CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation I [2.1]

Workbook

Outline:

Introduction to Differentiation

- Average Rate of Change
- Instantaneous Rate of Change
- Differentiation
- First Principle

Advanced Differentiation

- Product Rule
- Quotient Rule
- Chain Rule

Pg 2-11

Pg 12-27

Stationary Points and Strictly Increasing Pg 28-33

- Stationary Points
- Strictly Increasing and Decreasing

Graphs of the Derivative Function

Pg 35-37

Graphs of Derivative Function

Learning Objectives:

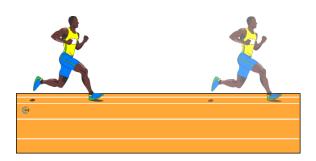
- MM34 [2.1.1] Find the instantaneous rate of change and average rate of change
- A
- MM34 [2.1.2] Identify the nature of stationary points and trends (strictly increasing and decreasing)
- MM34 [2.1.3] Graph Derivative Functions

Section A: Introduction to Differentiation

Sub-Section: Average Rate of Change

Context: Average Rate of Change

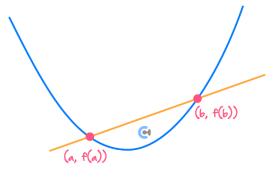
- Usain Bolt ran the world record 100 m race in 9.58 seconds.
- Let's say we take a photo of Usain Bolt at the start and end of the race.



How would the average speed between two instances be calculated?

$$Average Speed = \frac{Change \ in ____from \ start \ to \ end}{Change \ in ____}$$

Average Rate of Change



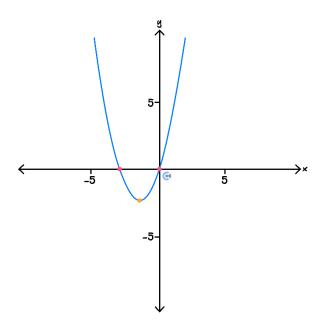
The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =

► It is the ______of the line joining the two points.

Question 1

Find the average rate of change of $y = x^2 + 3x$ over the interval $x \in [-1,2]$.



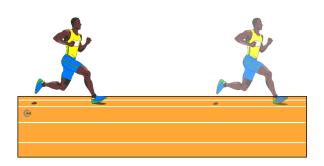
<u>Discussion:</u> Do we differentiate for average rate of change?

Sub-Section: Instantaneous Rate of Change

How can we now find Usain Bolt's speed at a single moment?

Context: Instantaneous rate of change

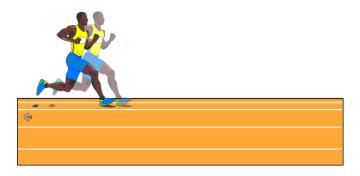
Usain Bolt ran the world record 100 m race in 9.58 seconds.



- We took two photos of Usain Bolt at the _____ and ____ of the race.
- We calculated the average speed over the ______ using these two photos.

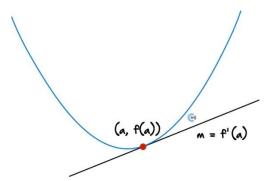
$$Average Speed = \frac{Distance}{Time Taken}$$

- How can we find his speed at the start of the race?
- Where should the two photos be taken? [At the start/At the end/Start and End]



- How closely should the two photos be taken to find the speed at a single moment? [Super Close/Super Far]
- This is the instantaneous rate of change!

Instantaneous Rate of Change



Instantaneous Rate of Change is a gradient of a graph at a single

Instantaneous Rate of Change = _____

Differentiation is the process of finding the derivative of a function.

Question 2

Consider the function f(x) and its derivative f'(x). It is known that f(2) = 4, f(3) = 9, f'(2) = 3 and f'(3) = -4.

Find the gradient of the function f(x) at x = 3.

Alternative Notation for Derivative

$$f'(x) = \frac{dy}{dx}$$

<u>Discussion:</u> How does the notation $\frac{dy}{dx}$ make sense?

Sub-Section: Differentiation

How do we find derivative functions?

