

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation I [2.1]

Test Solutions

24 Marks. 17 Minutes Writing.

Results:

Test Questions	/16	
Extension	/8	

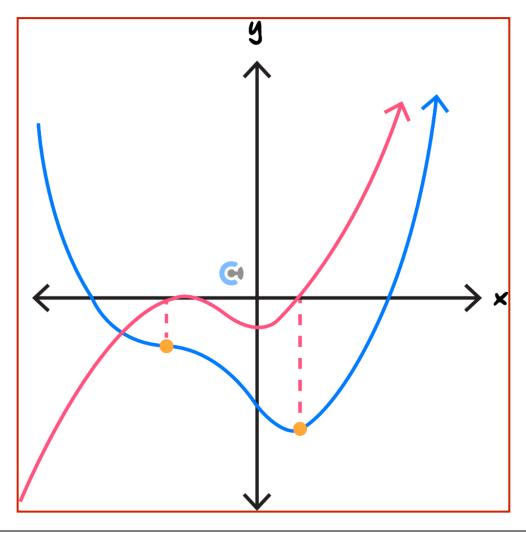
Section A: Test Questions (16 Marks)

Ques	Question 1 (4 marks)					
Tick	Γick whether the following statements are true or false .					
	Statement	True	False			
a.	To find the average rate of change, we differentiate.		✓			
b.	First principle is the key to all differentiation.	>				
c.	Derivative function gives us a gradient of a point.	>				
d.	Chain rule is used to differentiate composite functions.	<				
e.	Strictly increasing excludes its end values of the range.		✓			
f.	If the gradient of the function is positive, zero and then negative in that order, we have a local minimum.		✓			
g.	Derivative graphs' y-value indicates the gradient of the original function.	✓				
h.	If the original function has a stationary point of inflection, the derivative graph has a x -intercept and turning point at the same time.	✓				

Question 2 (4 marks)

a. Let $y = x^2 \sin(x)$. Find $\frac{dy}{dx}$. (2 marks)

 $2x\sin(x) + x^2\cos(x)$


b. Evaluate f'(1), where $f: R \to R$, $f(x) = e^{x^2 - x + 3}$. (2 marks)

 $f'(x) = (2x - 1) \times e^{x^2 - x + 3}$ $f'(1) = e^3$

Question 3 (3 marks)

Sketch the derivative graph of the function shown below, on the same set of axes.

Question 4 (5 marks)

Consider $f(x) = \frac{x}{x^2 + 1}$.

a. Find the stationary points and state their nature. (4 marks)

Solve[f'[x] == 0 && y == f[x], {x, y}] $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to \frac{1}{2} \right\} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to 1, \ y \to \frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}, \ \left\{ x \to -1, \ y \to -\frac{1}{2} \right\}$ $= \frac{1}{2} \left\{ x \to -1, \ y \to -1, \ y$

b. Hence, state the value(s) of x where the function is strictly increasing. (1 mark)

[-1, 1]

Section B: Extension (8 Marks)

Question 5 (2 marks)

The table below shows selected values of a differentiable and decreasing function f.

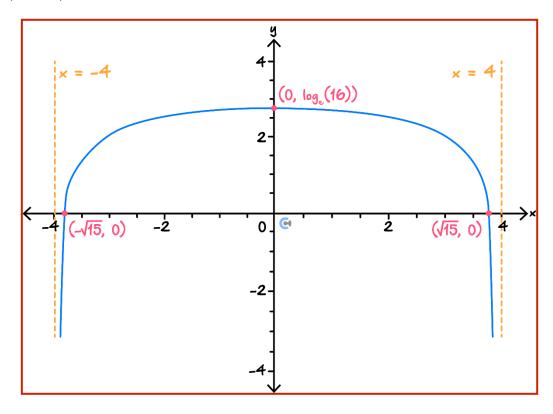
x	0	1	2
f(x)	4	2	-3
f'(x)	-2	-4	-6

If g is the inverse of the function f, then evaluate the value of g'(2).

 $-\frac{1}{4}$

Question 6 (6 marks)

Consider $f(x) = \log_e(16 - x^2)$.


a. Find its asymptotes. (2 marks)

 $x = \pm 4$

b. Find its stationary point and state its nature. (2 marks)

 $(0, \log_e(16))$ and Local Max.

c. Hence, on the axes below, sketch the function of f(x). Label all the asymptotes, axes intercepts and stationary points. (2 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

