to 0.1 chocolate?

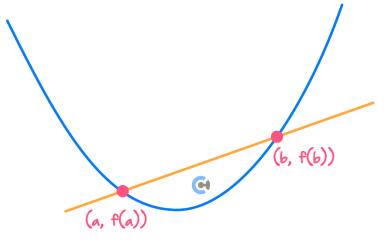
How many kilograms did I gain with respect to 0.00001 chocolate

- Sam is finding the rate of change wellow with respect to the number of chocolates.
- Today we will ask this question!

How much did the y value change with respect to tiny change in x

Sub-Section: Average Rate of Change

Average Rate of Change



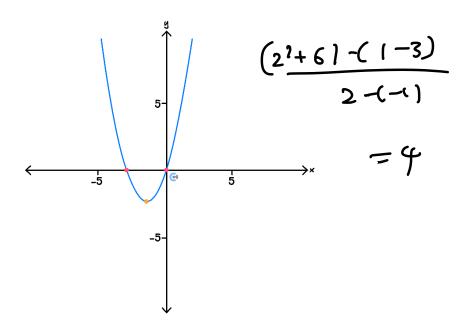
The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =
$$\frac{f(6) - f^{(6)}}{6 - a}$$

It is the ______of the line joining the two points.

Question 1

Find the average rate of change of $y = x^2 + 3x$ over the interval $x \in [-1,2]$.



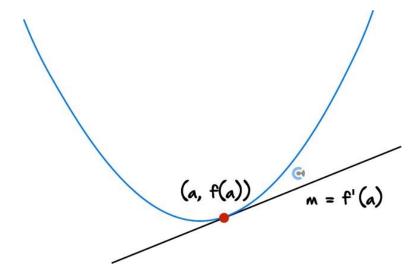
NOTE: We do **NOT** need differentiating to find the average rate of change!

<u>Discussion:</u> Is finding the average rate of change same as Sam finding weight change over the entire chocolates he ate or the tiny piece of the chocolate?

Sub-Section: Instantaneous Rate of Change

How can Sam find his weight change from the tiniest atom of chocolate?

Instantaneous Rate of Change



Instantaneous Rate of Change is a gradient of a graph at a single

Instantaneous Rate of Change = f'(a)

Differentiation is the process of finding the derivative of a function.

Question 2

Consider the function f(x) and its derivative f'(x). It is known that f(2) = 4, f(3) = 9, f'(2) = 3 and f'(3) = -4.

Find the gradient of the function f(x) at x = 3.

$$f'(3) = -4.$$

NOTE: Derivative function gives us the gradient of a point.

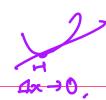
Alternative Notation for Derivative

$$f'(x) = \frac{Q_y}{dx}$$

desta. desta.

<u>Discussion:</u> How does the notation $\frac{dy}{dx}$ make sense?

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{dy}{dx}$$



Sub-Section: Differentiation

How do we find derivative functions?

Derivatives of Functions

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
χ^n	n·x ⁿ⁻¹
$\sin(x)$	con (71)
$\cos(x)$	—sin(2)
tan(x)	$\frac{1}{(0)^2(\pi)} = \mathcal{G}(2(3))$
@ ^x 2.72	e ^x
loge(x)	<u></u>

Question 3

Consider the function $f(x) = x^3 - 4x$.

Find the gradient of the function at x = 2.

$$f'(x) = 3x^{2} - 4$$

$$f(x) = 12 - 4$$

$$= 8$$

Question 4

Consider the function $f(x) = 2e^x - 4$.

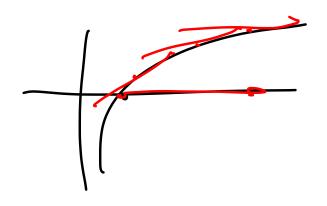
Find the gradient of the function at x = 3.

$$f'(3) = 2e^{3}$$

Question 5

Consider the function $f(x) = 2 \log_e(x)$.

Find the gradient of the function at x = 2e.



Question 6

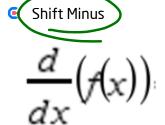
Consider the function $f(x) = \cos(x) + \sin(x)$.

Find the gradient of the function at $x = \frac{\pi}{4}$.

