

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 2 Revision [2.0]

Contour Check (Part 2)

Contour Check [2.1 - 2.7] - Exam 1 Overall (VCAA Qs) Pg 74-108

Section H: [2.1 - 2.7] - Exam 1 Overall (Checkpoints) (125 Marks)

Question 69 (4 marks)
Inspired from VCAA Mathematical Methods ¾ Exam 2016 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2016/2016MM1-w.pdf#page=3
a. Let $y = \frac{\cos(x)}{x^2 + 2}$.
Find $\frac{dy}{dx}$. (2 marks)
··
b. Let $f(x) = x^2 e^{5x}$.
Evaluate $f'(1)$. (2 marks)

Question 70 (3 marks)

Inspired from VCAA Mathematical Methods ¾ Exam 2016
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2016/2016MM1-w.pdf#page=4

Let $f: \left(-\infty, \frac{1}{2}\right] \to R$, where $f(x) = \sqrt{1 - 2x}$.

a. Find f'(x). (1 mark)

b. Find the angle θ from the positive direction of the *x*-axis to the tangent to the graph of *f* at x = -1, measured in the anticlockwise direction. (2 marks)

Question 71 (2 marks)

Inspired from VCAA Mathematical Methods 3/4 Exam 2016

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2016/2016MM1-w.pdf#page=10

Let $f: [-\pi, \pi] \to R$, where $f(x) = 2\sin(2x) - 1$.

Calculate the average rate of change of f between $x = -\frac{\pi}{3}$ and $x = \frac{\pi}{6}$.

Question 72 (4 marks)

Inspired from VCAA Mathematical Methods ³/₄ *Exam 2017*https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2017/2017MM1-w.pdf#page=3

a. Let $f: (-2, \infty) \to R, f(x) = \frac{x}{x+2}$.

Differentiate f with respect to x. (2 marks)

b. Let $g(x) = (2 - x^3)^3$.

Evaluate g'(1). (2 marks)

Question 73 (3 marks)

Inspired from VCAA Mathematical Methods ¾ Exam 2018
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2018/2018MM1-w.pdf#page=3

a. If $y = (-3x^3 + x^2 - 64)^3$, find $\frac{dy}{dx}$. (1 mark)

b. Let $f(x) = \frac{e^x}{\cos(x)}$.

Evaluate $f'(\pi)$. (2 marks)

Question 74 (4 marks)

Inspired from VCAA Mathematical Methods ¾ Exam 2019
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2019/2019MM1-w.pdf#page=3

Let $f: \left(\frac{1}{3}, \infty\right) \to R, f(x) = \frac{1}{3x-1}$.

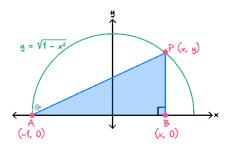
a.

i. Find f'(x). (1 mark)

ii. Find an antiderivative of f(x). (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

b.	Let $g: R\setminus\{-1\} \to R$, $g(x) = \frac{\sin(\pi x)}{x+1}$.
	Evaluate $g'(1)$. (2 marks)



Question 75 (4 marks)

Inspired from VCAA Mathematical Methods 3/4 Exam 2019

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2019/2019MM1-w.pdf#page=9

The graph of the relation $y = \sqrt{1 - x^2}$ is shown on the axes below. P is a point on the graph of this relation, A is the point (-1,0) and B is the point (x,0).

a. Find an expression for the length PB in terms of x only. (1 mark)

b. Find the maximum area of the triangle ABP. (3 marks)	b.	Find the	maximum	area	of the	triangle	ABP. (3 m	arks)
--	----	----------	---------	------	--------	----------	--------	-----	-------

Question 76 (9 marks)

Inspired from VCAA Mathematical Methods ¾ Exam 2019

 $\underline{https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2019/2019MM1-w.pdf\#page=12}$

Consider the functions $f: R \to R$, $f(x) = 3 + 2x - x^2$ and $g: R \to R$, $g(x) = e^x$.

