

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
AOS 2 Revision [2.0]

SAC 3 Solutions

45 Marks. 10 Minutes Reading. 65 Minutes Writing.

Section A: SAC Questions (45 Marks)

Question 1 (10 marks)

Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 3x^2 + 2$.

a. Find the coordinates of the stationary points of f(x). (2 marks)

(0,2),(2,-2)

b. Using the turning points found in **part a.**, find the equation of the line segment joining these two points. State the length of this line segment. (3 marks)

y = -2x + 2
Distance = $2\sqrt{5}$

Another function g(x) exists such that g(x) = f(x) + kx, where k is a real constant.

c. Find the x-values of the stationary points of g(x) in terms of k as well as the coordinate of the point of inflection. (3 marks)

S. P.: $x = 1 \pm \sqrt{1 - \frac{k}{3}}$ P. O. I: (1, k)

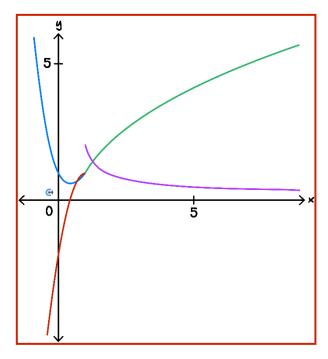
A tangent line is made at the inflection point found in **part c**.

d. Given that this tangent line passes through the coordinate (5,2), solve for the value(s) of k. (2 marks)

 $k = \frac{14}{5}$

Question 2 (7 marks)

The hybrid function $f(x) = \begin{cases} -x^3 + 3x^2 - 2x + 1, & x \le 1 \\ \sqrt{4x - 3}, & x > 1 \end{cases}$ is sketched on the graph below:



a. Define the derivative function f'(x). (2 marks)

 $f'(x) = \begin{cases} -3x^2 + 6x - 2, & x < 1\\ \frac{2}{\sqrt{4x - 3}}, & x > 1 \end{cases}$

b. On the same axes, sketch the graph of the derivative function. (2 marks)

Open circle at discontinuous points.

c. Find the values of x when f(x) is strictly increasing. (1 mark)

 $x \ge -\frac{\sqrt{3} - 3}{3}$

d. Let $g(x) = \begin{cases} -x^3 + 3x^2 - 2x + 1 + kx, & x \le 1 \\ \sqrt{4x - 3}, & x > 1 \end{cases}$ with k > 0.

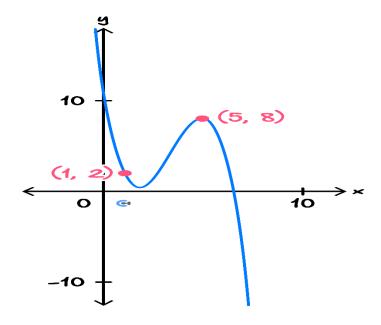
Find the values of x when g(x) is strictly increasing in terms of k. (2 marks)

 $-\frac{\sqrt{3(k+1)}-3}{3} \le x < 1 \text{ or } x > 1$

Space for Personal Notes

Question 3 (8 marks)

James is standing outside his house in Doreen at the point (1,2) and decides to take his dog Mango to the park located at (5,8). A map is shown below which depicts James current whereabouts as well as the local park. Mango is a rather impatient dog and instead of walking on the footpath he decides to walk in a straight line directly to the park.



a. Calculate the distance travelled if Mango walks in a straight line from James' house to the park. (1 mark)

$$d = 2\sqrt{13}$$

Once James and Mango arrive at the park, they decide to follow the exact path of the park given by:

$$f(x) = -\frac{1}{2}x^3 + 5x^2 - 13x + 10.5$$

Assume that they follow the path when they return home after a long walk.

b. You could say that their path travelled is a relationship that is tangential to the park at every single point. If James and Mango are currently standing at x = a, state the equation of the path they are travelling in terms of a. (1 mark)

$$y = \frac{2a^3 - 10a^2 + 21}{2} - \frac{(3a^2 - 20a + 26)x}{2}$$

Whenever the gradient of the path is equal to 2, Mango's bladder kicks in and he suddenly needs to take a leak.

c.

i. State the values of x whenever Mango uses the toilet. (2 marks)

 $x = \frac{\pm\sqrt{10} + 10}{3}$

ii. Hence, state the equations of the tangent lines whenever Mango takes a leak. (2 marks)

 $y = 2x - \frac{20\sqrt{10} + 133}{54}$ $y = 2x + \frac{20\sqrt{10} - 133}{54}$

After a while, Mango needs to do a number 2. The points at which Mango needs to do this occur whenever the gradient equals zero.

d. Find the coordinates of the points at which Mango does a number 2. (2 marks)

 $\left(\frac{10 - \sqrt{22}}{3}, \frac{-44\sqrt{22} + 227}{54}\right)$ $\left(\frac{10 + \sqrt{22}}{3}, \frac{44\sqrt{22} + 227}{54}\right)$

