CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials Exam Skills [1.8]

Workbook

Outline:

Recap Warm-Up Test Polynomial Exam Skills	Pg 02-14 Pg 15-19 Pg 20-31		
 Apply Transformations to Restrict 		Exam 1	Pg 32-34
Number of Positive/Negative <i>x</i> -intercept(s) Apply Discriminant to Solve Number of Solutions Questions.		Tech-Active Exam Skills	Pg 35-39
Number of Solutions		Exam 2	Pg 40-43
Apply Shape/Graph to Solve Numb Solutions Questions.	per of		
 Calculus and Odd and Even Functi Properties 	on		
Identify Possible Rule(s) From a G	raph		

Learning Objectives:

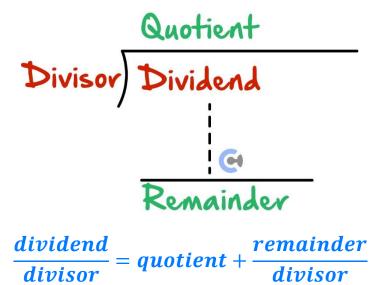
MM34 [1.8.1] - Apply transformations to restrict the number of positive/negative x-intercept(s).
 MM34 [1.8.2] - Apply discriminant to solve number of solutions questions.
 MM34 [1.8.3] - Apply shape/graph to solve number of solutions questions.
 MM34 [1.8.4] - Apply odd and even functions (MHS Investigation 2023 S).
 MM34 [1.8.5] - Identify possible rule(s) from a graph.

Section A: Recap

If you were here last week skip to Section B Warm-Up Test.

Roots of Polynomial Functions

Roots = x-intercept


Question 1

Find the roots of the following polynomials:

$$(x-2)^2(x+4)^4$$

Polynomial Long Division

TIPS

- Always focus on the highest degree term first.
- Always remember to fill any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Question 2

Simplify the following using polynomial long division:

$$\frac{x^4 - 5x^3 + 5x^2 - 10x + 6}{x^2 + 2}$$

Remainder Theorem

- Definition:
 - Find the remainder of the long division without the need for long division.

When P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$

- Steps:
 - **1.** Find x-values which makes the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Question 3

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where $f(x) = x^3 - x^2 + 4x - 2$ and g(x) = 3x + 6.

Definition

Factor Theorem

 \blacktriangleright For every x-intercept, there is a factor.

If $P(\alpha) = 0$, then $(x - \alpha)$ is a factor of P(x)

Question 4

If $(x - \alpha)$ is a factor of $4x^5 - 11\alpha x^3 + x^4$, what must be the value of α , where $\alpha \neq 0$?

Factorising Cubic Polynomials

- Steps:
 - 1. Find a single root by trial and error.
 - (Factor theorem: Substitute into the function and see if we get zero.)
 - 2. Use long division to find the quadratic factor.
 - **3.** Factorise the remaining factor.

Question 5

Find all the roots of $f(x) = x^3 + 13x^2 + 20x - 100$.

Rational Root Theorem

Rational Root Theorem narrows down the possible roots.

$$potential\ root = \pm \frac{factors\ of\ constant\ term\ a_0}{factors\ of\ leading\ coefficient\ a_n}$$

If the roots are rational numbers, the roots can only be $\pm \frac{factors\ of\ constant\ term\ a_0}{factors\ of\ leading\ coefficient\ a_n}$.

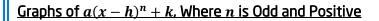
Question 6

Find all the roots of $f(x) = 2x^3 - 3x^2 - 23x + 12$.

