

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials Exam Skills [1.8]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 28	
Supplementary Questions	Pg 29 – Pg 50	

Section A: Compulsory Questions

Sub-Section [1.8.1]: Apply Transformations to Restrict the Number of Positive/Negative x-Intercept(s)

Question 1								
Co	nsider the following polynomials:							
a.	Given $f(x) = (x - 4)(x + 3)(x - 6)$, determine the values of k such that $f(x + k)$ has no positive x -intercepts.							
	$k \ge 6$							
b.	Given $f(x) = (x-1)(x+2)(x-5)$, determine the values of k such that $f(x-k)$ has exactly one positive x -intercept.							
	,							
	$-5 < k \le -1$							
c.	Given $f(x) = (x-2)(x-7)(x+1)$, determine the values of k such that $f(x-k)$ has exactly two positive x -intercepts.							
	$-2 < k \le 1$							

Consider the following quadratic polynomials:

a. Given $f(x) = x^2 - 4x + 3$, factorise f(x) and determine the values of k such that f(x - k) has exactly one positive x-intercept.

f(x) = (x-3)(x-1).One positive x-intercept for $-3 < k \le -1$

b. Given $f(x) = x^2 + 2x - 3$, factorise f(x) and determine the values of k such that f(x + k) has no positive x-intercepts.

f(x) = (x-1)(x+3).No positive x-intercepts for $k \ge 1$

c. Given $f(x) = x^2 - 5x + 6$, factorise f(x) and determine the values of k such that f(x - k) has exactly one negative x-intercept.

f(x) = (x-3)(x-2). One negative x-intercept for $-3 \le k < -2$

Consider the following cubic polynomials:

a. Given $f(x) = x^3 - 4x^2 + x - 4$, factorise f(x) and determine the values of k such that f(x + k) has exactly one positive x-intercept.

$$f(x) = (x - 4)(x^2 + 1)$$

Exactly one positive *x*-intercept for k < 4

b. Given $f(x) = x^3 - 3x^2 - 4x + 12$, factorise f(x) and determine the values of k such that f(x - k) has one negative x-intercept.

$$f(x) = (x-3)(x+2)(x-2).$$
One positive mintercent for $x = 2$

One negative x-intercept for $-2 \le k < 2$

c. Given $f(x) = x^3 - 6x^2 + 9x$, factorise f(x), and determine the values of k such that f(x - k) has two positive x-intercepts.

 $f(x) = x(x-3)^2.$

Two positive x-intercepts for k > 0

<u>Sub-Section [1.8.2]</u>: Apply Discriminant to Solve Number of Solutions Questions

Question 4

For each of the following quadratic equations, determine the conditions on k for the equation to have the specified number of solutions

a. $x^2 + x + 5k = 0$ has exactly two distinct real solutions.

 $\Delta>0\implies 1-20k>0\implies k<\frac{1}{20}$

b. $x^2 - 4x + 4(k+1) = 0$ has no real solutions.

 $\Delta < 0 \implies 16 - 16 - 16k < 0 \implies k > 0$

c. $kx^2 - 3x + 2k = 0$ has exactly one real solution.

 $\Delta = 9 - 8k^2 = 0 \implies k = \pm \frac{3}{2\sqrt{2}}$

For each of the following quadratic equations, determine the conditions on k for the equation to have the specified number of solutions.

a. $2x^2 + 4x + 2\log_3(k) = 0$ has exactly two distinct real solutions.

$$\Delta = 16 - 16\log_3(k) > 0 \implies \log_3(k) < 1 \implies 0 < k < 3$$

b. $\log_2(5) x^2 + 3x + \log_2(k) = 0$ has exactly one real solution.

$$\Delta = 9 - 4\log_2(5)\log_2(k) = 0 \Rightarrow k = 2^{\frac{9}{4\log_2(5)}}$$

c. $4k^2x^2 - 2kx + 1 = 0$ has no real solutions.

$$\Delta = 4k^2 - 16k^2 < 0 \implies k \in \mathbb{R}$$

For each of the following equations, determine the conditions on k for the equation to have the specified number of solutions.

a. $x^2 + kx + 3 = 0$ has two real solutions.

$$\Delta = k^2 - 12 > 0 \implies k < -2\sqrt{3} \text{ or } k > 2\sqrt{3}$$

b. $2x^2 - 4kx + k^2 + 3 = 0$ has no real solutions.

$$\Delta = 16k^2 - 8(k^2 + 3) < 0 \implies -\sqrt{3} < k < \sqrt{3}$$

c. $kx^3 + 4x^2 + 2kx = 0$ has three real solutions.

 $x(kx^2 + 4x + 2k)$

So, we need
$$kx^2 + 4x + 2k = 0$$
 to have two solutions

$$\Delta = 16 - 8k^2 > 0 \implies -\sqrt{2} < k < \sqrt{2}$$

<u>Sub-Section [1.8.3]</u>: Apply Shape/Graph to Solve Number of Solutions Questions

Question 7

The cubic function $f(x) = x^3 - 6x^2 + 9x + 2$ has turning points at (1,6) and (3,2). Determine the values of k for which the equation f(x) = k has exactly two solutions.

From the shape of the graph k = 2 or k = 6

Question 8

Consider the quadratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which g(x) = 2 has exactly two solutions.