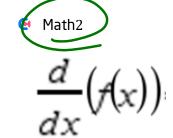
Calculator Commands: Finding Derivatives

Mathematica

► TI



Casio

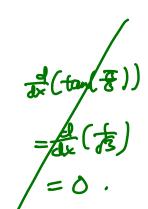


Question 7 Tech-Active.

Consider the function $f(x) = \tan(x)$.

Find the gradient of the function at $x = \frac{\pi}{6}$.

$$\frac{d}{dx}\left(\tan(x)\right) = \frac{4}{3}$$



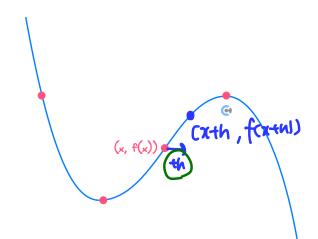
NOTE: You must substitute the x value **after** finding the derivative function first.

<u>Discussion</u>: What would happen if you derived $f\left(\frac{\pi}{6}\right)$ instead on CAS?

Sub-Section: Understanding Differentiation

How does this work?

First Principles



$$f'(x) = \lim_{n \to 0} \frac{\left[f(x+n) - f(x) \right]}{x+n - x}$$

The fundamental method of _______

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{x(h) - x} \right)$$

Question 8

Consider the function
$$f(x) = (x^3)$$
.

Find the derivative using the first principle.

$$f(x+h) = (x+h)^3 = (x^3) + 3x^2h + 3xh^2 + 1h^3$$
.

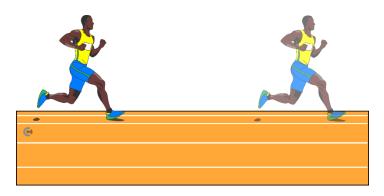
$$\frac{f_{\text{ex-u}} - f_{\text{ex}}}{h} = 3x^2 + (3xx + 4x^2)$$

NOTE: It's the same as the table above!

ONTOUREDUCATION

Analogy: Understanding the instantaneous rate of change.

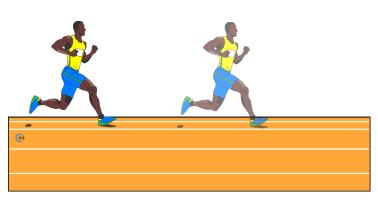
- Usain Bolt ran the world record 100 m race in 9.58 seconds.
- Let's say we take a photo of Usain Bolt at the start and end of the race.

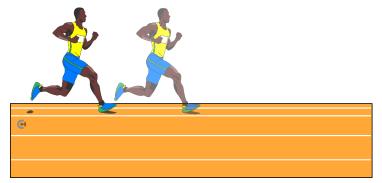


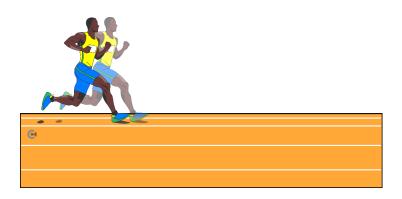
$$Average Speed = \frac{Distance}{Time Taken}$$

We can calculate the average speed of the ______entire race

Now let's say we take the two photos closer to each other.







What would the average speed between two photos slowly approach to?

Speed at a given moment!

In summary how do we find the speed of Usain Bolt at a single moment?

We take two photos so close to each other that the time between the snapshots becomes basically zero.

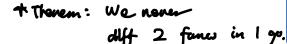
<u>Discussion:</u> If x = Usain's distance travelled and t = time travelled, what notation would represent his instantaneous speed?

dx/dt

Section B: Advanced Differentiation

Sub-Section: Product Rule

How do we find the derivative when two functions are multiplied? For example: $x^2 \sin(x)$.



The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = f'(x) g(x) + f(x) \cdot g'(x)$$

Or, in another form:

$$\frac{d}{dx}(u\cdot v) = \underline{u'v + uv'}$$

NOTE: Order does **not** matter.

Question 9 Walkthrough.

Find the derivative of $f(x) = x^3 \tan(x)$.

$$f'(x) = 3x^2 \cdot tou(x) + x^3 \cdot sec^2(x)$$

NOTE: We **never** differentiate **both** functions at the same time!

Your turn!