Derivatives of Functions

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
x^n	
$\sin(x)$	
$\cos(x)$	
tan(x)	
e ^x	
$\log_e(x)$	

Question 3

Consider the function $f(x) = x^3 - 4x$.

Find the gradient of the function at x = 2.

Consider the function $f(x) = 2e^x - 4$.

Find the gradient of the function at x = 3.

Question 5

Consider the function $f(x) = 2 \log_e(x)$.

Find the gradient of the function at x = 2e.

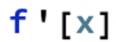
Question 6

Consider the function $f(x) = \cos(x) + \sin(x)$.

Find the gradient of the function at $x = \frac{\pi}{4}$.

Calculator Commands: Finding Derivatives

Mathematica



► TI

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{d}{dx}(f(x))$$

Question	n 7	Tech-	-Active.

Consider the function $f(x) = \tan(x)$.

Find the gradient of the function at $x = \frac{\pi}{6}$.

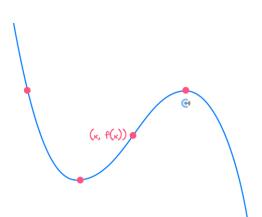
NOTE: You must substitute the x-value **after** finding the derivative function first.

<u>Discussion:</u> What would happen if you derived $f\left(\frac{\pi}{6}\right)$ instead of CAS?

Sub-Section: First Principle

Where do all the derivative rules come from?

First Principle



$$f'(x) =$$

The fundamental method of ______.

Exploration: Visualisation of First Principle

Desmos link

Question 8

Consider the function $f(x) = x^3$.

Find the derivative using the first principle.

NOTE: It's the same as the table above!

Section B: Advanced Differentiation

Sub-Section: Product Rule

How do we find the derivative when two functions are multiplied? For example: $x^2 \sin(x)$.

The Product Rule

The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) =$$

> Or, in another form:

$$\frac{d}{dx}(u\cdot v) = \underline{\hspace{1cm}}$$

NOTE: We never differentiate two functions at once!

Question 9 Walkthrough.

Find the derivative of $f(x) = x^3 \tan(x)$.

NOTE: We **never** differentiate **both** functions at the same time!

Your turn!

Question 10

Find the derivatives of:

a.
$$f(x) = x^2 e^x$$

b.
$$y = 3\sin(x)\cos(x)$$

c.
$$g(x) = \log_e(x) \cdot x$$

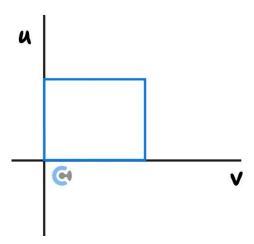
noir	
	ion.

Find the derivative of $f(x) = x^3 \log_e(x) \sin(x)$.

How does this work?

Extension: Understanding Product Rule

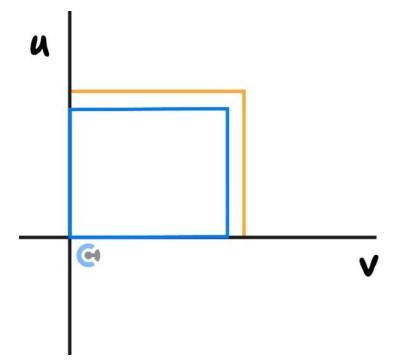
Consider the rectangle in the diagram below.



What would the area of the rectangle be?

Area of the rectangle = _____

- Now let's say the rectangle grew in size!
- Let's take a very close photo of this rectangle while it is growing (similar to Usain Bolt)



How can we find the instantaneous **change of** $u \cdot v$?

$$d(u \cdot v) = \underline{\hspace{1cm}}$$

ightharpoonup Divide all sides by dx. What do you notice?

$$\frac{d(u\cdot v)}{dx} = \underline{\hspace{1cm}}$$

This is a product rule!

Discussion: What shape do we use for proving product rule for three functions?

Sub-Section: Quotient Rule

The Quotient Rule

The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) =$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) =$$

Always differentiate the top function first.

Question 12 Walkthrough.

Find the derivative of $y = \frac{x^2}{\sin(x)}$.

NOTE: The order matters for the quotient rule! We differentiate the top function first.