We find the values of k for which $\frac{1}{2}x^2 - kx + 1 = 0$ has two solutions. $\Delta = k^2 - 2 > 0 \implies k < -\sqrt{2}$ or $k > \sqrt{2}$

Orrection	O
Question	ソ

The quartic function $f(x) = x^4 - 4x^3 - 2x^2 + 12x + 2$ has turning points at (-1, -7) and (1, 9) and (3, -7).

Find the values of k for which the equation f(x) = k has exactly two solutions.

From the shape of the graph k > 9 or k = -7

Sub-Section [1.8.4]: Apply Odd and Even Functions

Question 10

D

For an odd function f(x), it is known that f(1) = 2 and f'(1) = 3.

Find the values of f(-1) and f'(-1).

f(-1) = -2 and f'(-1) = 3.

Question 11

An odd function $f(x) = \frac{1}{2}x^3$, has a tangent line of y = 6x - 8 at the point (2,4). Find the equation of the line tangent to f(x) when x = -2.

Line with gradient 6 passing through (-2, -4)

y = 6x + 8

Let f(x) = (x-3)(x-5)(x+1)(x+3). Find the value of k such that f(x+k) is an even function.

Note that f(x+1) = f(1-x), so f(x) is symmetric about the line x=1.

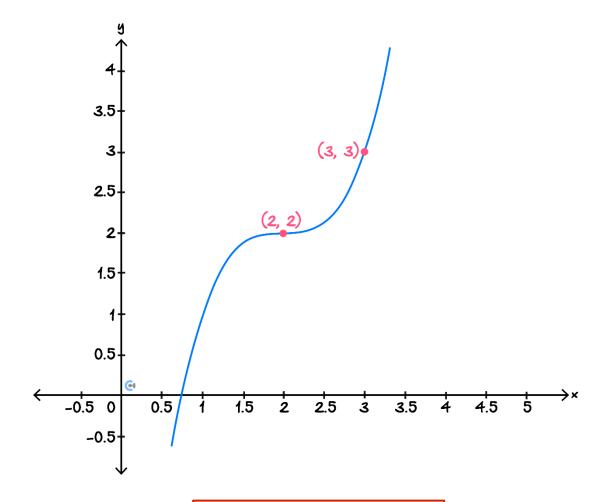
Therefore if f is translated 1 unit to the left it will be symmetric about x=0 and therefore an even function.

k = 1.

Sub-Section [1.8.5]: Identify Possible Rule(s) From a Graph

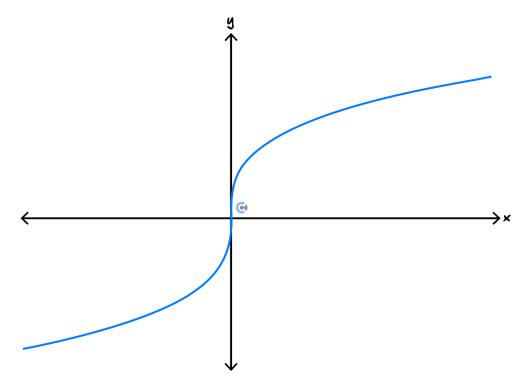
Question 13

Part of the graph of y = f(x) is sketched below. The point (2,2) is a stationary point of inflection. Determine the rule for f(x).



(h,k) = (2,2)So, rule of $f(x) = a(x-2)^3 + 2$ (1) Sub x = 3 and y = 3 into (1) $3 = a(3-2)^3 + 2$ 1 = aHence, $f(x) = (x-2)^2 + 2$

Part of the graph of $y = x^{\frac{m}{n}}$, where m and n are positive integers, is shown below.



a. Is it true that m > n?

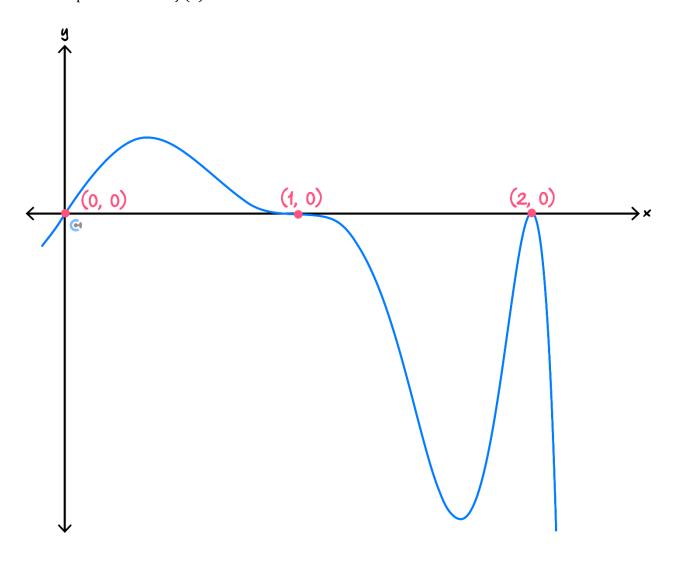
No. n > m

b. Determine whether m and n are odd or even.

Both are odd.

Let f(x) be an odd function. Part of the graph of y = f(x) is shown below.

Determine a possible rule for f(x).



Must have the factors $x(x-1)^3(x-2)^2$, then we use the shape and fact that f(x) is odd to conclude that a possible rule is

$$f(x) = -x(x-1)^3(x-2)^2(x+1)^3(x+2)^2$$

Sub-Section: Exam 1 Questions

Question 16

Let $f: [-1,3] \to \mathbb{R}$, $f(x) = x^3 - 3x^2 + 4$.

a. Show that x - 2 is a factor of f(x).