Ouestion 10

Find the derivatives of:

$$a. \quad f(x) = x^2 e^x$$

b.
$$y = 3\sin(x)\cos(x)$$
 $\frac{3}{2}\sin(2x)$

$$\frac{dy}{dx} = 3 \exp(x) \cos(x) + 3 \sin(x) - \sin(x)$$

$$= 3 \cos(x) - 3\sin^2(x) = 3 \cos(2x)$$

c.
$$g(x) = \log_e(x) \cdot x$$

$$g'(x) = \frac{1}{x} \cdot x + \log e^{(x)}$$

$$= 1 + \log e^{(x)}$$

Question 11 Extension.

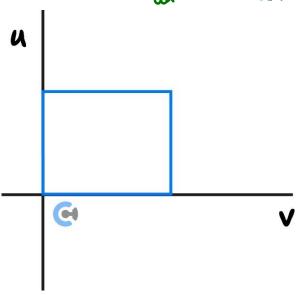
$$u \cdot v \cdot w$$

Find the derivative of $f(x) = x^3 \log_e(x) \sin(x)$.

How does this work?

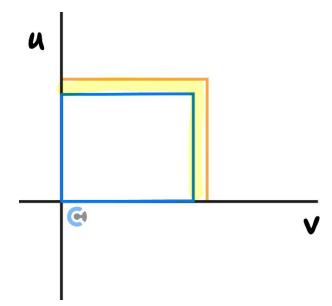
Extension: Understanding Product Rule

Consider the rectangle in the diagram below. $\frac{d}{dx}(uv) = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}.$



$u \cdot v = area of the rectangle$

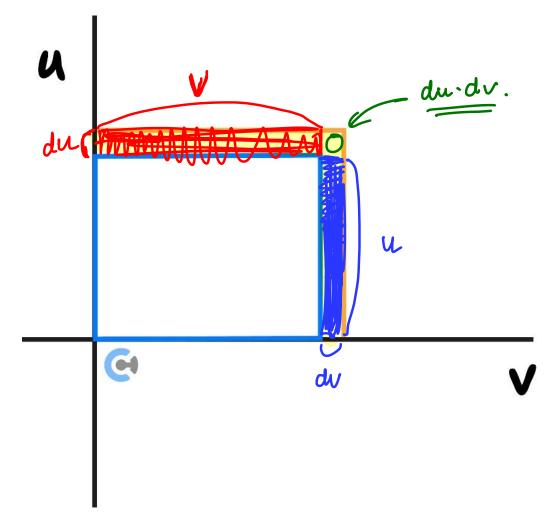
Now let's say the rectangle grew in size!



- How do we find the rate of area of the rectangle?
- \blacktriangleright The image above shows two snapshots of u and v very close to each other while they are changing.

CONTOUREDUCATION

 \blacktriangleright How can we find the instantaneous **change of** $u \cdot v$?



$$d(u \cdot v) = \sqrt{du + u dv}$$

Therefore, how can we find $\frac{d(u \cdot v)}{dx} = \frac{d}{dx}(u \cdot v)$?

$$\frac{d(u \cdot v)}{dx} = V \cdot \frac{du}{dx} + u \cdot \frac{dv}{dx}$$

Sub-Section: Quotient Rule

Definition

The Quotient Rule

The derivative of a h(x) = g(x) is given by:

$$h'(x) = \frac{\int (x) g(x) - \int (x-g'(x))}{(g(x))^2}$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$$

Always differentiate the top function first.

Question 12 Walkthrough.

Find the derivative of $y = \frac{x^2}{\sin(x)}$.

$$\frac{dy}{dx} = \frac{2x\sin(x) - x^2\cos(x)}{\sin^2(x)}$$

NOTE: The order matters for the quotient rule! We differentiate the top function first.

Question 13

Find the derivatives of:

a.
$$\frac{e^x}{4x^3}$$

$$\frac{d}{dx} \left(\frac{e^{x}}{4x^{3}} \right) = \frac{e^{x} \cdot 4x^{3} - e^{x} \cdot 12x^{2}}{6x^{6}}$$

$$= \frac{4x^{2}e^{x}(x-3)}{6x^{6}}$$

$$=\frac{e^{x(x-3)}}{4x^{4}}$$

b.
$$\frac{\log_e(x)}{x}$$

$$\frac{d}{dx}\left(\frac{\log_e(x)}{x}\right) = \frac{\frac{1}{x} \cdot x - \log_e(x)}{x^2}$$

$$= \frac{(-\log^{2}(x))}{x^{2}}$$

c.
$$g(x) = \frac{\sin(x)}{\cos(x)}$$
 tan

c.
$$g(x) = \frac{\sin(x)}{\cos(x)} + \tan$$

$$g'(x) = \frac{\cos(x)(\cos(x)) - \sin(x)x - \sin(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$

NOTE: The last question is a derivative of tan.

