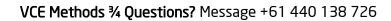


Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au


VCE Mathematical Methods ¾
AOS 2 Revision [2.0]
SAC 4

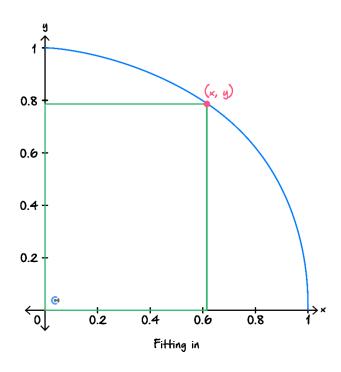
54 Marks. 15 Minutes Reading. 70 Minutes Writing.

Section A: SAC Questions (54 Marks)

Questi	on 1 (20 marks)
For the	e following question consider the following cubic function:
	$f(x) = x^3 - 4x^2 + x + 6$
a.	
i.	Show that the equation of the tangent at any point $x = a$ is given by: (2 marks)
	$y_t = (3a^2 - 8a + 1)x - 2a^3 + 4a^2 + 6$
ii.	Find the equation of the normal at any point $x = a$. (2 marks)
iii.	Find the value of a , for which the tangent line crosses the origin. Provide your answer correct to 3 decima places. (3 marks)

v.	Hence, for what value(s) of a will the normal to the function only intersect the function once, correct t decimal places? (3 marks)

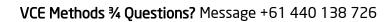
. (nsider the following family of functions:			
	$f(x) = x^3 - 4x^2 + kx + 6$			
V	where $k \in R$.			
i.	For what values of k will there be no stationary points? (2 marks)			
ii	Find the coordinates of the stationary points in terms of k . (1 mark)			
ii	ii. Hence, for what values of k will there be one solution for the equation $f(x) = 3$? Provide your answ correct to 1 decimal place. (3 marks)			


VCE Methods ¾ Questions? Message +61 440 138 726

iv. Is it possible to have no real solutions for $f(x) = m$, where $m \in R$? Justify. (2 marks)	
	_
	_
	_
	_
	_
Space for Personal Notes	
Space for Personal Notes	

Question 2 (20 marks)

The figure below depicts a rectangle that is inscribed in a quarter of a unit circle. The equation of the quarter of a unit circle can be described by $f(x) = \sqrt{1 - x^2}$.



a.

i. Express the area of the rectangle in terms of x only. (2 marks)

ii. Express the perimeter of the rectangle in terms of x only. (1 mark)

iii. Restrict the domain to model the situation. (1 mark)

_	
_	
_	
ci	wo parallel lines, with a gradient of -1 form two sides of a rectangle, inscribed in the same portion of a recle in part a. One of these lines is a secant line to the quarter-circle (a secant line intersects with a curve least two points).
i.	Find the equation of the line passing through the endpoints of the quarter-circle. (1 mark)
ii.	Find the equation of the line that is tangent to the quarter circle. (1 mark)
iii	• Hence, what are the possible values of the <i>y</i> -intercept of the secant line? (2 marks)
	——————————————————————————————————————

The other two sides of the rectangle originate from the intersection points of the secant line and the circle. iv. One of the intersection points between the secant line and the circle is given by (a, f(a)). State the coordinates of the other intersection point at point (b, f(b)), where b > a. (1 mark) v. Hence or otherwise, find the equation of these two lines in terms of a and b. (2 marks) vi. State the relationship between a and b. Hence, what do you notice about the two lines in part c. v.? (2 marks) The area of the rectangle can be generalised in terms of a and b given by the equation below: Area = _____ **vii.** State the area in terms of a. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

viii.	Hence, find the maximum area possible for this rectangle. (3 marks)
V 111.	Tenee, that the maximum area possible for this rectangle. (5 marks)
_	
-	
-	
-	
_	
_	
Space f	or Personal Notes

Question 3 (14 marks)

a. For an ideal scenario for a pathogen, it will double its population every day. And hence, only needing 1 pathogen to start a potentially deadly infection. A possible equation to model the scenario can be given in the form $p(t) = 2^t$ where p(t) represents the population of pathogens and t is the number of days.