Question 13

Find the derivatives of:

$$\mathbf{a.} \quad \frac{e^x}{4x^3}$$

b.
$$\frac{\log_e(x)}{x}$$

$$\mathbf{c.} \quad g(x) = \frac{\sin(x)}{\cos(x)}$$

NOTE: The last question is a derivative of tan.

Question 14 Extension.

Find the derivative of
$$y = \frac{x^2 e^x}{\log_e(x)}$$
.

Exploration: Proving Quotient Rule

$$y = \frac{u}{v}$$

Instead of using the quotient rule, we can cross multiply and use product!

$$_{---} = u$$

$$_{---} = u'$$

 \blacktriangleright What happens now when we make y' the subject?

$$\underline{} = u' - \underline{}$$

Now substitute $y = \frac{u}{v}$ back again!

What does this look like?

Sub-Section: Chain Rule

The Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} =$$

▶ The process for finding derivatives of **composite functions**.

How does the chain rule work?

Exploration: Understanding chain rule.

 \blacktriangleright Consider the function we want to differentiate with respect to x is:

$$y = f(g(x))$$

 \blacktriangleright We can remove the composition by letting the inside function equal to u.

Then
$$y = \underline{\hspace{1cm}}$$

We can now derive y _______.

$$\frac{dy}{du} =$$

• Note that we have $\frac{dy}{du}$ instead of $\frac{dy}{dx}$ as we derived in terms of u.

To find $\frac{dy}{dx}$, we simply multiply by $\frac{dy}{du}$ with $\frac{du}{dx}$.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Finally, we can substitute u = g(x).

$$\frac{dy}{dx} =$$

Question 15 Walkthrough.

Find the derivative of $f(x) = \sin(x^2)$.

NOTE: Always let the inside function equal to u.

Your turn!

Question 16

Find the derivatives of:

a.
$$e^{x^2 + \frac{1}{2}x}$$

b.
$$\left(4x + \frac{1}{x}\right)^3$$

c.
$$\log_e(x^2 - 4)$$

Question 17 Extension.

Find the derivative of $f(x) = x^3 \log_e(x^2) \sin^2(x)$.

Is there a quicker way to do a chain rule?

Shortcut for Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} =$$

- Derive the outside function only.
- Multiply the function by the derivative of the inside.

Question 18 Walkthrough.
Using the quick method of the chain rule, find the derivative of $f(x) = \cos(x^3)$.

Your turn!

Question 19

Using the quick method of chain rule, find the derivative of:

a.
$$e^{3x^2-x}$$

b.
$$\log_e(x^2 + 9x + 6)$$

c.
$$g(x) = \tan(x^2)$$

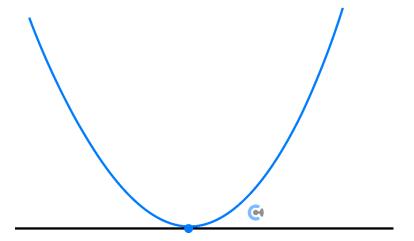
Onestion	20	Exter	nsion.

Find the derivative of $g(t) = \log_e(\cos(\sqrt{t+1}))$.

Section C: Stationary Points and Strictly Increasing

Sub-Section: Stationary Points

Stationary Points



The point where the gradient of the function is zero.

$$f'(x) = 0, \frac{dy}{dx} = 0$$

Types of Stationary Points

Local Maximum	Local Minimum	Stationary Point of Inflection
+ 0	- • +	- 0 - + 0 +

- Sign Test
- We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing curve	Stationary Point	∪ - Increasing curve

Find the gradient of the _____ points.

Question	21	Walkthrough.
Question	41	vv aikuli vugii

Find and identify the nature of the stationary points of $y = -e^{x^2+4}$.

On	estion	22

Find and identify the nature of the stationary points of $y = \log_e(x^2 + 4)$.

Question 23 Extension.

Consider the function f(x) = xg(x).