Question 14 Extension.

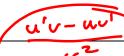
Find the derivative of $y = \frac{x^2 e^x}{\log_e(x)}$.

$$\frac{dy}{dx} = \frac{(2xe^{x} + x^{2}e^{x}) \log e^{(x)} - x^{2}e^{x}}{(\log e^{(x)})^{2}}$$

$$\Rightarrow \frac{y'}{y'} = \frac{u'v - uv'}{v^2}$$

$$y'v + yv' = a'$$

$$y' = \frac{u' - yv'}{v'} = \frac{u' - \frac{u}{v} \cdot v}{v'}$$



Sub-Section: Chain Rule

The Chain Rule

$$y = f(g(x))$$

$$y = f(g(x))$$

$$\frac{dy}{dx} = f'(g(x)) \times g'(x)$$

The process for finding derivatives of composite functions.

How does the chain rule work?

Exploration: Understanding Chain Rule

Consider the function we want to differentiate with respect to x is:

$$y = f(g(x))$$

We can remove the composition by letting the inside function equal to u.

Let
$$u = g(x)$$

Then $y = f(u)$

We can now derive y respect to α .

$$\frac{dy}{du} = \frac{f'(a)}{a}$$

• Note that we have $\frac{dy}{dy}$ instead of $\frac{dy}{dx}$ as we derived in terms of u.

ONTOUREDUCATION

To find $\frac{dy}{dx}$ we simply multiply by $\frac{dy}{du}$ with $\frac{du}{dx}$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{\int f(u) \times \frac{du}{dx}}{dx}$$

Finally, we can substitute u = g(x).

$$\frac{dy}{dx} = \int (cg(x)) \times g'(x)$$

Question 15 Walkthrough.

Find the derivative of $f(x) = \sin(x^2)$.

1) Let
$$y = sin(u)$$
, $u = x^2$
2) $\frac{dy}{du} = ca(u)$. $\frac{du}{dx} = 2x$

2)
$$\frac{dy}{du} = c_1(u)$$
. $\frac{du}{dx} = 2\pi$

3)
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = c_0(u) \wedge 2x$$
$$= c_0(x^2) \cdot 2x$$

NOTE: Always let the inside function equal to u.

Your turn!

Question 16

Find the derivatives of:

a.
$$e^{x^2 + \frac{1}{2}x}$$

$$y=e^{\alpha}$$
, $\alpha=x^2+\frac{1}{2}x$.

$$\frac{dy}{dx} = e^{x}, \quad \frac{dy}{dx} = 2x + \frac{1}{2}$$

$$\frac{dy}{dx} = e^{x^2 + \frac{1}{2}x} \cdot (2x + \frac{1}{2})$$

b.
$$\left(4x + \frac{1}{x}\right)^3$$

Let
$$y=u^2$$
. $u=4x+\frac{1}{x}$

$$\frac{dy}{dx} = 3u^2 \qquad \frac{dy}{dx} = 4 - \frac{1}{2}$$

c.
$$\log_e(x^2)$$

$$\log_e(x^2) = 2\log_e(x)$$

$$\frac{dy}{dx} = \frac{1}{4} \quad \frac{dy}{dx} = 2x$$

$$\frac{dy}{dx} = \frac{1}{x^2} \times 2x = \frac{2}{x}$$

$$y = \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 \quad u = \sin(x)$$

Question 17 Extension.
$$q = (x^2)^2 \qquad u = \sin(x)$$
Find the derivative of $f(x) = x^3 \log_e(x^2) \sin^2(x)$
$$du = 2u . \qquad du = \cos(x)$$

$$f'(x) = \frac{3x^2}{4} \log(x^2) \sin^2(x) + x^3 \cdot \frac{2}{3} \cdot \sin^2(x) + x^3 \cdot \log(x^2) \times \frac{2 \sin(x) \cdot \cos(x)}{4}$$

Is there a quicker way to do a chain rule?