- **a.** State the rule of g(f(x)). (1 mark)
- **b.** Find the values of x for which the derivative of g(f(x)) is negative. (2 marks)

c. State the rule of f(g(x)). (1 mark)

d. Solve f(g(x)) = 0. (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

Find the coordinates of the stationary point of the graph of $f(g(x))$. (2 marks)
State the number of solutions to $g(f(x)) + f(g(x)) = 0$. (1 mark)

Question 77 (3 marks)

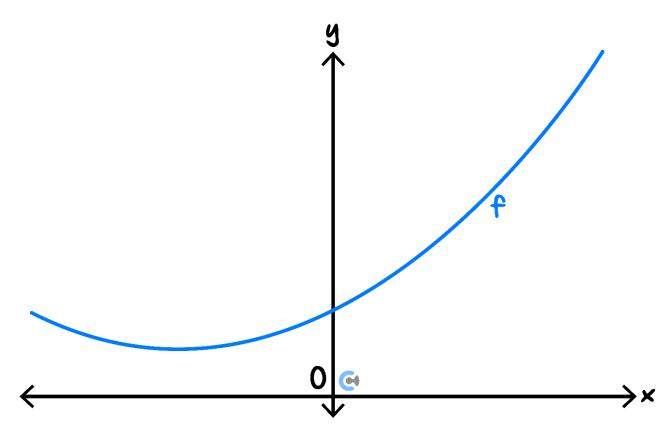
Inspired from VCAA Mathematical Methods ¾ Exam 2020

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2020/2020MM1-w.pdf#page=3

a. Let $y = x^2 \sin(x)$.

Find $\frac{dy}{dx}$. (1 mark)

b. Evaluate f'(1), where $f: R \to R$, $f(x) = e^{x^2 - x + 3}$. (2 marks)



Question 78 (8 marks)

Inspired from VCAA Mathematical Methods ¾ Exam 2020

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2020/2020MM1-w.pdf#page=10

Consider the function $f(x) = x^2 + 3x + 5$ and the point P(1,0). Part of the graph of y = f(x) is shown below.

a. Show that point *P* is not on the graph of y = f(x). (1 mark)

•	Consider a point $Q(a, f(a))$ to be a point on the graph of f .							
	i.	Find the slope of the line connecting points P and Q in terms of α . (1 mark)						
	ii.	Find the slope of the tangent to the graph of f at point Q in terms of a . (1 mark)						
	iii.	Let the tangent to the graph of f at $x = a$ pass through point P .						
		Find the values of a . (2 marks)						
	iv.	Give the equation of one of the lines passing through point P that is tangent to the graph of f . (1 mark)						

VCE Methods 3/4 Questions? Message +61 440 138 726

c. Find the value, k , that gives the shortest possible distance between the graph of the function of $y = f($ and point P . (2 marks)	(x - k)
Question 79 (3 marks)	
Inspired from VCAA Mathematical Methods $\frac{3}{4}$ Exam 2021 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2021/2021MM1-w.pdf#page=2 a. Differentiate $y = 2e^{-3x}$ with respect to x . (1 mark)	
b. Evaluate $f'(4)$, where $f(x) = x\sqrt{2x+1}$. (2 marks)	
Space for Personal Notes	

86

Question 80 (3 marks)

Inspired from VCAA Mathematical Methods 3/4 Exam 2022

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2022/2022MM1-w.pdf#page=3

a. Let $y = 3xe^{2x}$.

Find $\frac{dy}{dx}$. (1 mark)

b. Find and simplify the rule of f'(x), where $f: R \to R$, $f(x) = \frac{\cos(x)}{e^x}$. (2 marks)

Question 81 (4 marks)

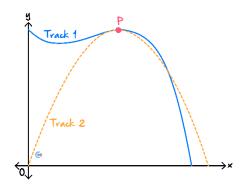
Inspired from VCAA Mathematical Methods 3/4 Exam 2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2023/2023MM1-w.pdf#page=3

a. Let $y = \frac{x^2 - x}{e^x}$.

Find and simplify $\frac{dy}{dx}$. (2 marks)

b. Let $f(x) = \sin(x) e^{2x}$.


Find $f'(\frac{\pi}{4})$. (2 marks)

Question 82 (6 marks)

Inspired from VCAA Mathematical Methods ³/₄ Exam 2023 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2023/2023MM1-w.pdf#page=12

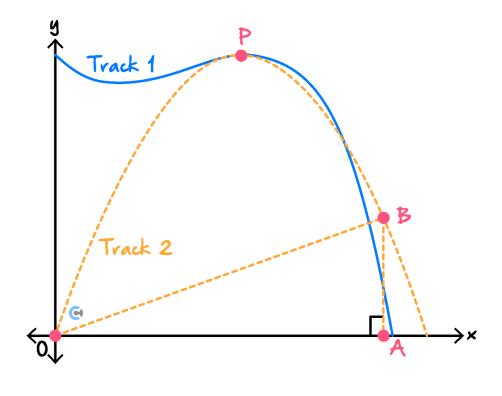
The shapes of two walking tracks are shown below.