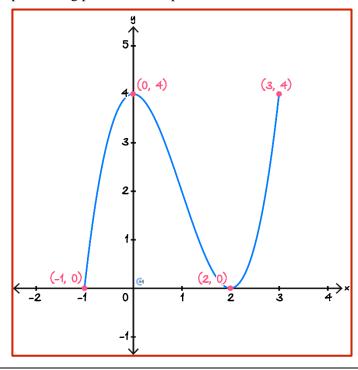
$$f(2) = 8 - 3 \times 4 + 4 = 0$$

Therefore $x - 2$ is a factor.

b. Fully factorise f(x).

$$f(x) = (x-2)^2(x+1)$$

c. It is known that the graph of y = f(x) has a turning point on its y-intercept. Sketch the graph of y = f(x), labelling all axes intercepts, turning points and end points.



d. Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^3 - 3x^2 + 4$.

Find the values of k such that g(x - k) = 0 has two positive solutions.

If the graph is translated by more than 1 unit to the right, therefore k > 1.

Question 17

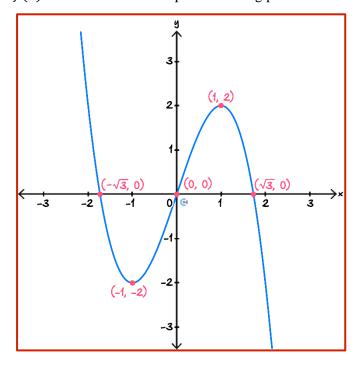
Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x - x^3$.

It is known that the graph of y = f(x) has a turning point when x = 1.

a. Show that f is an odd function.

$$f(-x) = 3(-x) - (-x)^3 = -3x + x^3 = -(3x - x^3) = -f(x).$$

b. Sketch the graph of y = f(x). Label all axes intercepts and turning points with coordinates.



Axes intercepts: $(-\sqrt{3},0),(0,0),(\sqrt{3},0)$ Turning points: (-1,-2) and (1,2)

- **c.** Consider the function $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 3x x^3 + k$, where k is a real constant.
 - i. Find the values of k for which g(x) has exactly two x-axis intercepts.

 $k = \pm 2$

ii. Find the values of k for which g(x) = 1 has exactly one solution.

k < -1 or k > 3

Consider the function $f(x) = x^3 - ax^2 + bx + 8$, where a and b are integers.

It is known that x - 2 is a factor of f(x) and that f(x) has a remainder of -24 when divided by x + 2.

Find the values of a and b.

We know that g(2) = 0 and g(-2) = -24. This yields the equations

$$-4a + 2b + 16 = 0$$

 $-4a - 2b = -24$

adding the two equations

$$\implies -8a + 16 = -24$$

$$a = 5$$

$$b = 2$$

Question 19

Consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^3 + ax^2$ and $g: \mathbb{R} \to \mathbb{R}$, g(x) = ax where a is a positive real constant.

a. Find the coordinates of the x-intercepts of the graph of f in terms of a, where appropriate. (1 mark)

(0,0) and (a,0)

b. Find the values of a for which the graphs of f and g have only one point of intersection.

Intersections occur when f(x) = g(x)

$$-x^3 + ax^2 = ax$$

$$x(x^2 - ax + a) = 0$$

There is always an intersection at (0,0).

For this to be the only intersection we require that $x^2 - ax + a$ has no real solutions. Consider the determinant

$$\Delta = a^2 - 4a < 0 \implies 0 < a < 4.$$

One point of intersection if 0 < a < 4.

The graphs of f and g have three points of intersection when a > 4. Let the x-coordinates of these three points of intersection be r, s and t where r < s < t.

c. Find the values of r, s and t, in terms of a, where appropriate.

We know that r = 0, now use the quadratic formula to solve

$$x^2 - ax + a = 0$$

$$x = \frac{a \pm \sqrt{a(a-4)}}{2}$$

so we have

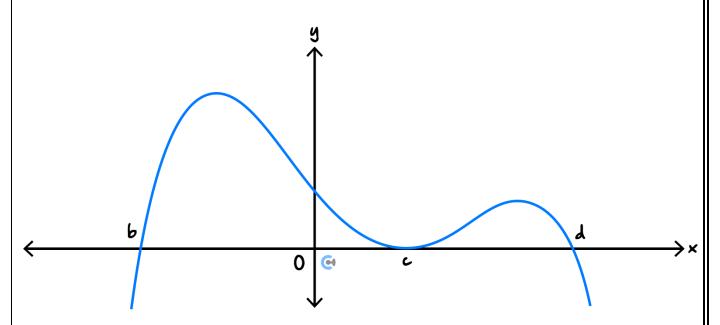
$$r = 0$$
, $s = \frac{a - \sqrt{a(a-4)}}{2}$ and $t = \frac{a + \sqrt{a(a-4)}}{2}$

Let $p(x) = x^3 - 3ax^2 + 2x - 2$, where $a \in \mathbb{R}$. When p is divided by x + 2 the remainder is 10.

The value of *a* is:

- A. -2
- **B.** -1
- **C.** 1
- **D.** 2

Question 21



The rule for a function with the graph above could be:

A.
$$y = -2(x+b)(x-c)^2(x-d)$$

B.
$$y = 2(x+b)(x-c)^2(x-d)$$

C.
$$y = -2(x-b)(x-c)^2(x-d)$$

D.
$$y = 2(x - b)(x - c)(x - d)$$

A graph with rule $f(x) = x^3 - 3x^2 + c$, where c is a real number, has three distinct x-intercepts.