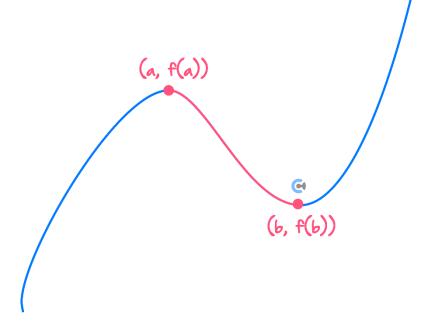
It is known that, g(0) = -5, g(1) = -2 and g(2) = 1.

g'(0) = -4, g'(1) = 2 and g'(2) = 3 and that f has only one stationary point.

Show that f(x) has a stationary point when x = 1 and identify its nature.

<u>Sub-Section</u>: Strictly Increasing and Decreasing

Strictly Increasing and Strictly Decreasing Functions



Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

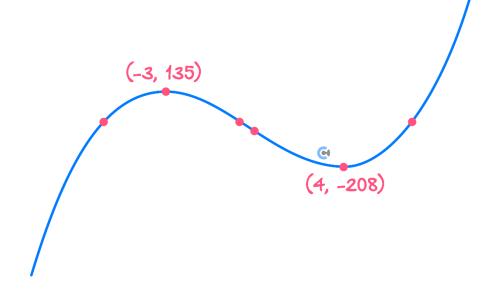
Strictly Decreasing: $x \in [a, b]$

- Steps:
 - 1. Find the turning points.
 - 2. Consider the sign of the derivative between/outside the turning points.

Question 24

State the value(s) of x for the function below for which it is strictly increasing and strictly decreasing.

$$y = -72x - 3x^2 + 2x^3$$

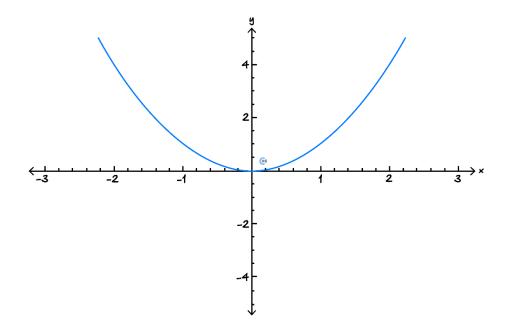


Section D: Graphs of the Derivative Function

Sub-Section: Graphs of Derivative Function

Exploration: Graph of derivative functions

Consider the graph of $f(x) = x^2$ below.



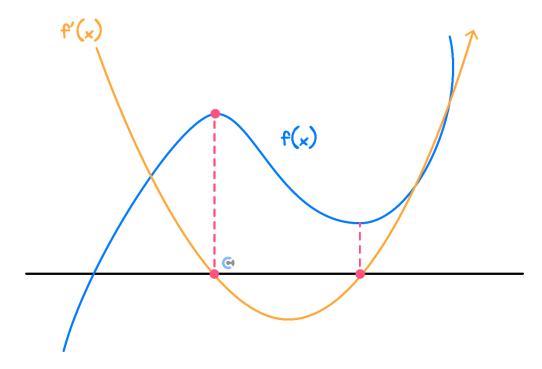
- What is the derivative of f(x)?
- Sketch the derivative above.

$$f'(x) =$$

- What do you notice about f'(x): Derivative when f(x) has a stationary point?
- What do you notice about f'(x) when f(x) is increasing?
- What do you notice about f'(x) when f(x) is decreasing?

In summary!

Graphs of the Derivative Function



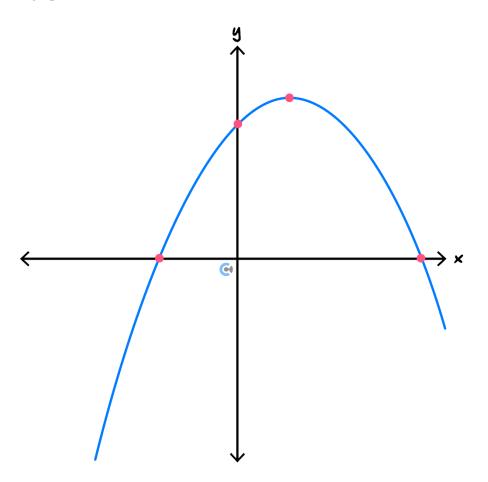
f(x)	f'(x)
Stationary Point	
Increasing	
Decreasing	

$$y \ value \ of \ f'(x) =$$

Steps

- 1. Plot x-intercept at the same x value as the stationary point of the original.
- 2. Consider the trend of the original function and sketch the derivative.
 - ▶ Original is increasing \rightarrow Derivative is above the x-axis.
 - ▶ Original is decreasing \rightarrow Derivative is below the x-axis.