Definition

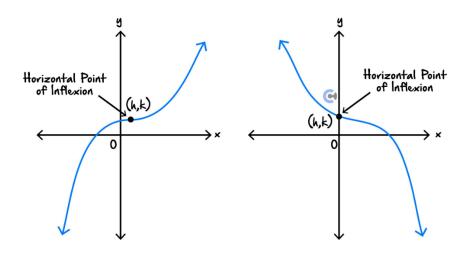
Sum and Difference of Cubes

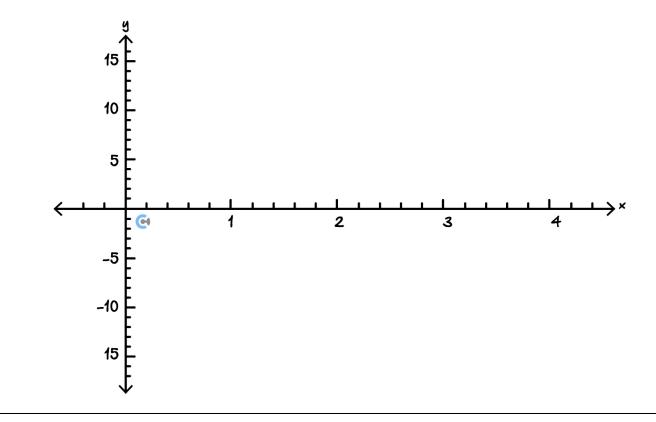
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$


$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Question 7

Factorise the following polynomials as much as possible:

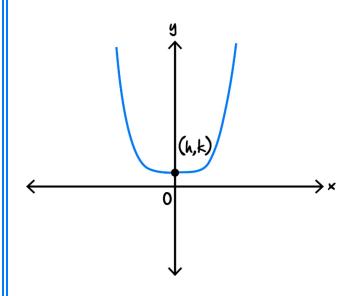

$$27x^3 + 216$$

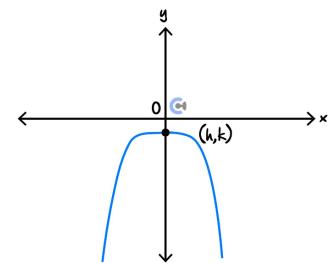

All graphs look like a "cubic".

- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- \blacktriangleright *n* cannot be 1 for this shape to occur!

Question 8

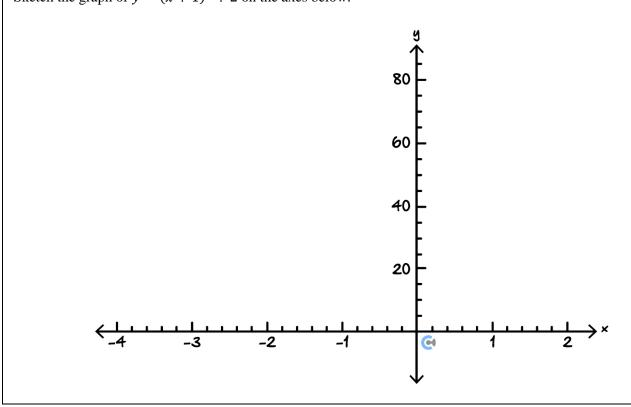
Sketch the graph of $y = (x - 2)^3 - 1$ on the axes below.





Graphs of $a(x - h)^n + k$, where n is Even and Positive

All graphs look like a "quadratic".



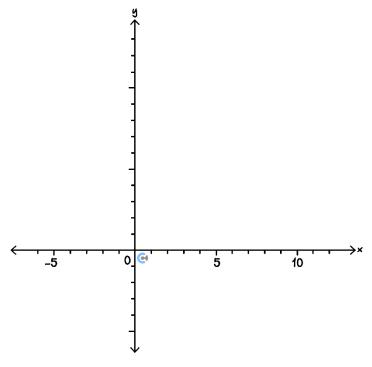
The point (h, k) gives us the turning point.

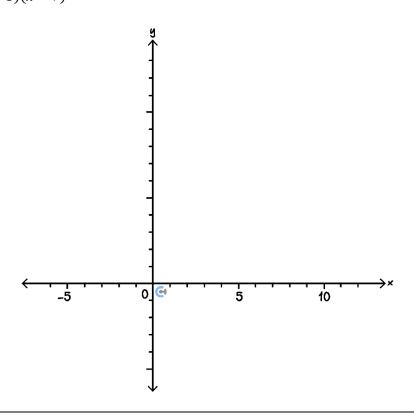
Question 9

Sketch the graph of $y = (x + 1)^4 + 2$ on the axes below.