The set of all possible values of c is:

- **A.** [0,4]
- **B.** {0,4}
- (0,4)
- **D.** $(-\infty, 4)$

Question 23

The equation $x^3 - 3x^2 - 9x + c = 0$ has only one solution for x when:

- **A.** -5 < c < 27
- **B.** $c \le -5$
- C. c < -5 or c > 27.
- **D.** $c \le -5$ or $c \ge 27$.

Question 24

A set of three numbers that could be the solutions of $x^3 + bx^2 - 22x + 40 = 0$, where $b \in \mathbb{R}$, is:

- **A.** $\{-1,4,5\}$
- **B.** $\{-2,2,4\}$
- C. $\{-5, -4, 2\}$
- **D.** $\{-5,2,4\}$

Consider the quartic $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 - 4x^3 - 12x^2$.

a. Find the coordinates of the point M at which the minimum value of the function f occurs.

(2, -32)

b. State the values of $b \in \mathbb{R}$ for which the graph of y = f(x) + b has no x-intercepts.

b > 32

A tangent line l is drawn to the graph of f when $x = \frac{1}{2}$ and has the equation $l(x) = -\frac{27}{2}x + \frac{55}{16}$.

c. Find the coordinates of all points where the line l intersects the graph of f.

 $\left(\frac{1}{2}, -\frac{53}{16}\right), \quad \left(\frac{1}{6}\left(1 - \sqrt{166}\right), \frac{1}{16}\left(36\sqrt{166} + 19\right)\right),$ $\left(\frac{1}{6}\left(\sqrt{166} + 1\right), \frac{1}{16}\left(19 - 36\sqrt{166}\right)\right)$

Let $p: \mathbb{R} \to \mathbb{R}$, $p(x) = 3x^4 - 4x^3 - 12x^2 + 2a$, $a \in \mathbb{R}$.

- **d.** Find the values of a for which:
 - i. p(x) = 0 has three solutions.

f(x) has a local minimum at (-1, -5). Note p(x) = f(x) + 2a. p(x) = 0 has three solutions when a = 0 or $a = \frac{5}{2}$

ii. p(x) = 0 has two solutions.

a < 0 or $\frac{5}{2} < a < 16$

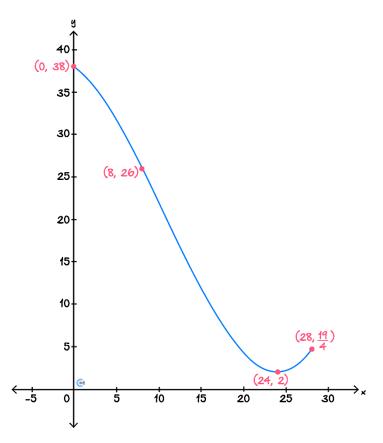
e. Find the value of k for which the function $g(x) = 3x^4 - (4 - k^2)x^3 - (12 + k)x^2 + (24 - 12k)x + 3k$ is an even function.

We just require that $4 - k^2 = 0$ and $24 - 12k = 0 \implies k = 2$

James is designing a waterslide that launches you into the water. The waterslide's cross-section is modelled by a function:

$$f:[0,28] \to \mathbb{R}, f(x) = ax^3 + bx^2 + cx + d.$$

The graph of f is shown below.



a. Show that $a = \frac{1}{256}$, $b = -\frac{1}{8}$, $c = -\frac{3}{4}$, d = 38.

Solve the following system of equations: f(0) = d = 38 f(8) = 512a + 64b + 8c + d = 26 f(24) = 13824a + 576b + 24c + d = 2 $f(28) = 21952a + 784b + 28c + d = \frac{19}{4}$ this yields

$$a = \frac{1}{256}, b = -\frac{1}{8}, c = -\frac{3}{4}, d = 38$$

b. f(x) can be written as f(x) = g(x)(x - 8) + r where r is an integer.

Find g(x) and r.

$$r = 26$$
 and $g(x) = \frac{x^2}{256} - \frac{3x}{32} - \frac{3}{2}$

c. The slide is supported by a support beam with equation s(x) = 38 - ax where a > 0.

Find the values of a for which:

i. f(x) = s(x) has three solutions.

We solve f(x) = s(x) and get solutions

$$x = 0$$
, $x = 16 - 8\sqrt{7 - 4a}$, $x = 16 + 8\sqrt{7 - 4a}$

The solutions must be >0 because of the restriction on f's domain. So three solutions if $\frac{3}{4} < a < \frac{7}{4}$

ii. f(x) = s(x) has one solution.

 $a > \frac{7}{4}$

Let $h: \mathbb{R} \to \mathbb{R}$, h(x) = f(x).

d. Describe a sequence of translations that map the graph of h(x) onto the graph of an odd function.

Consider a translation a units right and b units up. The image of h under this transformation is

	x^3	$\sqrt{3a}$	1	2	$\sqrt{3a^2}$	a	3\		a^3	a^2	3a		00
$h(x-a) + b = \frac{x^3}{256} + \frac$	$-{256}$	$\bar{8}$) x - + ($\sqrt{256}$	$+{4}$	$\frac{1}{4}$	<i>x</i> –	256	8	$\overline{4}$	+ b + 3	38	

We get an odd function if we set the coefficients of the constant and x^2 term equal to

$$-\frac{a^3}{256} - \frac{a^2}{8} + \frac{3a}{4} + b + 38 = 0$$
$$-\frac{3a}{256} - \frac{1}{8} = 0$$

this yields $a=-\frac{32}{3}$ and $b=-\frac{554}{27}$. Therefore a sequence of translations to make h(x) an odd function is

- A translation $\frac{32}{3}$ units left
- A translation $\frac{554}{27}$ units down.