Track 1 is described by the function $f(x) = a - x(x - 2)^2$.

Track 2 is defined by the function $g(x) = 12x + bx^2$.

The unit of length is kilometres.

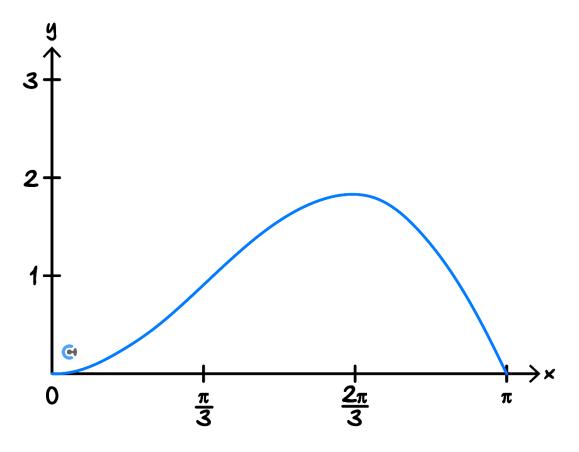
a. Given that f(0) = 12 and g(1) = 9, verify that a = 12 and b = -3. (1 mark)


b. Verify that f(x) and g(x) both have a turning point at P.

Give the co-ordinates of P. (2 marks)

c. A theme park is planned whose boundaries will form the triangle $\triangle OAB$ where O is the origin, A is at (k, 0) and B is at (k, g(k)), as shown below, where $k \in (0, 4)$.

Find the maximum possible area of the theme park, in km^2 . (3 marks)


Que	Question 83 (3 marks)					
	ired from VCAA Mathematical Methods ³ / ₄ Exam 2024 :://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/2024MM1-w.pdf#page=2					
a. I	Let $y = e^x \cos(3x)$.					
F	Find $\frac{dy}{dx}$. (1 mark)					
_						
_						
_						
b. 1	Let $f(x) = \log_e(x^3 - 3x + 2)$.					
F	Find $f'(3)$. (2 marks)					
-						
-						
-						
_						
_						
-						

Question 84 (9 marks)

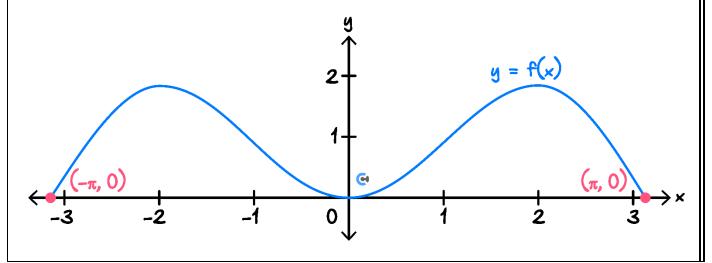
Inspired from VCAA Mathematical Methods ¾ Exam 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/2024MM1-w.pdf#page=8

Part of the graph of $f: [-\pi, \pi] \to R$, $f(x) = \sin(x)$ is shown below.

a. Use the trapezium rule with a step size of $\frac{\pi}{3}$ to determine an approximation of the total area between the graph of y = f(x) and the x-axis over the interval $x \in [0, \pi]$. (3 marks)

b.

i. Find f'(x). (1 mark)


ii. Determine the range of f'(x) over the interval $\left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$. (1 mark)

iii. Hence, verify that f(x) has a stationary point for $x \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$. (1 mark)

CONTOUREDUCATION

c. On the set of axes below, sketch the graph of y = f'(x) on the domain $[-\pi, \pi]$, labelling the endpoints with their coordinates.