Graphs of Factorised Polynomials

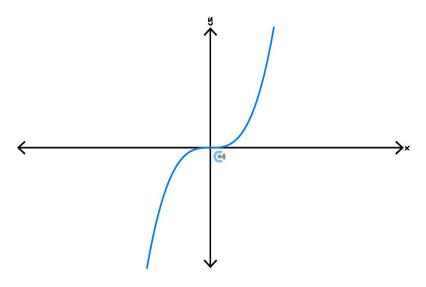
- Steps:
 - **1.** Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:
 - Non-repeated: Only x-intercept.
 - > Even Repeated: x-intercept and a turning point.
 - Odd Repeated: *x*-intercept and a stationary point of inflection.


Space for Personal Notes	


Question 10

Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

a.
$$y = (1 + x)(6 - x)^2$$


b.
$$y = (x+8)^3(x-3)(x-7)$$

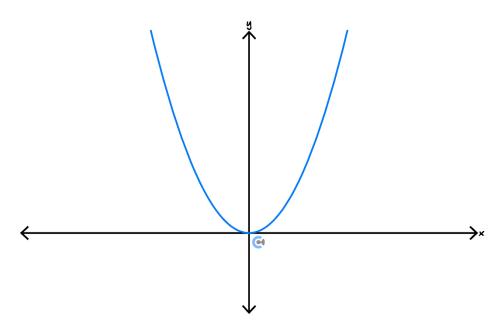
Odd Functions

E.g.: $x^3, x^5, x^7 - x^3$... see the pattern?

$$f(-x) = -f(x)$$

Property: Reflecting around the ______ is the same as reflecting around the ______.

Question 11


Show that the following function is an odd function.

$$h(x) = -x^3 + 5x$$

Even Functions

• E.g.: $x^2, x^4, -x^{10}, x^4 - 4$... see the pattern?

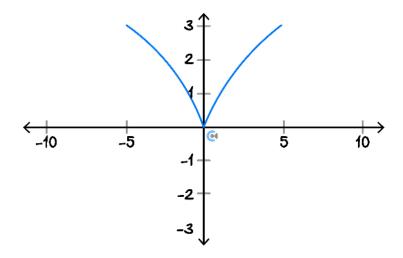
$$f(-x) = f(x)$$

Property: It is symmetrical around the ______.

Question 12

Identify whether the function $f(x) = 2x^2 - 4x$ is an even function, odd function or neither.

Power Functions


$$y=\chi \frac{n}{m}$$

- \rightarrow m: Dictates the number of **tails**.
 - \bigcirc Odd m =Two tails.
 - \bullet Even m = One tail.
- n: Dictates the range.
 - Odd n: Range could be all real.
 - Even n: Range must be non-negative.
- $ightharpoonup \frac{n}{m}(Power)$:
 - Power > 1: Looks like a polynomial function.
 - Power < 1: Looks like a root function.

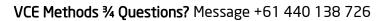
Space for Personal Notes

Question 13 (1 mark)

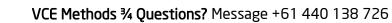
Find a possible rule for the given function out of the 4 options below.

- **A.** $x^{\frac{2}{3}}$
- **B.** $x^{\frac{3}{2}}$
- C. $x^{\frac{1}{5}}$
- $\mathbf{D}, -x^{\frac{2}{7}}$

Space for Personal Notes

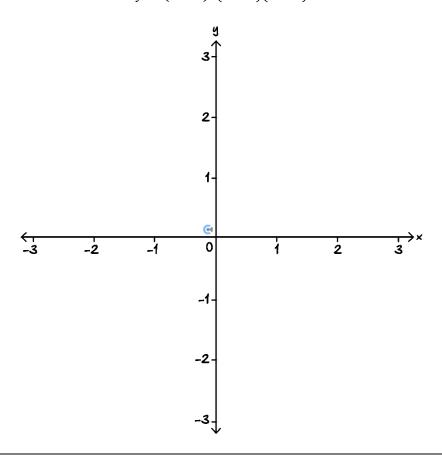

Section B: Warm-Up Test

INSTRUCTION: 15 Marks. 15 Minutes Writing.


Question 14 (2 marks)	
Consider the function $f(x) = x^3 - 8x$. Show that $f(x)$ is an odd function.	