Section B: Supplementary Questions

<u>Sub-Section [1.8.1]:</u> Apply Transformations to Restrict the Number of Positive/Negative *x*-Intercept(s)

Question 27

Let $f(x) = (x-1)(x+4)(x-2)^2$. Find the values of k such that f(x+k) has no positive x-intercepts.

We want $2 - k \le 0$, so $k \ge 2$.

Question 28

Let $f(x) = x^3 - 2x^2 - 5x + 6$. Find the values of k such that f(x + k) has exactly one negative x-intercept.

Note that f(x) = (x - 1)(x + 3)(x + 2). For exactly one negative *x*-intercept, we need -2 - k < 0 and $1 - k \ge 0$. Hence, $-2 < k \le 1$.

Ouestion 29

Let $f(x) = 2x^2 - 15x + 14$ and $g(x) = x^2 - 10x + 8$. Find the values of k such that f(x + k) and g(x + k) have exactly two intersections with negative x-coordinates.

Note that f(x) = g(x) is equivalent to $f(x) - g(x) = x^2 - 5x + 6 = (x - 2)(x - 3) = 0$.

Therefore, f(x + k) = g(x + k) will have exactly two intersections with negative x-coordinates for 3 - k < 0, therefore k > 3.

Let $f(x) = \frac{1}{2}x + 3$ and $g(x) = 2x^2 - 4x - 22$. Find the values of k such that f(g(x + k)) has exactly one negative x-intercept.

Note that $f(g(x)) = x^2 - 2x - 8 = (x - 4)(x + 2)$. Therefore, f(g(x + k)) will have exactly one negative x-intercepts for $-2 < k \le 4$.

<u>Sub-Section [1.8.2]</u>: Apply Discriminant to Solve Number of Solutions Questions

Question 31

Find the values of k such that the equation $x^2 - 2^k x + 4$ has no solutions.

$$(-2^k)^2 - 4 \cdot 1 \cdot 4 < 0 \implies 2^{2k} < 2^4 \implies 2k < 4 \implies k < 2.$$

Question 32

Find the values of k such that the equation $x^2 - 2kx + 5k$ has exactly two solutions.

$$(-2k)^2 - 4 \cdot 5k > 0 \implies 4k^2 - 20k > 0 \implies k^2 - 5k > 0 \implies k < 0 \text{ or } k > 5.$$

Find the values of k such that the equation $(x^2 - kx + 4)(x^2 - 2\sqrt{3}x + k) = 0$ has exactly three solutions.

Either $x^2 - kx + 4$ gives two solutions (which requires k < -4 or k > 4) and $x^2 - 2\sqrt{3}x + k$ gives one solution (so that k = 3), or $x^2 - kx + 4$ gives one solution (so that $k = \pm 4$) and $x^2 - 2\sqrt{3}x + k$ gives two solutions (so that k < 3). Therefore, k = -4 is the only acceptable value.

Question 34

Let $f(x) = x^2 - 4x + 3$ and $g(x) = x^2 - 6x + k$. Find the values of k such that f(g(x)) has exactly four solutions.

The equation f(g(x)) = 0 gives $g(x) = x^2 - 6x + k = 1$ or $g(x) = x^2 - 6x + k = 3$.

These two equations in total will result in four solutions if both equations individually have two solutions. The discriminant for each equation is positive whenever $(-6)^2 - 4(k-1) > 0$ and also $(-6)^2 - 4(k-3) > 0$, i. e., k < 10.

<u>Sub-Section [1.8.3]</u>: Apply Shape/Graph to Solve Number of Solutions Questions

Question 35

Suppose $f(x) = x^2 - kx + 3$. Find the value of k > 0 so that f(x) = k has exactly one solution.

We may solve $(-k)^2 - 4 \cdot 1 \cdot 3 = 0$ to find $k = \pm 2\sqrt{3}$. We reject $k = -2\sqrt{3}$ because k > 0 is specified in the question. Hence, $k = 2\sqrt{3}$.

Question 36

It is known that the quartic $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 8.5$ has turning points at (1, -0.5), (2,0.5) and (3, -0.5). Find the values of k such that f(x) = k has exactly two solutions.

By inspection of the graph, $k > \frac{1}{2}$ or $k = -\frac{1}{2}$.

It is known that the quartic $f(x) = x^4 - 4x^3 - 8x^2 + 48x + 3$ has turning points at (-2, -77), (2,51) and (3,48). Find the values of k such that f(x) = k has exactly two solutions.

By inspection of the graph, -77 < k < 48 or k > 51.

Question 38

Let $f(x) = x^4 - 16x^3 + 46x^2 - 48x + 20$ and $g(x) = -x^4 + 2x^2 + 3$. It is known that the quartic $h(x) = 2x^4 - 16x^3 + 44x^2 - 48x + 17$ has turning points at (1, -1), (2,1) and (3, -1). Hence or otherwise, find the value of k such that f(x) = g(x) + k has exactly three solutions.

First note that f(x) = g(x) + k is equivalent to f(x) - g(x) = k, i.e. $2x^4 - 16x^3 + 44x^2 - 48x + 17 = k$. By inspection, we conclude k = 1

Sub-Section [1.8.4]: Apply Odd And Even Functions

Question 39

Show that the function given by $f(x) = x^5 - 2x^2 + 1$ is neither even nor odd.