Space for Personal Notes

Question 4 (10 marks)

Consider the functions:

$$f(x) = \frac{x+2}{x+3}$$

$$g(x) = \sqrt{5 - x}$$

where both functions are defined over their maximal domains.

a. State the domains of f(x) and g(x). (2 marks)

$$dom f = \mathbb{R} \setminus \{-3\}$$
$$dom g = (-\infty, 5]$$

b. Determine whether f(g(x)) or g(f(x)) is defined. Give a reason why. (3 marks)

f(g(x)) is defined as ran $g = [0, \infty)$ which is a subset of dom $f = \mathbb{R} \setminus \{-3\}$. g(f(x)) is not defined as ran $f = \mathbb{R} \setminus \{1\}$ which is a subset of dom $g = (-\infty, 5]$.

c. For the function that was defined, find the range of that function. (2 marks)

 $\left[\frac{2}{3},\infty\right)$

d. For the undefined function, state the maximal domain of that function such that the composite function exists. (3 marks)

 $x \le -\frac{13}{4} \text{ or } x > -3$

Question 5 (10 marks)

A piecewise function is defined by:

$$f(x) = \begin{cases} a x^3 + x, & x \le 1, \\ (3a + b)x - 2, & x > 1, \end{cases}$$

where a and b are constants with a > 0.

a. State the values of a and b such that the function joins smoothly at x = 1. Hence, state the domain of the derivative function. (3 marks)

a = 1 and b = 1 $\operatorname{dom} f' = \mathbb{R}$

b.					
	i.	Find the coordinates of the <i>x</i> -intercept of $f(x)$. (1 mark)			
		(0,0)			
	ii. Hence, state the angle in degrees that $f(x)$ makes with the x-axis at the x-intercept. (2 marks)				
		45°			
c.	Find the coordinates of the intersection point(s) between $f(x)$ and $f^{-1}(x)$. (2 marks)				
	(0,0)				
d.	Hence, state the possible axis(es) of symmetry that exist for $f(x)$ and $f^{-1}(x)$. Explain why there is only one axis of symmetry or why there are multiple axes of symmetry. (2 marks)				
		y = x The function is strictly increasing over its domain.			

Space for Personal Notes

Section B: TI Solutions

Question Number	<u>Solutions</u>	
1(a)	Define $f(x)=x^3-3\cdot x^2+2$ $methods_func \ lanalyse (f(x),x)$ Start Point: $[-\infty -\infty]$ End Point: $[\infty \infty]$ Maximal Domain: $-\infty < x < \infty$ $x - Intercepts: (3)$ $[-(\sqrt{3}-1) \ 0], [1 \ 0],$ $[\sqrt{3}+1 \ 0]$ Vertical Intercept: $[0 \ 2]$ Derivative: $3\cdot x^2-6\cdot x$ Inflection Point: $[1 \ 0]$ (Decreasing) Stationary Points: (2) $[0 \ 2]$ (Local max.) $[2 \ -2]$ (Local min.)	
1(b)	methods_misc Vinear_info([0 2],[2 -2]) Point 1:[0 2] Point 2:[2 -2] Midpoint:[1 0] Distance: $2 \cdot \sqrt{5}$ Gradient: -2 Perp. Bisector: $y = \frac{x}{2} - \frac{1}{2}$ Linear Equation: $y = 2 - 2 \cdot x$ $x - \text{Intercept:}[1 0]$ $y - \text{Intercept:}[0 2]$	

	$methods_func\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	▶ Start Point: [-∞ -∞]		
	▶ End Point: [∞ ∞]		
	▶ Maximal Domain: -∞ <x<∞< td=""></x<∞<>		
	▶ x -Intercepts: (3)		
	▶ Vertical Intercept: [0 2]		
	▶ Derivative: 3·x²-6·x+k		
1(c)	▶ Inflection Point:		
	[1 k]		
	▶ Stationary Points: (2)		
	$\left[\frac{\sqrt{-3\cdot(k-3)}+3}{3} \frac{2\cdot(k-3)\cdot\sqrt{-3\cdot(k-3)}}{9}+k\right]$		
	3 9		
	$ \frac{-(\sqrt{-3\cdot(k-3)}-3)}{3} k-\frac{2\cdot(k-3)\cdot\sqrt{-3\cdot(k-3)}}{3} $		
	L 3 9 .		
	tangentLine $(g(x),x,1)$ $(k-3)\cdot x+3$		
1(d)	Define $l(x)=(k-3)\cdot x+3$ Done		
- (-)	$solve(l(5)=2,k)$ $k=\frac{14}{14}$		
	5		
	Define $f(x) = \begin{cases} -x^3 + 3 \cdot x^2 - 2 \cdot x + 1, x \le 1 \\ \sqrt{4 \cdot x - 3}, & x > 1 \end{cases}$		
2(a)	Define $df(x) = \frac{d}{dx}(f(x))$ Done		
	$df(x)$ $(-3, x^2 + 6, x - 2, x < 1)$		
	$\begin{cases} -3 \cdot x^2 + 6 \cdot x - 2, x < 1 \\ \frac{2}{\sqrt{4 + x^2}}, x > 1 \end{cases}$		
	$\sqrt{4\cdot x-3}$, $x>1$		
	Check the answer with the graph to make sure you are only including		
	appropriate stationary points.		
2(c)	solve $(df(x) \ge 0, x)$ $x \ge \frac{-(\sqrt{3} - 3)}{3}$ and $x \ne 1$		
	$x \ge \frac{1}{3}$ and $x \ne 1$		