i. The same equation is rewritten in the form of $p(t) = e^{\log_e(b)t}$. State the value of b. (1 mark)

ii. State p'(t) in terms of p(t). (1 mark)

iii. Hence, show that: (2 marks)

$$\frac{d}{dx}(a^x) = \ln(a)a^x$$

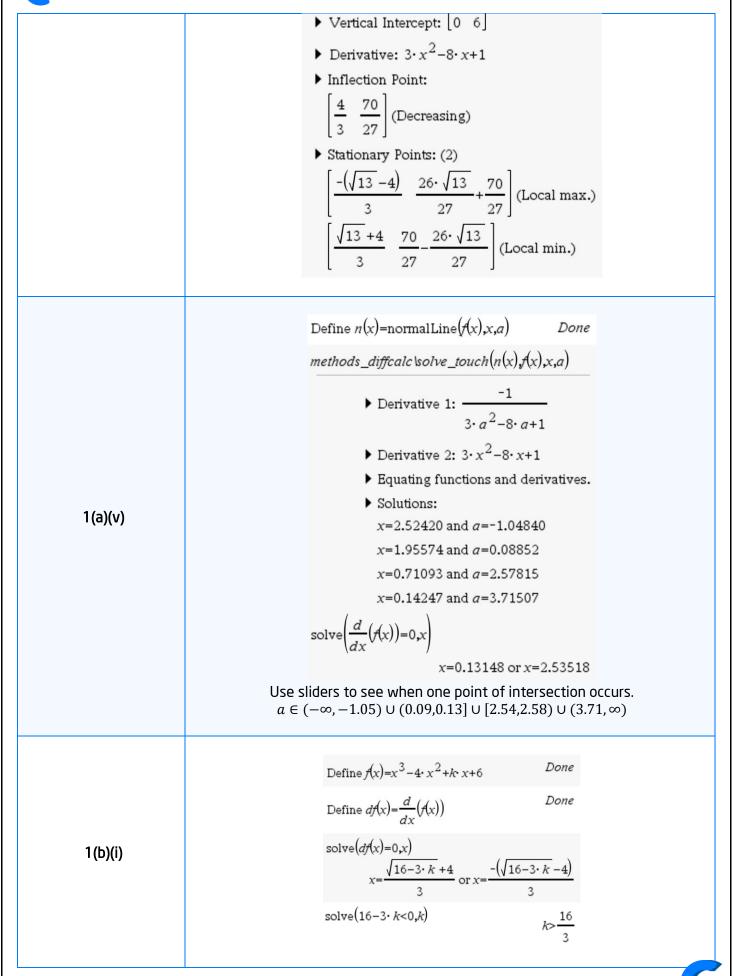
There are two main ways a pathogen is removed from the body by the immune system or medication.

	e immune response is dependent on the time after a pathogen is found. The amount of immune cells per $0 ml$ of blood is given by:
	$i(t_2) = e^{t_2}$
i.	What is the number of immune cells per litre of blood at $t = 0$? (1 mark)
ii.	Write $i(t_2)$ in terms of t , given that the number of immune cells only starts increasing n number of days after a pathogen is found. Give your answer in terms of n . (1 mark)
	king into account the immune response, the population of the pathogen is given by: $p^*(t) = p(t) - i(t_2)$. Given that the pathogen is eliminated no later than a month after the initial infection, how many days did
	take to detect it initially? (2 marks)
iv.	The sickest day corresponds to the day with the highest number of pathogens. For what value of t does

this occur, given that it took 5 days to detect the pathogen? Provide your answer upto 2 decimal places.

(2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726


	w, consider the effects of medication. The amount of medicine present in blood for one dosage is given by following:
	$m(t_3) = e^{125t_3(a-t_3)}$
i.	Given that it takes 6 days to reach the peak effect of the medication, find the value of a . (2 marks)
ii.	Express t_3 in terms of t and the time the patient took the medication, b . (2 marks)
	i.

Space for Personal Notes

Section B: TI Solutions

Question Number	<u>Solutions</u>
1(a)(i)	Define $f(x)=x^3-4\cdot x^2+x+6$ methods_diffcalc \text{\text{Vangent_line}}(f(x),x,a) \[\begin{align*} \text{Derivative:} & 3\cdot x^2-8\cdot x+1 \\ \begin{align*} \text{Gradient:} & 3\cdot a^2-8\cdot a+1 \\ \begin{align*} \text{Passes Through:} & \begin{align*} & a^3-4\cdot a^2+a+6 \end{align*} \\ \begin{align*} \text{x-Intercept:} & \frac{2\cdot (a^3-2\cdot a^2-3)}{3\cdot a^2-8\cdot a+1} & 0 \\ \begin{align*} \text{Vertical Intercept:} & \begin{align*} & 0 & -2\cdot (a^3-2\cdot a^2-3) \end{align*} \] \begin{align*} \text{Tangent Line:} & (3\cdot a^2-8\cdot a+1)\cdot x-2\cdot (a^3-2\cdot a^2-3) \end{align*}
1(a)(ii)	normalLine($f(x)$, x , a) $ \frac{3 \cdot a^5 - 20 \cdot a^4 + 36 \cdot a^3 + 6 \cdot a^2 - 46 \cdot a + 6}{3 \cdot a^2 - 8 \cdot a + 1} - \frac{x}{3 \cdot a^2 - 8 \cdot a + 1} $
1(a)(iii)	Solve vertical intercept equal 0 $\operatorname{solve}\left(-2 \cdot \left(a^3 - 2 \cdot a^2 - 3\right) = 0, a\right) \qquad a = 2.48558$
1(a)(iv)	methods_func \text{\text{analyse}} \(f(x), x \) ▶ Start Point: $[-\infty - \infty]$ ▶ End Point: $[\infty \infty]$ ▶ Maximal Domain: $-\infty < x < \infty$ ▶ x -Intercepts: (3) $[-1 \ 0], [2 \ 0],$ $[3 \ 0]$