Observe that f(1) = 0 and f(-1) = -2. Notice that $f(1) \neq f(-1)$ therefore f is not even. Similarly, $f(1) \neq -f(-1)$, so f is not odd either.

Question 40

Let $f(x) = x^4 - (k^2 - 5k + 6)x^3 + k^3x^2 + 10$. Find the value(s) of k so that f(x) is an even function.

Set k so that the coefficients of the odd power terms are zero. Hence $k^2 - 5k + 6 = 0$, i.e. k = 2 or k = 3.

Question 41

The tangent to the graph of $f(x) = x^2 - 4$ at the point x = 2 is given by h(x) = 4x - 8. Denote the tangent to f(x) at x = -2 by k(x). Find the rule for k(x) by applying a reflection to h(x).

Note that f(x) is an even function, so it is symmetric about the y-axis. The tangent at x = -2 may obtained as a reflection of h(x) across the y-axis. Hence, k(x) = 4(-x) - 8 = -4x - 8.

CONTOUREDUCATION

Question 42

The tangent to the graph of $f(x) = x^3 - 3x$ at the point x = 2 is given by h(x) = 9x - 16. Denote the tangent to f(x) at x = -2 by k(x). The rule for k(x) can be obtained from the rule of h(x) via the following sequence of transformations:

- \blacktriangleright A translation of a units in the positive direction of the x-axis.
- A translation of b units in the positive direction of the y-axis.

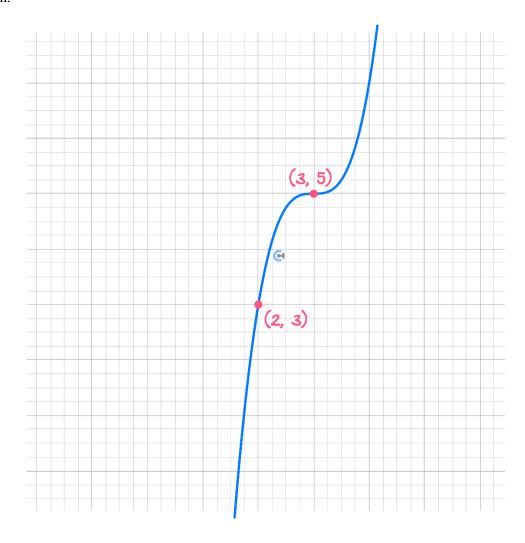
State the values of a and b and hence or otherwise, find the rule of k(x).

We want to map the point (2,2) to (-2,-2), so we need a=-4,b=-4 and k(x)=9(x+4)-16-4=9x+16.

Sub-Section [1.8.5]: Identify Possible Rule(s) From a Graph

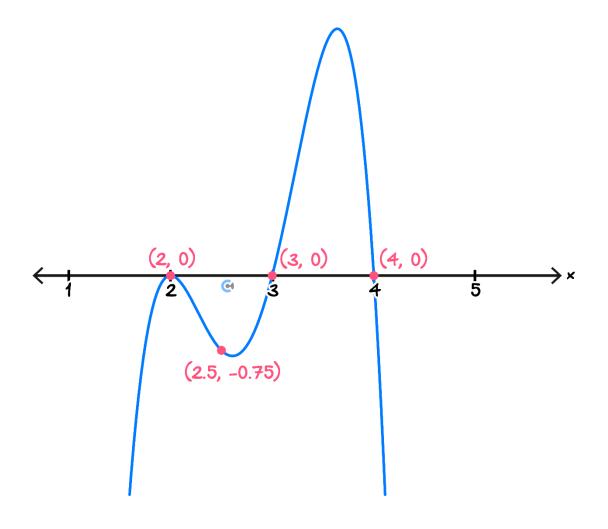
Question 43

Part of the graph of f(x) is plotted below. The point (3,5) is a stationary point of inflection. Find a possible rule for the function.



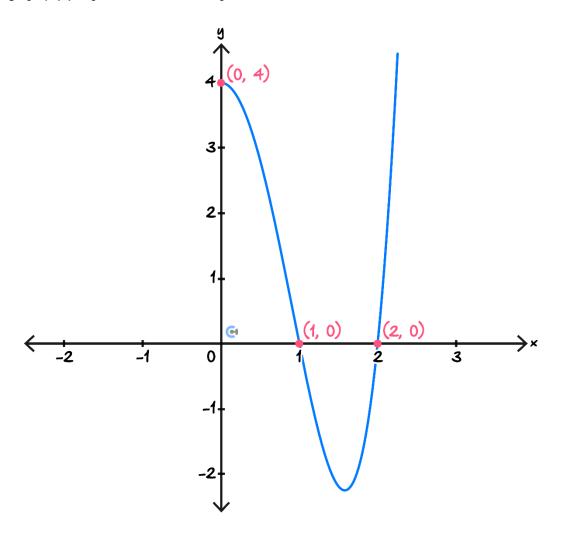
The function could be $f(x) = 2(x - 3)^3 + 5$.

Part of the graph of f(x) is plotted below. Find a possible rule for the function.