Question 15 (2 marks)
Write $f(x) = \frac{3x^3 + 12x^2 + 4x - 8}{x + 3}$ in the form $f(x) = Q(x) + \frac{B}{x + 3}$, where $Q(x)$ is a quadratic and $B \in R$.

	estion 16 (3 marks)
	sider the function $f(x) = x^3 + ax^2 + bx + 6$. If $x + 2$ is a factor of $f(x)$ and the remainder of $ax + bx + bx + 6$. If $ax + bx + bx + 6$ is a factor of $ax + bx + 6$.
(,,	, it is given by 0, find the values of a tild b.
pa	ace for Personal Notes


Question 17 (3 marks) Solve the following equation for x .	
solve the following equation for x.	$2x^3 - 3x^2 - 23x + 16 = 4$
Space for Personal Notes	

Question 18 (3 marks)

Sketch the graph of the following function on the axes below. Label all axes intercepts with their coordinates.

$$y = (x-1)^2(x-2)(x+1)$$

Space for Personal Notes

Question 19 (2 marks)						
It is known that $f(x)$ is an even function where $f(-2) = 3$ and $f'(-2) = 4$.						
Let $g(x) = f(x) + 3$.						
Find the values of $g(2)$ and $g'(2)$.						

Space for Personal Notes			

Section C: Polynomial Exam Skills

<u>Sub-Section</u>: Apply Transformations to Restrict the Number of Positive/Negative *x*-intercept(s)

<u>Definition</u>: Steps for Transforming a Graph to Have n Positive x-intercepts

- **1.** Find all x-intercepts in terms of n.
- 2. List them out in ascending order.
- **3.** Restrict each x-intercepts to achieve the number of positive/negative solutions we want.

NOTE: If you're looking for negative x-intercepts, count intercepts from the left and translate to the left of the origin.

Space for Personal Notes

Question 20 Walkthrough.

Transform a cubic to have 2 positive *x* intercepts.

Suppose f(x) = (x - 1)(x - 3)(x + 1). Let g(x) = f(x - k). For what values of k does g(x) have two positive x-intercepts?

Question 21

Suppose f(x) = (x-2)(x-5)(x+3). Let g(x) = f(x+k). For what values of k does g(x) have two negative x-intercepts?

Question 22 Extension.

Suppose $f(x) = x^4 - 3x^2 - 4$. Let g(x) = f(x - k).

For what values of k does g(x) have at least two positive x-intercepts?

Sub-Section: Number of Solutions

What if the function is factorisable?

Question 23 Walkthrough.

Consider $f(x) = x^3 - kx^2 + 5x$.

Find the value(s) of k such that f(x) = 0 has 2 solutions.

NOTE: This can only be done if there is no constant term.

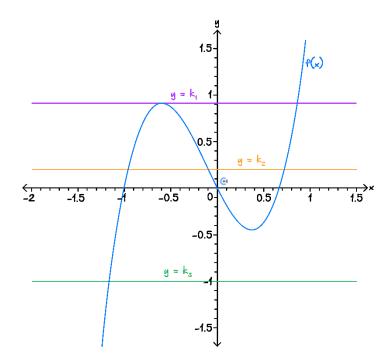
Your Turn!

Question 24

Consider $f(x) = 2x^3 + 2kx^2 + 30x$.

Find the value(s) of k such that f(x) = 0 has 1 solution.

Sub-Section [1.8.3]: Apply Shape/Graph to Solve Number of Solutions Questions.



What if you cannot factorise the function?

Exploration: How to Solve Number of Solutions to f(x) = k

Consider the graphs y = f(x) and y = k. The solution to f(x) = k is just the intersection of these two graphs!

Look at the graph above. Which of these lines has one solution to $f(x) = k_n$?

$$y = k_3$$

What about two solutions?

$$y = k_1$$

Three solutions?

$$y = k_2$$

CONTOUREDUCATION

<u>Definition</u>: Steps for Solving Number of Solutions to f(x) = k

- 1. Find turning points.
- 2. Draw a horizontal line between each pair of turning points.
- **3.** Draw a horizontal line outside all turning points.
- **4.** Draw a horizontal line on each turning point.
- 5. Count the number of intersections on each line.

Question 25 Walkthrough. Tech-Active.

Consider $f(x) = 2x^3 - 15x^2 + 36x + 5$.

Find the value(s) of k such that f(x) + k = 0 has 2 solutions.

NOTE: Always visualise!

Your Turn!

Question 26 Tech-Active.

Consider $f(x) = 2x^3 - 3x^2 - 72x + 10$.