You may use the fact that the graph of y = f'(x) has a local minimum of approximately (-1.1, -1.4) and a local maximum of approximately (1.1, 1.4). (3 marks)

Question 85 (7 marks)
Inspired from VCAA Mathematical Methods ¾ Exam 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/2024MM1-w.pdf#page=10
Let $g: R \to R$, $g(x) = \sqrt[3]{x-k} + m$, where $k \in R \setminus \{0\}$ and $m \in R$.
Let the point P be the y-intercept of the graph of $y = g(x)$.
a. Find the coordinates of P , in terms of k and m . (1 mark)
b. Find the gradient of g at P, in terms of k. (2 marks)
c. Given that the graph of $y = g(x)$ passes through the origin, express k in terms of m . (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

d.	Let the point Q be a point different from the point P , such that the gradient of g at points P and Q are equal.
	Given that the graph of $y = g(x)$ passes through the origin, find the coordinates of Q in terms of m . (3 marks)
	·
Sp	pace for Personal Notes

Question 86 (4 marks)

Inspired from VCAA Mathematical Methods ¾ NHT Exam 2017

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2017/nht/2017MM1-nht-w.pdf#page=3

a. Let $y = e^{2x} \cos\left(\frac{x}{2}\right)$.

Find $\frac{dy}{dx}$. (2 marks)

b. Let $f:(0,\pi) \to R$, where $f(x) = \log_e(\sin(x))$.

Evaluate $f'(\frac{\pi}{3})$. (2 marks)

Question 87 (4 marks)

Inspired from VCAA Mathematical Methods 3/4 NHT Exam 2018

 $\underline{https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2018/nht/2018MM1-nht-w.pdf\#page=3}$

a. Let $f(x) = \frac{e^x}{(x^2-3)}$.

Find f'(x). (2 marks)

b. Let $y = (x + 5) \log_e(x)$.

Find $\frac{dy}{dx}$, when x = 5. (2 marks)

Question 88 (4 marks)

Inspired from VCAA Mathematical Methods 3/4 NHT Exam 2019

 $\underline{https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2019/NHT/2019MM1-nht-w.pdf\#page=3}$

a. Let
$$y = \frac{2e^{2x}-1}{e^x}$$
.

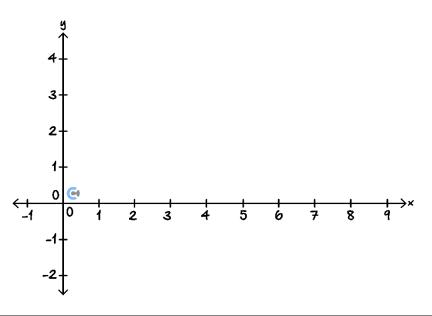
Find $\frac{dy}{dx}$. (2 marks)

b.	Let $f(x)$	$= x^2$	cos(3x)
----	------------	---------	---------

Find $f'\left(\frac{\pi}{3}\right)$. (2 marks)

Question 89 (8 marks)

Inspired from VCAA Mathematical Methods ³/₄ NHT Exam 2019 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2019/NHT/2019MM1-nht-w.pdf#page=6


A function g has rule $g(x) = \log_e(x-3) + 2$.

a. State the maximal domain of g and the range of g over its maximal domain. (2 marks)

b.

i. Find the equation of the tangent to the graph of g at (4, 2). (2 marks)

ii. On the axes on page 7, sketch the graph of the function g, labelling any asymptote with its equation. Also draw the tangent to the graph of g at (4, 2). (4 marks)

Question 90 (4 marks)

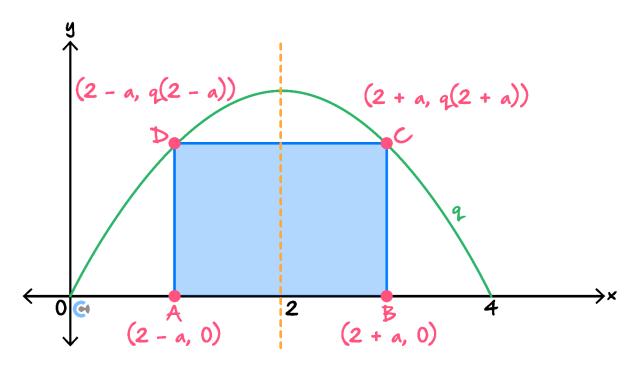
Inspired from VCAA Mathematical Methods ¾ NHT Exam 2021

 $\underline{https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2021/NHT/2021MM1-nht-w.pdf\#page=4$

a. Find the derivative of $\frac{e^{2x}}{2x+1}$. (2 marks)

Evaluate $f'\left(\frac{\pi}{4}\right)$. (2 marks)

b. Let $f: R \to R, f(x) = \sin^4(2x)$.