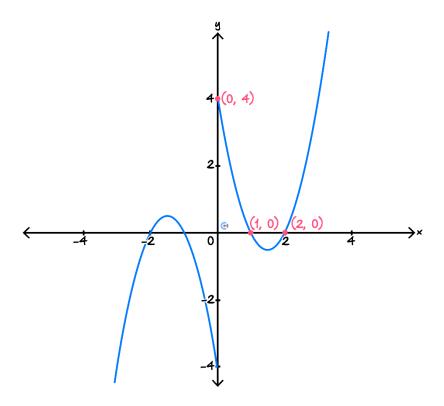
The rule for this function could be $f(x) = -4(x-2)^2(x-3)(x-4)$.

Part of the graph f(x) is plotted below. Find a possible rule for the function if the function is known to be even.



The rule could be given by f(x) = (x-1)(x-2)(x+1)(x+2).

Part of the graph f(x) is plotted below.



Find a possible rule for the function if the function is known to be odd. Write your answer in the form.

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

The function could have the rule

$$f(x) = \begin{cases} 2(x-1)(x-2), & x > 0 \\ -2(-x-1)(-x-2), & x < 0 \end{cases}.$$

Note that the rule for x < 0 can be obtained by applying a reflection in the y-axis, followed by a reflection in the x-axis to the rule for x > 0.

Sub-Section: Exam 1 Questions

Question 47

Find the value(s) of k so that the equation $(x^2 - kx + 16)(x^2 - 2\sqrt{7}x + k) = 0$ has:

a. Exactly one solution.

Either $x^2 - kx + 16$ has no solutions and $x^2 - 2\sqrt{7}x + k$ has one solution, or $x^2 - kx + 16$ has one solution and $x^2 - 2\sqrt{7}x + k$ has no solutions. Hence k = 7 or k = 8.

b. Exactly four solutions.

We need both $x^2 - kx + 16$ and $x^2 - 2\sqrt{7}x + k$ to have two solutions. Therefore we need -8 < k or k > 8 and also k < 7. Hence, k < -8.

Question 48

Suppose that $f(x) = x^2 - 7x + 6$ and $g(x) = x^2 - kx + 1$. Find the values of k so that the equation f(g(x)) has:

a. Exactly two solutions.

The equation f(g(x))=0 gives g(x)=1 or g(x)=6. Therefore, there will be two solutions if

- $x^2 kx + 1 = 1$ gives two solutions and $x^2 kx + 1 = 6$ gives no solutions: This never happens because $x^2 kx + 1 = 6$ will always give two solutions.
 - $x^2 kx + 1 = 1$ gives no solutions and $x^2 kx + 1 = 6$ gives two solutions: Note that this never happens because $x^2 - kx$ always leads to a solution (the discriminant is never negative).
 - $x^2 kx + 1 = 1$ and $x^2 kx + 1 = 6$ gives a single solution each. Note that this never happens because $x^2 kx 5 = 0$ always gives two solutions.

Hence, no such value of k exists.

b. Exactly four solutions.

Similar to above, now both g(x)=1 and g(x)=6 need to give two solutions each. Therefore, $k\neq 0$.

Question 49

Suppose that f(x) is an odd function such that $f(x) = (x-2)^2$ for x > 0.

a. Write down a possible rule for f(x) in the form:

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

$$f(x) = \begin{cases} (x-2)^2, & x > 0 \\ -(-x-2)^2, & x < 0 \end{cases}.$$

We can apply reflections across the x-axis and y-axis to obtain the rule for x < 0. Note that for x < 0, one can simplify the rule further to obtain $-(x + 2)^2$.

b. It is known that the tangent to f(x) at the point x = 3 is given by the rule h(x) = 2x - 5. By applying an appropriate sequence of transformations to h(x), find the rule for the tangent at the point x = -3.

By sketching out the function, we can notice that the tangent at x = -3 can be obtained through translating the tangent at x = 3 so that (3, 1) is mapped to (-3, -1). Therefore, we should translate 6 units to the left and 2 units down. Thus, k(x) = 2(x+6) - 5 - 2 = 2x + 5. Alternatively, one could also apply reflections across both the x- and y-axes.

Consider a quartic of the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$. It is known that the quartic satisfies the following conditions:

- f(1) = 0.
- f(2) = 0.
- f(0) = 4.
- \blacktriangleright Also, f(x) is even.
- **a.** Find the values of a, b, c, d and e.

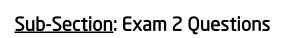
We require b=0 and d=0 since f(x) is even. Furthermore, f(1)=0 tells us that a+c+e=0, f(2)=0 tells us that 16a+4c+e=0 and f(0)=4 tells us that e=4. Therefore, a+c=-4 and 16a+4c=-4. Solving this system of equations, we conclude a=1 and c=-5.

b. Verify that f(x) can be factorised to (x-1)(x+1)(x-2)(x+2).

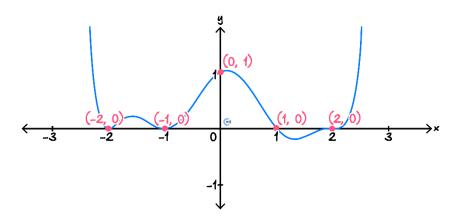
We have found previously $f(x) = x^4 - 5x^2 + 4$. Now, we can factorise $x^4 - 5x^2 + 4 = (x^2 - 1)(x^2 - 4) = (x - 1)(x + 1)(x - 2)(x + 2)$.

c. Find the values of k so that f(x + k) has exactly two positive x-intercepts.

Setting 1 - k > 0 and $-1 - k \le 0$ gives $-1 \le k < 1$.