	$methods_func \ analyse (f(x),x)$		
	▶ Start Point: $\begin{bmatrix} -\infty & -\infty \end{bmatrix}$		
	▶ End Point: [∞ ∞]		
	► Maximal Domain: ¬∞ <x<∞< td=""><th></th></x<∞<>		
	▶ x -Intercepts: (3)▶ Vertical Intercept: [0 6]		
	▶ Derivative: $3 \cdot x^2 - 8 \cdot x + k$		
	▶ Inflection Point:		
1(b)(ii)	$\left[\frac{4}{3} \frac{4 \cdot k}{3} + \frac{34}{27}\right]$		
	▶ Stationary Points: (2)		
	$\left[\frac{\sqrt{16-3\cdot k}+4}{3} \frac{-2\cdot \left(16-3\cdot k\right)^{2}}{27} + \frac{4\cdot k}{3} + \frac{34}{27} \right]$		
	$\frac{\frac{3}{(\sqrt{16-3\cdot k}-4)}}{3} \frac{2\cdot (16-3\cdot k)^{\frac{2}{2}}}{27} + \frac{4\cdot k}{3} + \frac{34}{27}$		
	3 27 3 27		
1(b)(iii)	Using a slider, we see that both stationary points must be about a cubic has no stationary point, then it is one-to-one, so there is unique solution. Hence we must also include our answer to par	is always a	
	solve $\left(\frac{\frac{3}{2\cdot(16-3\cdot k)^{2}}}{27} + \frac{4\cdot k}{3} + \frac{34}{27} > 3, k\right)$ $k \le \frac{16}{3}$		
	$solve \left(\frac{\frac{3}{27} + \frac{3}{4 \cdot k} + \frac{34}{27} + 34$		
	2.60587<165		
2(b)	() [. 2	one	
	Define $f(x) = \sqrt{1-x^2}$		
		one	
	Define $p(x)=2\cdot x+2\cdot f(x)$	one	

- ▶ Start Point: [0 0]
- ▶ End Point: [1 0]
- ▶ Maximal Domain: 0≤x≤1
- ▶ x -Intercepts: (2)
 [0 0],[1 0]
- ▶ Vertical Intercept: [0 0]
- Derivative:

$$\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}$$

▶ Inflection Point:

[0 0] (Increasing)

▶ Stationary Point:

$$\left[\begin{array}{c|c} \sqrt{2} & 1 \\ \hline 2 & 2 \end{array}\right]$$
 (Local max.)

methods_func analysed (p(x),x,0,1)

- Start Point: [0 2]
- ▶ End Point: [1 2]
- ▶ Maximal Domain: 0≤x≤1
- No x −Intercepts Found
- ▶ Vertical Intercept: [0 2]
- ▶ Derivative: $2 \frac{2 \cdot x}{\sqrt{1 x^2}}$
- ▶ No Inflection Points Found
- Stationary Point:

$$\left[\begin{array}{c|c} \sqrt{2} & 2 \cdot \sqrt{2} \end{array}\right]$$
 (Local max.)

