

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials Exam Skills [1.8]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 28	
Supplementary Questions	Pg 29 — Pg 50	

Section A: Compulsory Questions

Sub-Section [1.8.1]: Apply Transformations to Restrict the Number of Positive/Negative x-Intercept(s)

Qu	estion 1
Co	nsider the following polynomials:
a.	Given $f(x) = (x - 4)(x + 3)(x - 6)$, determine the values of k such that $f(x + k)$ has no positive x -intercepts.
b.	Given $f(x) = (x-1)(x+2)(x-5)$, determine the values of k such that $f(x-k)$ has exactly one positive x -intercept.
c.	Given $f(x) = (x-2)(x-7)(x+1)$, determine the values of k such that $f(x-k)$ has exactly two positive x -intercepts.

Onestion	4
CHIESHAN	•

Consider the following quadratic polynomials:

a. Given $f(x) = x^2 - 4x + 3$, factorise f(x) and determine the values of k such that f(x - k) has exactly one positive x-intercept.

b. Given $f(x) = x^2 + 2x - 3$, factorise f(x) and determine the values of k such that f(x + k) has no positive x-intercepts.

c. Given $f(x) = x^2 - 5x + 6$, factorise f(x) and determine the values of k such that f(x - k) has exactly one negative x-intercept.

$\mathbf{\alpha}$	4 •	4
Oue	stion	เ 3

Consider the following cubic polynomials:

a. Given $f(x) = x^3 - 4x^2 + x - 4$, factorise f(x) and determine the values of k such that f(x + k) has exactly one positive x-intercept.

b. Given $f(x) = x^3 - 3x^2 - 4x + 12$, factorise f(x) and determine the values of k such that f(x - k) has one negative x-intercept.

VCE Methods ¾ Questions? Message +61 440 138 726

Sub-Section [1.8.2]: Apply Discriminant to Solve Number of Solutions Questions

Question 4

For each of the following quadratic equations, determine the conditions on k for the equation to have the specified

a. $x^2 + x + 5k = 0$ has exactly two distinct real solutions.

b. $x^2 - 4x + 4(k+1) = 0$ has no real solutions.

c. $kx^2 - 3x + 2k = 0$ has exactly one real solution.

CONTOUREDUCATION

Question 5

For each of the following quadratic equations, determine the conditions on k for the equation to have the specified number of solutions.

a. $2x^2 + 4x + 2\log_3(k) = 0$ has exactly two distinct real solutions.

b. $\log_2(5) x^2 + 3x + \log_2(k) = 0$ has exactly one real solution.

c. $4k^2x^2 - 2kx + 1 = 0$ has no real solutions.

For each of the following equations, determine the conditions on k for the equation to have the specified number of solutions.

a. $x^2 + kx + 3 = 0$ has two real solutions.

b. $2x^2 - 4kx + k^2 + 3 = 0$ has no real solutions.

VCE Methods 3/4 Questions? Message +61 440 138 726

c.	$kx^3 + 4x^2 + 2kx = 0$ has three real solutions.

Space	tor	Persona	i Notes

Sub-Section [1.8.3]: Apply Shape/Graph to Solve Number of Solutions Questions

Question 7	
The cubic functor which the e	on $f(x) = x^3 - 6x^2 + 9x + 2$ has turning points at (1,6) and (3,2). Determine the values unation $f(x) = k$ has exactly two solutions.
uestion 8	
	1
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example $g(x)$
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example $g(x)$
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example $g(x)$
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example the values of k for which $g(x) = 2$ has example
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example a substitution of $g(x) = 2$ has example $g(x) = 2$
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example a substitution of $g(x) = 2$ and $g(x) = 2$ has example $g(x) = 2$ has exa
vo solutions.	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example a substitution of $g(x) = 2$ and $g(x) = 2$ has example $g(x) = 2$ and $g(x) = 2$ has example $g($
	adratic function $g(x) = \frac{1}{2}x^2 - kx + 3$. Determine the values of k for which $g(x) = 2$ has example a substitution of $g(x) = 2$ has example $g(x) = 2$

e quartic function $f(x) = x^4 - 4x^3 - 2x^2 + 12x + 2$ has turning points at $(-1, -7)$ and $(1, 9)$ and $(3, -7)$.
d the values of k for which the equation $f(x) = k$ has exactly two solutions.