Sketch the derivative graph of the function shown below, on the same set of axes.

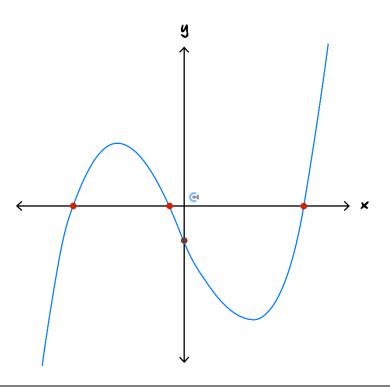


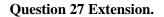
<u>Active Recall:</u> Steps on sketching the derivative function.

- 1. Plot *x*-intercept at the same *x*-value as the ______ of the original.
- 2. Consider the trend of the original function and sketch the derivative.
 - Original is increasing \rightarrow Derivative is _____ the *x*-axis.
 - Original is decreasing \rightarrow Derivative is _____ the *x*-axis.

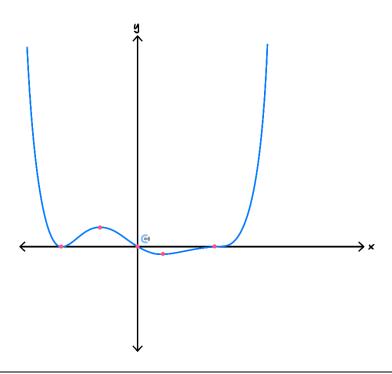
Question 26

Sketch the derivative graph of the function shown below, on the same set of axes.





Sketch the derivative graph of the function shown below, on the same set of axes.



Contour Checklist

□ <u>Learning Objective</u>: [2.1.1] - Find the Instantaneous Rate of Change and Average Rate of Change

Key Takeaways

☐ The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =

- ☐ It is the ______of the line joining the two points.
- ☐ Instantaneous Rate of Change is a gradient of a graph at a single _____.
- ☐ First Principles derivative definition:

$$f'(x) =$$

- The Product Rule
 - The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) =$$

Or, in another form:

$$\frac{d}{dx}(u\cdot v) = \underline{\hspace{1cm}}$$

- ☐ The Quotient Rule
 - The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) =$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \underline{\hspace{1cm}}$$

- O Always differentiate the top function first.
- The Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} =$$

☐ The process for finding derivatives of **composite functions**.

□ <u>Learning Objective</u>: [2.1.2] - Identify the Nature of Stationary Points and Trends (Strictly Increasing and Decreasing)

Key Takeaways

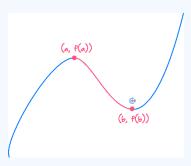
Point where the _______ of the function is zero.

$$f'(x)=0, \frac{dy}{dx}=0$$

☐ We can identify the nature of a stationary point by using the sign table.

x	Less than α	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing curve	Stationary Point	∪ - Increasing curve

- Find the gradient of the _____ points.
- □ Strictly Increasing and Strictly Decreasing Functions



Strictly Increasing: $x \in$ _____

Strictly Decreasing: _____

- O Steps:
 - 1. Find the ______.
 - 2. Consider the sign of the ______ between/outside the turning points.

□ <u>Learning Objective</u>: [2.1.3] - Graph Derivative Functions

Key Takeaways

- Steps on Sketching the Derivative Function:
 - 1. Plot *x*-intercept at the same *x*-value as the ______ of the original.
 - 2. Consider the trend of the original function and sketch the derivative.
 - Original is increasing \rightarrow Derivative is _____ the x-axis.
 - Original is decreasing \rightarrow Derivative is _____ the *x*-axis.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