2(c)(ii)	methods_diffcalc\solve_gradd(f(x),x,-1,0,1) Maximal Domain: $0 \le x \le 1$ Derivative: $\frac{-x}{\sqrt{1-x^2}}$ Found point with gradient-1: $\begin{bmatrix} "x" & "y" & "Eqn." & "x-Int." & "y-Int." \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \sqrt{2} -x & \sqrt{2} & \sqrt{2} \end{bmatrix}$	
2(c)(v)	DelVar a $methods_misc\ Vinear_info([a\ f(a)],1)$ Point: $\begin{bmatrix} a & \sqrt{1-a^2} \end{bmatrix}$ Gradient: 1 Linear Equation: $y=x+\sqrt{1-a^2}-a$ $x-Intercept: \begin{bmatrix} a-\sqrt{1-a^2} & 0 \end{bmatrix}$ $y-Intercept: \begin{bmatrix} 0 & \sqrt{1-a^2} & -a \end{bmatrix}$ $methods_misc\ Vinear_info([b\ f(b)],1)$ Point: $\begin{bmatrix} b & \sqrt{1-b^2} \end{bmatrix}$ Gradient: 1 Linear Equation: $y=x+\sqrt{1-b^2}-b$ $x-Intercept: \begin{bmatrix} b-\sqrt{1-b^2} & 0 \end{bmatrix}$ $y-Intercept: \begin{bmatrix} b-\sqrt{1-b^2} & 0 \end{bmatrix}$	
2(c)(vii)	Height of the diagonal rectangle is distance between two points on the secant intersecting function $\frac{\textit{methods_miscVinear_info}([a\ f(a)],[b\ f(b)])}{\textit{Point 1:} \left[a\ \sqrt{1-a^2}\ \right]}$ $\textit{Point 2:} \left[b\ \sqrt{1-b^2}\ \right]$ $\textit{Midpoint:} \left[\frac{a+b}{2}\ \sqrt{1-a^2} \cdot \sqrt{1-b^2} + a \cdot b - 1\right)$	

Width found by taking y intercept of perpendicular at (a,f(a)) then taking distance to (a,f(a)).

 $methods_misc Vinear_info([a f(a)],1)$

- ▶ Point: $a \sqrt{1-a^2}$ Gradient: 1
- ▶ Linear Equation: $y=x+\sqrt{1-a^2}-a$
- \blacktriangleright x-Intercept: $a-\sqrt{1-a^2}$ 0
- ▶ y-Intercept: $0 \sqrt{1-a^2-a}$

 $\P_{s_misc\ Vinear_info}([a\ f(a)], [0\ \sqrt{1-a^2}-a])$

- Point 1: $a \sqrt{1-a^2}$
- Point 2: $0 \sqrt{1-a^2} a$
- Midpoint: $\frac{a}{a} \frac{2 \cdot \sqrt{1-a^2-a}}{a}$
- ▶ Distance: $a \cdot \sqrt{2}$

Define $b=\sqrt{1-a^2}$

Done

©get height in terms of a

$$\sqrt{-2 \cdot \left(\sqrt{1 - a^2} \cdot \sqrt{1 - b^2} + a \cdot b - 1 \right)} \\
\sqrt{-2 \cdot \left(\sqrt{1 - a^2} \cdot |a| + a \cdot \sqrt{1 - a^2} - 1 \right)}$$

©define area

Define
$$area(a) = \sqrt{-2 \cdot \left(\sqrt{1-a^2} \cdot |a| + a \cdot \sqrt{1-a^2} - 1\right) \cdot a \cdot \sqrt{2}}$$
 Done $area(a)|a>0$ $2 \cdot a \cdot \sqrt{1-2 \cdot a \cdot \sqrt{1-a^2}}$

Note: The analyse program might freeze with this question. Hold [esc] or [home] to exit if required.

2(c)(viii)

$$\triangle$$
 solve $\left(\frac{d}{da}(area(a))=0,a\right)$ $a=\frac{\sqrt{2-\sqrt{2}}}{2}$

$$a = \frac{\sqrt{2-\sqrt{2}}}{2}$$

$$area\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)$$

$$\frac{\sqrt{8}-2}{2}$$

T		
	Define $p(t)=2^t$	Done
3(a)	Define $dp(t) = \frac{d}{dt}(p(t))$	Done
	dp(t)	$ln(2)\cdot 2^t$
	Define $i(t) = e^{t}$	Done
3(b)(iii)	solve(i(t)=p(30),t)	$t=30 \cdot \ln(2)$
	30-30·ln(2)	30-30·ln(2)
3(b)(iv)	methods_func \analyse(p2(t),t) Start Point: [-∞ 0.00000] End Point: [∞ -∞] Maximal Domain: -∞ <t<∞ (horizontal)="" 0.00000]="" 0.69315·(2.00000)<sup="" 0.99326]="" [0.00000="" [16.29350="" asymptote:="" derivative:="" intercept:="" t-intercept:="" vertical="" y="0.00000">t-0.00674·(2.71828)^t Inflection Point: [13.90465 7967.83240] (Increasing) Stationary Point: [15.09907 10769.69680] (Local max.)</t<∞>	
3(c)	Define $m(t) = e^{125 \cdot t \cdot (a-t)}$ Define $dm(t) = \frac{d}{dt}(m(t))$	Done Done

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support	
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods". 	

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