Find the value(s) of k such that f(x) + k = 0 has 1 solution.

In Summary

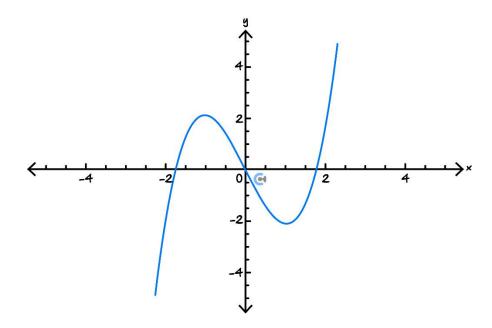
Number of Solutions

If the polynomial can be factorised:

Discriminant!

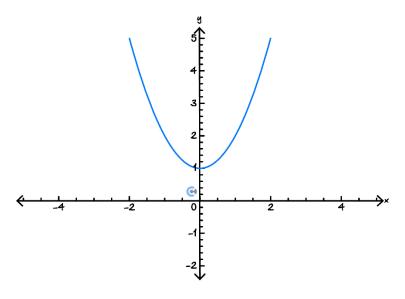
If the polynomial cannot be factorised:

Visualise and use Turning Points!



Sub-Section: Calculus and Odd and Even Function Properties

Implication of Odd and Even Functions (Calculus)


- The properties of odd and even functions can become crucial for later topics.
- Odd Functions

- Gradients at x = a and x = -a are _______.
- Integral Property: $\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = 0$.

Even Functions

- Gradients at x = a and x = -a are ______.
- Integral Property: $\int_{-a}^{a} f(x)dx = 2 \int_{-a}^{0} f(x)dx = 2 \int_{0}^{a} f(x)dx$.

Question 27

For a given odd function it is known that f(2) = 5, f'(2) = -3.

Find the values for f(-2) and f'(-2).

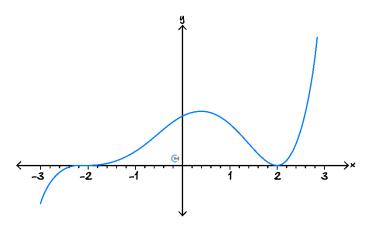
Sub-Section: Identify Possible Rule(s) From a Graph

Definition: Shape of Power Functions

m: Dictates the number of tails.

- y = 1
- \bigcirc Odd m =Two tails.
 - Even m =One tail.
- n: Dictates the range.
 - Odd n: Range could be all real.
 - Even *n*: Range must be non-negative.
- $ightharpoonup \frac{n}{m}(Power)$:
 - Power > 1: Looks like a polynomial function.
 - Power < 1: Looks like a root function.

Definition

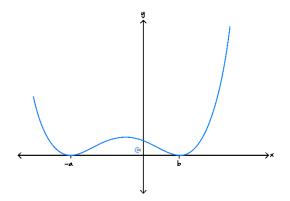

Definition: Finding Possible Rules of a Polynomial

- Steps:
 - 1. Find all the intercepts.
 - **2.** Write out the intercept form e.g. $(x-1)^a(x-4)^b$.
 - **3.** Figure out the possible type of power (even or odd).
 - **4.** Turning point = even, point of inflection = odd, passes straight through = 1.
 - **5.** Figure out the sign of the biggest power.
 - **6.** Find the matching rule through elimination.

Question 28 (1 mark) Walkthrough.

A possible rule for the following graph is:

A.
$$y = (x-2)^2(x+2)^4$$


B.
$$y = (x-2)^2(x+2)^3$$

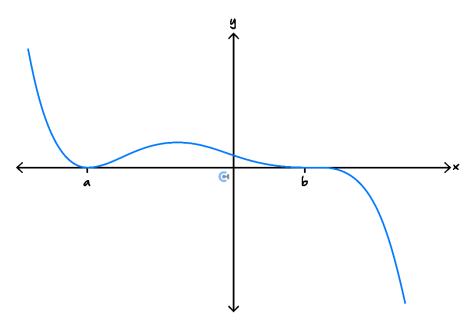
C.
$$y = (x-2)^2(x+2)$$

D.
$$y = (x-2)^3(x+2)$$

Question 29 (1 mark)

A possible rule for the graph below, where $a, b \in R^+$ is:

A.
$$y = (x - a)^2 (x + b)^2$$


B.
$$y = x(x - a)(x - b)$$

C.
$$y = (x + a)^2 (x - b)^2$$

D.
$$y = (x+a)^3(x-b)^2$$

Question 30 (1 mark) Extension.