Shortcut for Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} = \int (g(x)) \times g'(x)$$

- Derive the outside function only.
- Multiply the function by the derivative of the inside.

Question 18 Walkthrough.

Using the quick method of chain rule, find the derivative of $f(x) = \cos(x^3)$.

$$f'(x) = -\sin(x^3) \times 3x^2$$
$$= -3x^2 \sin(x^3)$$

Your turn!

Question 19

Using the quick method of chain rule, find the derivative of:

a.
$$e^{3x^2-x}$$

$$e^{3x^2-x}$$
 * $(6x-1)$

b.
$$\log_e(x^2 + 9x + 6)$$

$$\frac{1}{x^{2}+9xt6} \times (2x+9)$$

c.
$$g(x) = \tan(x^2)$$

Question 20 Extension. Find the derivative of $g(t) = \log_e(\cos(\sqrt{t+D}))$. $\frac{1}{\cos(\sqrt{t+1})} \times -\sin(\sqrt{t+1}) \times \frac{1}{2\sqrt{t+1}} \times 1$

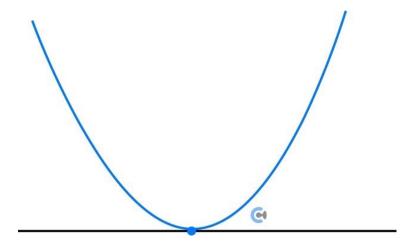
Section C: Stationary Points and Strictly Increasing

Sub-Section: Stationary Points

<u>Discussion:</u> What would be the gradient of a point that is neither increasing nor decreasing?

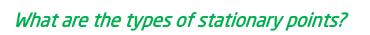
Zero

Stationary Points



Point where the gradient of the function is zero.

$$f'(x)=0, \qquad \frac{dy}{dx}=0$$



Types of Stationary Points

Local Maximum	Local Minimum	Stationary Point of Inflection	
+	+	- 0 - + 0 +	

- Sign Test
- We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing curve	Stationary Point	υ - Increasing curve

Find the gradient of the **Neyhoun** points.

Question 21 Walkthrough.

Find and identify the nature of the stationary points of $y = -e^{x^2+4}$.

$$\frac{dy}{dx} = -e^{x^2+4} \times 2\pi = 0$$

local Max

			7
X	-1	0	•
ay ax	(+)	0	9
Shape			
dy x=-1 = -e 3 x -2 = 2e 5			
dy = 1 = -esx 2 = -2es			

Question 22

Find an identify the nature of the stationary points of $y = \log_e(x^2 + 4)$.

f[
$$x_{-}$$
] := Log[$x^{2} + 4$]

Solve[f'[x] == 0, x]
풀이함수
 $\{x \to 0\}\}$
 $\{f'[-1], f'[0], f'[1]\}$
 $\left\{-\frac{2}{5}, 0, \frac{2}{5}\right\}$

(* Local Minimum *)

Question 23 Extension.

((x) (2xx) \frac{b}{xb} (

Consider the function f(x) = xg(x).

It is known that, g(0) = -5, g(1) = -2 and g(2) = 1.

g'(0) = -4, g'(1) = 2 and g'(2) = 3 and that f has only one stationary point.

Show that f(x) has a stationary point when x = 1 and identify its nature.

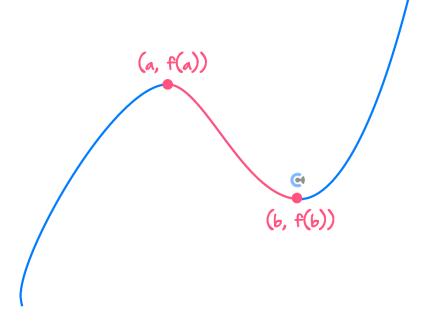
$$f(x) = g(x) + (-g(x))$$

= -2 + 2 = 0

$$f'(2) = g(2) + 2 \cdot g'(2) = 1 + 2 \times 3 = 7$$

Sub-Section: Strictly Increasing and Decreasing

Strictly Increasing and Strictly Decreasing Functions



Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

Strictly Decreasing: $x \in [a, b]$

- Steps:
 - 1. Find the turning points.
 - 2. Consider the sign of the derivative between/outside the turning points.

Question 24 Walkthrough.