Space	for	Personal	Notes
Share	101	L El 2011al	IAOFE2

Sub-Section [1.8.4]: Apply Odd and Even Functions

Question 10	Í
For an odd function $f(x)$, it is known that $f(1) = 2$ and $f'(1) = 3$.	
Find the values of $f(-1)$ and $f'(-1)$.	

Question 11

An odd function $f(x) = \frac{1}{2}x^3$, has a tangent line of y = 6x - 8 at the point (2,4). Find the equation of the line tangent to f(x) when x = -2.

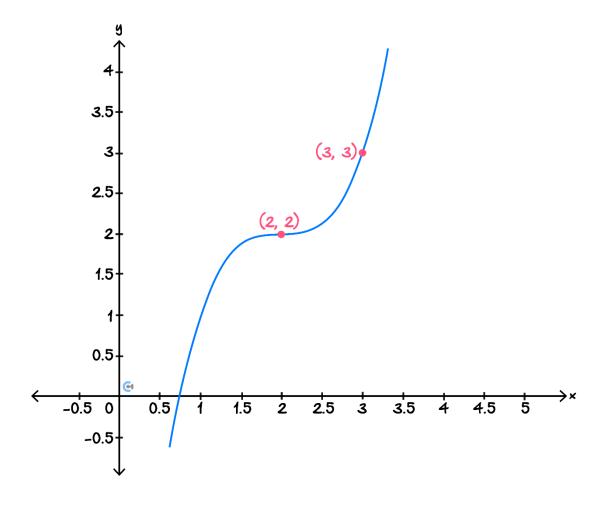
Question 12
Let $f(x) = (x-3)(x-5)(x+1)(x+3)$. Find the value of k such that $f(x+k)$ is an even function.

Space for Personal Notes

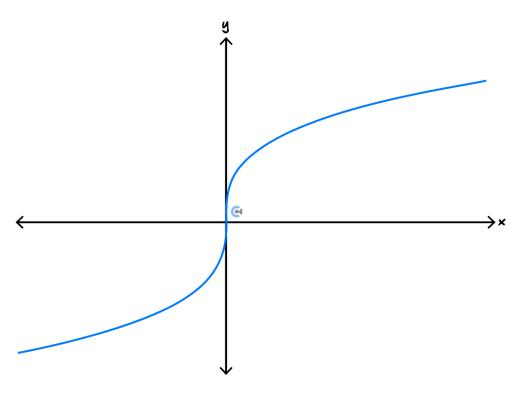
Sub-Section [1.8.5]: Identify Possible Rule(s) From a Graph

Question 13

Part of the graph of y = f(x) is sketched below. The point (2,2) is a stationary point of inflection. Determine the rule for f(x).



Part of the graph of $y = x^{\frac{m}{n}}$, where m and n are positive integers, is shown below.



a. Is it true that m > n?

b. Determine whether m and n are odd or even.

Question 15 Let f(x) be an odd function. Part of the graph of y = f(x) is shown below. Determine a possible rule for f(x). (2, 0)(1, 0)(0, 0)

Sub-Section: Exam 1 Questions

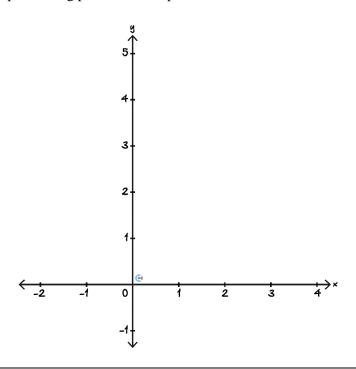
Question 16

Let $f: [-1,3] \to \mathbb{R}$, $f(x) = x^3 - 3x^2 + 4$.

a. Show that x - 2 is a factor of f(x).

b. Fully factorise f(x).

c. It is known that the graph of y = f(x) has a turning point on its y-intercept. Sketch the graph of y = f(x), labelling all axes intercepts, turning points and end points.



d. Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^3 - 3x^2 + 4$.