A possible rule for the graph below, where a < 0 and b > 0 is:

A.
$$y = (x - a)^2 (x + b)^3$$

B.
$$y = -(x-a)^2(x-b)^3$$

C.
$$y = (x + a)^2 (x - b)^3$$

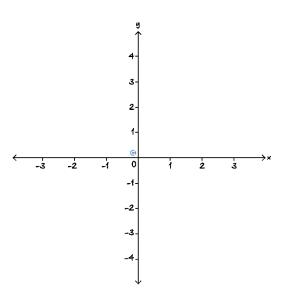
D.
$$y = -(x+a)^2(x-b)^3$$

Space for Personal Notes

Section D: Exam 1 (14 Marks)

Question 31 (3 marks)
Find the values of k such that the equation $(x^2 - kx + 9)(x^2 - 4x + k) = 0$ has exactly one solution.
Question 32 (3 marks)
Consider the function $f(x) = 2x - x^3$. It is known that the graph of f has a tangent line with equation $y = -10x - 16$ when $x = -2$. Without using calculus, find the equation of the tangent to the graph of $g(x) = f(x) + 4$ when $x = 2$.

Question 33 (8 marks)


Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 - 4x^3 + 3x^2 + 4x - 4$.

a. Show that x - 1 is a factor of f(x). (1 mark)

b. Fully factorise f(x). (2 marks)

c. Sketch the graph of y = f(x), labelling all axial intercepts with coordinates. Note that turning points occur at approximately (-0.37, -4.84) and (1.36, 0.35). (3 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

d.	Find the values of k such that $f(x - k) = 0$ has two positive solutions. (2 marks)	
		-
		-
		_
		-
		-
Sp	ace for Personal Notes	
•		

Section E: Tech-Active Exam Skills

CAS CI

Calculator Commands: Turning Point

- ALWAYS sketch the graph to find approximate bounds for where the turning point you want is located.
- To find a local maximum we maximise the function over a specific domain.
- To find a local minimum we minimise the function over a specific domain.
- TI and Casio: Use fmin(expression, variable, lower (optional), upper (optional)) or fmax(expression, variable, lower (optional), upper (optional)).
- ► TI: Menu $\rightarrow 4 \rightarrow \frac{7}{8}$.

Define
$$f(x)=x^3-4\cdot x$$

$$Done f(x)=x^3-4\cdot x$$

$$f(x)=x^3-4\cdot x$$

$$x=\frac{2\cdot \sqrt{3}}{3}$$

$$\sqrt{\frac{2\cdot\sqrt{3}}{3}}$$
 $\frac{-16\cdot\sqrt{3}}{9}$

Casio: Action \rightarrow Calculation $\rightarrow \frac{f_{min}}{f_{max}}$.

$$fmin(x^3-4x, x, 0, 2)$$

$$\left\{ \text{MinValue} = \frac{-16 \cdot \sqrt{3}}{9}, x = \frac{2 \cdot \sqrt{3}}{3} \right\}$$

NOTE: TI only gives the x value for the $\frac{min}{max}$ so we then need to sub it back into our function. Casio gives us both!

CAS CI

Calculator Commands

- Mathematica: Minimize[] and Maximize[] commands.
- Minimize [f[x], x] will minimize f[x] over its whole domain.
- To restrict the domain we must use Minimize[$\{f[x], a \le x \le b\}, x$].

In[34]:= Minimize[{x^3 - 4x, 0 < x < 2}, x]

Out[34]=
$$\left\{-\frac{16}{3\sqrt{3}}, \left\{x \to \frac{2}{\sqrt{3}}\right\}\right\}$$

- > TI UDF: We can use the analyse function.
- Analyse a Function

Overview:

This program will find for a given function:

- Coordinates of endpoints.
- The maximal domain.
- The equations of straight-line asymptotes.
- The rule of the derivative.
- Inflection points and their nature.
- Stationary points and their nature.

There are two analyse programs:

- Analyse which analyses a function over the domain R or the maximal domain.
- Analysed which analyses over a domain with specified start and end points.