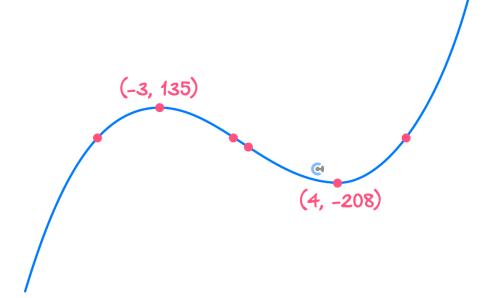
State the value(s) of x for the function below for which it is strictly increasing and strictly decreasing.

TIP: The terminology is confusing Simply remember the irony.

Question 25

State the value(s) of x for the function below for which it is strictly increasing and strictly decreasing.

$$y = -72x - 3x^2 + 2x^3$$



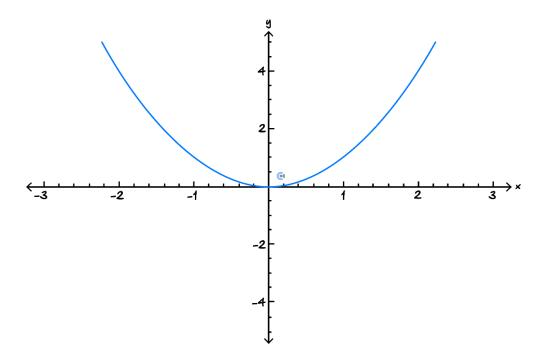
Increasing for $(-\infty, -3)$ U $(4, \infty)$. Strictly Increasing $(-\infty, -3]$ U $[4, \infty)$. Decreasing (-3, 4). Strictly Decreasing [-3, 4].

Section D: Graphs of the Derivative Function

Sub-Section: Graphs of Derivative Function

Exploration: Graph of Derivative Functions

Consider the graph of $f(x) = x^2$ below.



 \blacktriangleright What is the derivative of f(x)?

Sketch the derivative above.

$$f'(x) = 2x$$

What do you notice about f'(x): Derivative when f(x) has a stationary point?

It has an x-intercept.

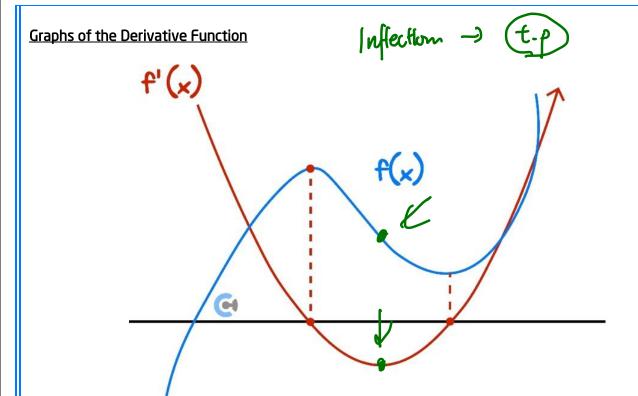
What do you notice about f'(x) when f(x) is increasing?

It has a positive y value. (It is above the x-axis.)

What do you notice about f'(x) when f(x) is decreasing?

It has a negative y value. (It is below the x-axis.) Type your text

In summary!



f(x)	f'(x)	
Stationary Point	x intercept.	
Increasing	Positive (Above or carly)	
Decreasing	Negath (Belon 21 acr	

y value of f'(x) = gradient - the original

Steps

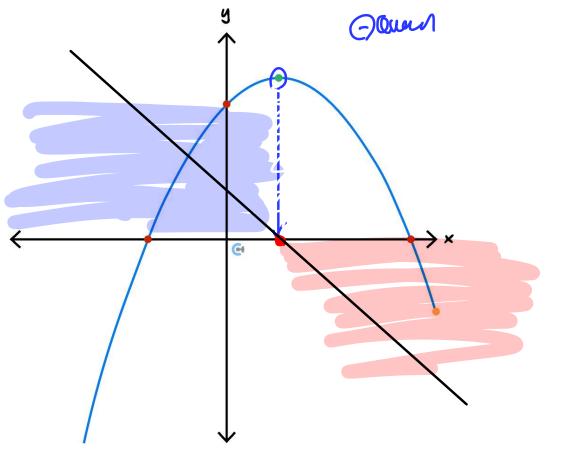
- 1. Plot *x*-intercept at the same *x* value as the stationary point of the original.
- 2. Consider the trend of the original function and sketch the derivative.