Question 91 (5 marks)

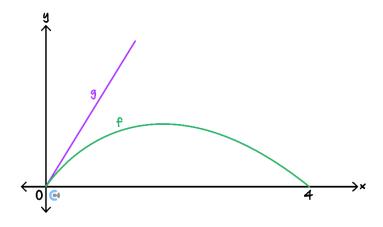
Inspired from VCAA Mathematical Methods ¾ NHT Exam 2021 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2021/NHT/2021MM1-nht-w.pdf#page=10

Let $q: [0,4] \to R, q(x) = x(4-x)$.

A rectangle *ABCD* is inscribed between the graph of the function q and the x-axis. Its vertices are a units, where a > 0, from the axis of symmetry, x = 2, as shown below.

a.	Find the value of a when the rectangle is a square. Give your answer in the form $b + \sqrt{c}$, where b is an integer
	and c is a positive integer. (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

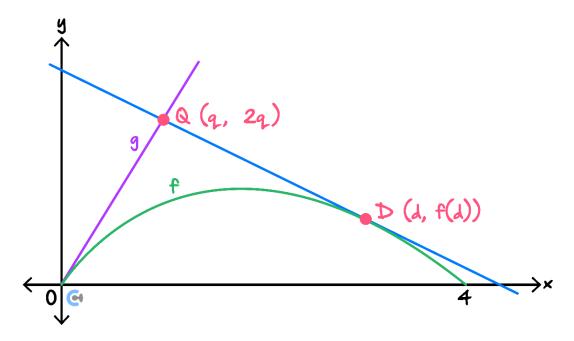

b. Find the maximum area of the rectangle <i>ABCD</i> . Give your answer in the form $\frac{m\sqrt{n}}{p}$, where m, n and p are		
	positive integers. (3 marks)	
	·	
So	pace for Personal Notes	

Question 92 (7 marks)

Inspired from VCAA Mathematical Methods ¾ NHT Exam 2021 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2021/NHT/2021MM1-nht-w.pdf#page=12

The graph of $f: [0,4] \to R$, $f(x) = x(2-\sqrt{x})$ and part of the graph of $g: [0,\infty) \to R$, g(x) = 2x are shown below.

a. Find f'(x). (1 mark)


b. The tangent to the graph of f at the point B(b, f(b)) is perpendicular to the graph of g.

Find the coordinates of *B*. (3 marks)

c. Show that the graphs of f and g intersect only at the origin. (1 mark)

d. Let Q(q, 2q), where q > 0, be a point on the graph of g.

The tangent to the graph of f at the point D(d, f(d)) passes through Q, as shown below.

It can be shown that d = 3q.

Determine the values of q for which the tangent to the graph of f passes through Q and has an x-axis intercept greater than 4. (2 marks)

Ques	Question 93 (3 marks)		
Inspired from VCAA Mathematical Methods ³ / ₄ NHT Exam 2021 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2021/NHT/2021MM1-nht-w.pdf#page=14			
A diff	Generatiable function $f: R \to R$ has the following two properties:		
	f'(x) = f(x)(4 - f(x)). The range of f is (0,4).		
a. F	f'(0) if $f(0) = 1$. (1 mark)		
_			
_			
b. D	etermine, with appropriate justification, the number of stationary points of the graph of f . (1 mark)		
_			
_			
_			
a C.	tota the manage of f' (1 month)		
c. Si	tate the range of f' . (1 mark)		
_			
_			
_			
_			
1			

Question 94 (3 marks)

Inspired from VCAA Mathematical Methods ¾ NHT Exam 2022

 $\underline{https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2022/NHT/2022mm1-nht-w.pdf\#page=3}$

a. If $y = \sin(x^2 + 1)$, find $\frac{dy}{dx}$. (1 mark)

b. If $f(x) = x^2 \log_e(x)$, find f'(e). (2 marks)

Question 95 (4 marks)

Inspired from VCAA Mathematical Methods ³/₄ NHT Exam 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/NHT/2024MM1-nht-w.pdf#page=2

a. Let $y = xe^{x^2+1}$.

Find and factorise $\frac{dy}{dx}$. (2 marks)

b. Let $f(x) = \frac{x^3}{\log_e(x)}$.

Evaluate f'(x) at x = e. (2 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After-school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next.). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