Both are found in the methods_func library. You can switch between the two on the calculator page by adding/removing the 'd' to reference the appropriate program.

ONTOUREDUCATION

analysed $\left(\frac{x^4-2\cdot x^3-3\cdot x^2+3\cdot x+1}{-3\cdot x^3-6\cdot x^2-x+1}, x, -5, 5\right)$

- ▶ Start Point: -5 262 77
- ▶ End Point: 5 = -316
- Maximal Domain:

 $x \neq -1.68469$ and

 $x \neq -0.629579$ and

 $x \neq 0.314273$ and

-5≤x≤5

Asymptotes: (4)

x=-1.68469 (Vertical)

x=-0.629579 (Vertical)

x=0.314273 (Vertical)

$$y = \frac{4}{3} - \frac{x}{3}$$
 (Oblique)

x -Intercepts: (4)

[-1.3772 0],[-0.273891 0],

[1 0],[2.65109 0]

- ▶ Vertical Intercept: [0 1]
- Derivative:

$$\frac{-(3 \cdot x^6 + 12 \cdot x^5 - 26 \cdot x^3 - 24 \cdot x^2 - 6 \cdot x - 4)}{(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2}$$

$$(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2$$

▶ Inflection Points: (2)

[-1.11377 1.48672] (Increasing)

[-0.11198 0.604642] (Increasing)

▶ Stationary Points: (2)

[-3.45719 3.17894] (Local min.)

[1.6173 0.124612] (Local max.)

Done

Input:

analyse(< function >, < variable >)

analysed(< function >, < variable >, < lower bound >, < upper bound >)

Other notes:

- It is recommended to use the analysed program when working with trigonometric functions.
- Be careful when using functions with parameters since some parts of the programs may not be able to give a solution. :/
- If at least one of the bounds is "?", the asymptote finder will be disabled and the program will analyse over the maximal domain.

Ouestion	34	Walkthrough.

Find the turning points of $f(x) = x^3 - 3x - 1$. Hence, find the values of k for which the equation f(x) = k has 1, 2, and 3 solutions.

Question 35

Find the turning points of $f(x) = x^3 + 3x^2 - x - 3$. Hence, find the values of k for which the equation f(x) = k has 1, 2, and 3 solutions.

Calculator Commands: Using Sliders/Manipulate on CAS

Mathematica

Manipulate[Plot[function, {x, xmin, xmax}],

{unknown, lowerbound, upperbound}]

• NOTE: The function must be typed out instead of using its saved name.

TI-Nspire

 $\int fI(x) = function with unknown$

-5.00000 5.00000

Casio Classpad

#	1	K		y=	۳	*	₹¥.	Þ
Shee	ti	Chie	et2	Sheet3	S	heet4	Sheet5	
V y	1=	(x	-p)	2 _{+q}			[1 🛕

Question 36 (1 mark) Walkthrough.

Consider the function $f(x) = 2x^3 - 15x^2 + 24x + 4$.

The equation f(x) = k has 1 solution for:

A.
$$1 < k < 4$$

B.
$$-12 < k < 15$$

C.
$$k < -12$$
 or $k > 15$

D.
$$k \ge 15$$

Question 37 (1 mark)

Consider the function $f(x) = 3x^4 - 40x^3 + 186x^2 - 360x + 250$.

The equation f(x) = k has 4 solutions for:

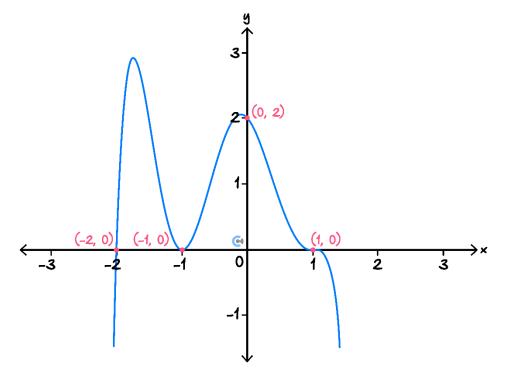
A.
$$-25 < k < 7$$

B.
$$2 < k < 7$$

C.
$$-25 < k < 2$$

D.
$$-25 \le k \le 2$$

Section F: Exam 2 (12 Marks)