CONTOONEDOCATION		
	Define $g(x) = \begin{cases} -x^3 + 3 \cdot x^2 - 2 \cdot x + 1 + k \cdot x, x \le 1 \\ \sqrt{4 \cdot x - 3}, & x > 1 \end{cases}$ Done	
	Define $dg(x) = \frac{d}{dx}(g(x))$ Done	
2(d)	$dg(x) = \begin{cases} -3 \cdot x^2 + 6 \cdot x + k - 2, x < 1 \\ \frac{2}{\sqrt{4 \cdot x - 3}}, & x > 1 \end{cases}$	
	solve $(dg(x) \ge 0, x) k>0$ $x \ge \frac{-(\sqrt{3 \cdot (k+1)} - 3)}{3} \text{ and } x \ne 1 \text{ and } k>0$	
	Note: We can rewrite this as the union of two intervals	
	$methods_misc Vinear_info([1 2],[5 8])$	
	▶ Point 1:[1 2]	
	▶ Point 2:[5 8]	
	▶ Midpoint:[3 5]	
	▶ Distance: 2· √13	
	▶ Gradient: 3/2	

▶ Perp. Bisector: $y=7-\frac{2 \cdot x}{3}$

▶ Linear Equation: $y = \frac{3 \cdot x}{2} + \frac{1}{2}$

▶ x-Intercept: $\left[\frac{-1}{3} \quad 0\right]$

▶ y-Intercept: $\begin{bmatrix} 0 & \frac{1}{2} \end{bmatrix}$

3(a)

Note: Convert decimal to fraction to obtain exact value of tangent.

Compute Tangent Lines? 1

3(b)

3(c)

Define
$$f(x) = \frac{-1}{2} \cdot x^3 + 5 \cdot x^2 - 13 \cdot x + \frac{21}{2}$$
 Done

tangentLine(f(x),x,a)

$$\frac{2 \cdot a^3 - 10 \cdot a^2 + 21}{2} - \frac{\left(3 \cdot a^2 - 20 \cdot a + 26\right) \cdot x}{2}$$

ΟK

Cancel

 $methods_diffcalc \ solve_grad(f(x),x,2)$

- ► Maximal Domain: ¬∞<x<∞
- ▶ Found points with gradient 2:(2)

 $methods_diffcalc \ solve_grad(f(x),x,0)$

- Maximal Domain: -∞<x<∞</p>
- ▶ Derivative: $\frac{-3 \cdot x^2}{2} + 10 \cdot x 13$
- ▶ Found points with gradient 0:(2)

$$\begin{bmatrix} -(\sqrt{22} - 10) & \underline{227} & \underline{22} \cdot \sqrt{22} \\ 3 & \underline{54} & \underline{27} \end{bmatrix}$$

$$\left[\frac{\sqrt{22} + 10}{3} \quad \frac{22 \cdot \sqrt{22}}{27} + \frac{227}{54} \right]$$

3(d)

	Define $f(x) = \frac{x+2}{x+3}$	Done Done
4(a)	Define $g(x) = \sqrt{5-x}$	
	$\operatorname{domain}(f(x),x)$	x≠-3
	$\operatorname{domain}(g(x),x)$	-∞ <x≤5< td=""></x≤5<>
	Note: function is monotonic so we can substit the range of $f(g(x))$.	ute in the range of $oldsymbol{g}$ to obtain
4(c)	/ (0)	<u>2</u> 3
, ,		3
	f (∞)	undef
4(d)	$solve(f(x) \le 5, x)$	$x \le \frac{-13}{4} \text{ or } x > -3$
5(a)	 ✓_diffcalc \solve_smooth(f1(x)) ▶ Left Derivative: 3· a· x²+ ▶ Right Derivative: 3· a+b ["At x=1:" "Left Func." "Value:" a+1 "Gradient:" 3· a+1 ▶ Solutions: a=1 and b=1 	1 "Right Func." 3. a+b-2
	Define a=1	Done
E/b//i)	Define $b=1$	Done
5(b)(i)	$zeros(fI(x),x) x\leq 1$	{0}
	$zeros(f2(x),x) x\geq 1$	{□}
5(b)(ii)	$\frac{d}{dx}(fI(x)) x=0$	1

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