Original is increasing \rightarrow Derivative is above the *x*-axis.

Original is decreasing \rightarrow Derivative is below the *x*-axis.

Question 26 Walkthrough.

Sketch the derivative graph of the function shown below, on the same set of axes.



Active Recall: Steps on sketching the derivative function

?

1. Plot x-intercept at the same x value as the ______ stationary point

stationary point of the original.

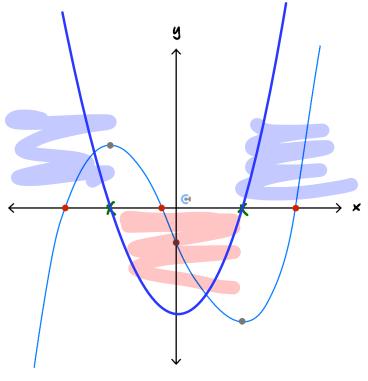
2. Consider the trend of the original function and sketch the derivative.

Original is increasing \rightarrow Derivative is _____ the x-axis.

Original is decreasing \rightarrow Derivative is _____below the x-axis.

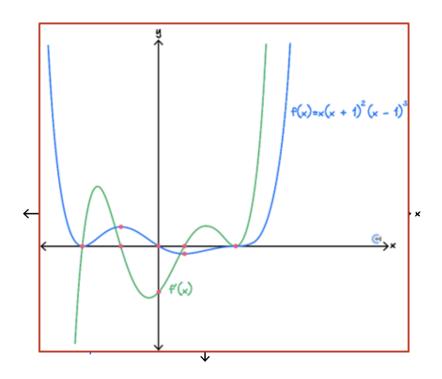
Question 27

Sketch the derivative graph of the function shown below, on the same set of axes.



Question 28 Extension.

Sketch the derivative graph of the function shown below, on the same set of axes.



Contour Check

<u>Learning Objective</u>: [2.1.1] - Find the Instantaneous Rate of Change and Average Rate of Change.

Key Takeaways

☐ The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =
$$\frac{f(b)-f(a)}{5-a}$$

- It is the _____of the line joining the two points.
- Instantaneous Rate of Change is a gradient of a graph at a single ______
- ☐ First Principles derivative definition:

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

- The Product Rule
 - O The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = \frac{f'(x)g(x) + f(x)g'(x)}{}$$

Or, in another form:

$$\frac{d}{dx}(u \cdot v) = \underline{u \cdot v + u \cdot v}$$

- The Quotient Rule
 - O The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) = \frac{\int_{0}^{\infty} f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^{2}}$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u' \vee - u v'}{\sqrt{2}}$$

- Always differentiate the top function first.
- The Chain Rule

$$y = f(g(x))$$

$$y = f(g(x))$$

$$\frac{dy}{dx} = \frac{\int (g(x)) \times g(x)}{\int (g(x)) \cdot g(x)}$$

☐ The process for finding derivatives of **composite functions**.

Learning Objective: [2.1.2] - Identify the Nature of Stationary Points and Trends. (Strictly Increasing and Decreasing.)

Key Takeaways

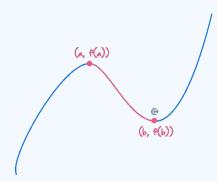
Point where the $\frac{dy}{dx}$ of the function is zero. $\frac{dy}{dx} = 0$

$$f'(x)=0, \qquad \frac{dy}{dx}=0$$

☐ We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing curve	Stationary Point	∪ - Increasing curve

- Find the gradient of the __neighbourne__ points.
- ☐ Strictly Increasing and Strictly Decreasing Functions



Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

Strictly Decreasing: [a,b]

- O Steps:
 - 1. Find the Station point
 - 2. Consider the sign of the ______ between/outside the turning points.

<u>Learning Objective</u>: [2.1.3] - Graph Derivative Functions.

Key Takeaways

- ☐ Steps on sketching the derivative function:
 - **1.** Plot x-intercept at the same x value as the ______ of the original.
 - **2.** Consider the trend of the original function and sketch the derivative.

Original is increasing \rightarrow Derivative is _____ the x-axis.

Original is decreasing \rightarrow Derivative is ______ the x-axis.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