Question 38 (1 mark)

Let $p(x) = x^3 - 5ax^2 + 2ax - 5$, where $a \in \mathbb{R}$. When p is divided by x + 2 the remainder is 11. The value of a is:

- **A.** -2
- **B.** -1
- **C.** 1
- **D.** 2

Question 39 (1 mark)

The rule for a function with the graph below could be:

A.
$$y = -(x-1)^2 (x+2)(x+1)^3$$

B.
$$y = (x-1)^3 (x+2)(x+1)^2$$

C.
$$y = -(x-1)^3(x+2)(x+1)^2$$

D.
$$y = (x-1)^2 (x+2)(x+1)^3$$

Question 40 (1 mark)

Let
$$f(x) = x^5 - (k^2 - 5k + 6)x^4 + x^3 - (k^2 - 7k + 10)x^2 - (k^2 - 3)x$$

If $f(x)$ is odd, then k must equal:

- **A.** 2 or 3
- **B.** 5 only
- C. 2 only
- **D.** 2 or 5

Question 41 (1 mark)

Let $g(x) = (x - 1)^2(x - 4)^2 - 10$. There will be exactly four solutions to the equation given by g(x) = k whenever:

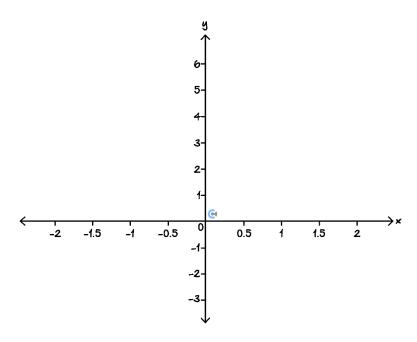
- **A.** -10 < k < 5
- **B.** -10 < k < -5
- C. 5 < k < 10
- **D.** $5 \le k \le 10$

Question 42 (1 mark)

Let $h(x) = x^4 - 5x^2 + 4$. The function h(x + k) will have exactly three negative x-intercepts whenever:

- **A.** $1 \le k \le 2$
- **B.** $1 < k \le 2$
- C. $-2 < k \le 1$
- **D.** $-2 \le k \le 1$

Space for Personal Notes


Question 43 (7 marks)

Consider a quartic of the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$. It is known that f satisfies the following conditions:

- f(0) = 5
- f(1) = -1
- f(2) = 5
- \rightarrow f(x) is even function.
- **a.** Show that $f(x) = 2x^4 8x^2 + 5$. (3 marks)

b. Solve the equation f(x) = 0. (1 mark)

c. Sketch the graph of y = f(x) on the axes below. Label all turning points with coordinates.

d. Find the values of k, where $k \in \mathbb{R}$, for which:

i. f(x) = k has no solutions. (1 mark)

ii. f(x) = k has exactly four solutions. (1 mark)

iii. f(x) = k has exactly two solutions. (1 mark)

Contour Checklist

<u>Learning Objective</u> : [1.8.1] - Apply Transformations to Restrict the Number of Positive/Negative x -intercept(s)			
Key Takeaways			
☐ To solve these questions, figure out how to translate the relevant intercept to the			
<u>Learning Objective</u> : [1.8.2] - Apply Discriminant to Solve Number of Solutions Questions			
Key Takeaways			
\square There are no real solutions for a quadratic when Δ 0.			
\square There is one real solution for a quadratic when Δ 0.			
$lacktriangle$ There are two unique real solutions for a quadratic when Δ 0.			
<u>Learning Objective</u> : [1.8.3] - Apply Shape/Graph to Solve Number of Solutions Questions			
Key Takeaways			
To find the number of solutions for $f(x) = k$, draw a line at = k and count the intersections.			

Learning Objective: [1.8.4] - Apply	Odd and Even	Functions (MHS	Investigation
	2023 S)		

2023 S)				
Key Takeaways				
For an odd function,				
□ For an even function,				
<u>Learning Objective</u> : [1.8.5] - Identify Possible Rule(s) From a Graph				
Key Takeaways				
\square A turning point x -intercept has a(n) power on its factor.				
\square A stationary point of inflection x intercept has a(n) power on its factor.				
\square If the x -intercept passes straight through, the power of the factor is				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