The minimum degree of the following polynomial is:



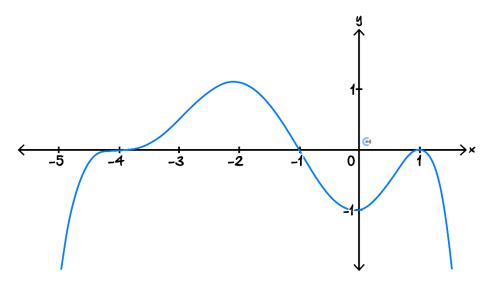
A. 2

B. 4

C. 6

D. 8

A possible rule for the following function given below is:



- **A.** $a(x-1)^3(x+4)^2(x+1)$ where a < 0.
- **B.** $a(x-1)^3(x+4)^2(x+1)^3$ where a > 0.
- C. $a(x-1)^2(x+4)^3(x+1)$ where a < 0.
- **D.** $a(x-1)(x+4)^3(x+1)$ where a > 0.

Question 53

Let $f(x) = x^3 - (k^2 - 5k + 6)x^2 - (k^3 + 5k)x$. If f(x) is odd, then k must equal:

- **A.** 1 or 3.
- **B.** 1 or 2.
- **C.** 2 or 3.
- **D.** 2 or 6.

Let $g(x) = (x - 1)^2(x - 5)^2 - 4$. There will be exactly four solutions to the equation given by g(x) = k whenever:

- **A.** -16 < k < 8
- **B.** -4 < k < 12
- C. -4 < k < 0
- **D.** -4 < k < 16

Question 55

Let $h(x) = x^4 - 10x^2 + 9$. The function h(x + k) will have exactly three negative x-intercepts whenever:

- **A.** $1 < k \le 3$
- **B.** $1 \le k \le 3$
- C. $-3 < k \le 1$
- **D.** $-3 \le k \le 1$

Consider a cubic of the form $f(x) = ax^3 + bx^2 + cx + d$. Suppose that f(x) satisfies the following conditions:

- f(0) = 4.
- f(1) = 0.
- f(-2) = 0.
- f(4) = 0.
- **a.** Calculate the values of a, b, c and d.

Since f(1) = 0, f(-2) = 0, and f(4) = 0 $\Rightarrow f(x) = n(x-1)(x+2)(x-4) \quad (1)$

Now, at x = 0, f(x) = 4

So, sub x = 0 and f(x) = 4 into (1)

$$4 = n(0-1)(0+2)(0-4)$$

$$\Rightarrow n = \frac{1}{2}$$

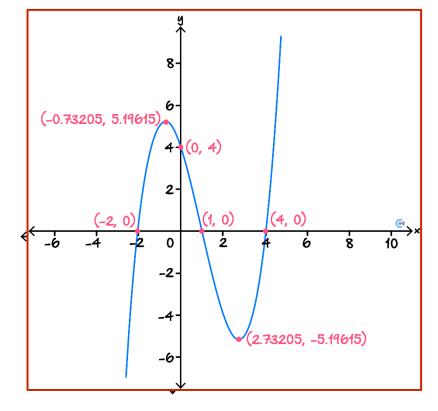
Sub $n = \frac{1}{2}$ into (1) and expand.

$$f(x) = \frac{1}{2}(x-1)(x+2)(x-4)$$

$$f(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 - 3x + 4$$

Thus, $a = \frac{1}{2}$, $b = -\frac{3}{2}$, c = -3, and d = 4

b. Sketch the graph of the function y = f(x), labelling all turning points and intercepts.



- **c.** Find the value(s) of k such that f(x) k = 0 has exactly:
 - i. 2 solutions.

k = 5.19615 or k = -5.19615

ii. 3 solutions.

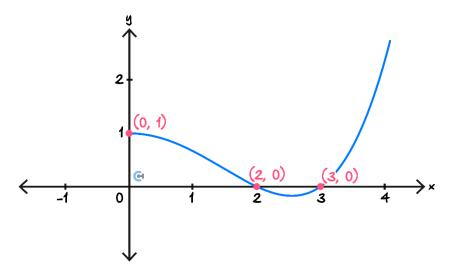
-5.19615 < k < 5.19615

d. Let $g(x) = x^2 - kx + 5$. State the values of k such that f(g(x)) = 0 gives the maximum number of solutions possible.

The equation f(g(x)) = 0 is solved whenever g(x) = 1, or g(x) = -2, or g(x) = 4. These three equations give exactly two solutions each if $k < -2\sqrt{7}$ or $k > 2\sqrt{7}$.

Therefore, the maximum number of solutions is six, and we have six solutions whenever $k < -2\sqrt{7}$ or $k > 2\sqrt{7}$.

The part of the graph of f(x) is shown below. Furthermore, it is known that the function f(x) is a quartic and also even.



a. State the rule for f(x).

$$f(x) = \frac{1}{36}(x-2)(x+2)(x+3)(x-3)$$

b. The tangent to the graph of f(x) at x = 3 is given by $y = \frac{5}{6}x - \frac{5}{2}$.

i. Describe a sequence of transformation(s) that can be applied to h(x) to obtain the tangent to the graph of f(x) at x = -3.

Reflection across the y-axis.

ii. Hence, write down the rule for the tangent to the graph of f(x) at x = -3.

$$y = -\frac{5}{6}x - \frac{5}{2}$$

c.	Stat	State the values of k so that $f(x - k)$ has exactly:				
	i.	3 positive <i>x</i> -intercepts.				
	ii.	$2 < k \le 3$ 3 negative <i>x</i> -intercepts.				
		$-3 \le k < -2$				

Space for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