Find the values of k such that g(x - k) = 0 has two positive solutions.

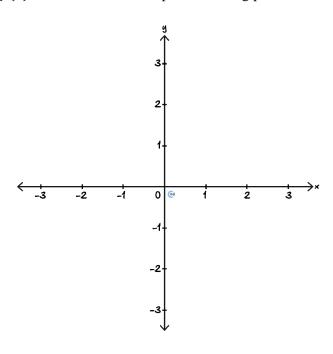
Question 17

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x - x^3$.

It is known that the graph of y = f(x) has a turning point when x = 1.

a. Show that f is an odd function.

b. Sketch the graph of y = f(x). Label all axes intercepts and turning points with coordinates.



c. Consider the function $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 3x - x^3 + k$, where k is a real constant.

i. Find the values of k for which g(x) has exactly two x-axis intercepts.

ii. Find the values of k for which g(x) = 1 has exactly one solution.

Consider the function $f(x) = x^3 - ax^2 + bx + 8$, where a and b are integers.

It is known that x - 2 is a factor of f(x) and that f(x) has a remainder of -24 when divided by x + 2.

Find the values of a and b.

Question 19

Consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^3 + ax^2$ and $g: \mathbb{R} \to \mathbb{R}$, g(x) = ax where a is a positive real constant.

a. Find the coordinates of the x-intercepts of the graph of f in terms of a, where appropriate. (1 mark)

VCE Methods 3/4 Questions? Message +61 440 138 726

		 ,
b.	Find the values of a for which the graphs of f and g have only one point of intersection.	
	e graphs of f and g have three points of intersection when $a > 4$. Let the x -coordinates of these three points exsection be r , s and t where $r < s < t$.	s of
c.	Find the values of r , s and t , in terms of a , where appropriate.	
Spa	ace for Personal Notes	

Sub-Section: Exam 2 Questions

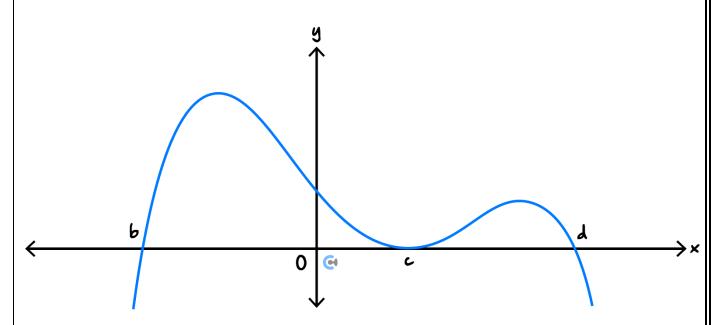
Question 20

Let $p(x) = x^3 - 3ax^2 + 2x - 2$, where $a \in \mathbb{R}$. When p is divided by x + 2 the remainder is 10.

The value of *a* is:

- **A.** -2
- **B.** −1
- **C.** 1
- **D.** 2

Question 21



The rule for a function with the graph above could be:

A.
$$y = -2(x+b)(x-c)^2(x-d)$$

B.
$$y = 2(x+b)(x-c)^2(x-d)$$

C.
$$y = -2(x - b)(x - c)^2(x - d)$$

D.
$$y = 2(x - b)(x - c)(x - d)$$

A graph with rule $f(x) = x^3 - 3x^2 + c$, where c is a real number, has three distinct x-intercepts.

The set of all possible values of c is:

- **A.** [0,4]
- **B.** {0,4}
- **C.** (0,4)
- **D.** $(-\infty, 4)$

Question 23

The equation $x^3 - 3x^2 - 9x + c = 0$ has only one solution for x when:

- **A.** -5 < c < 27
- **B.** $c \le -5$
- **C.** c < -5 or c > 27.
- **D.** $c \le -5$ or $c \ge 27$.

Question 24

A set of three numbers that could be the solutions of $x^3 + bx^2 - 22x + 40 = 0$, where $b \in \mathbb{R}$, is:

- **A.** $\{-1,4,5\}$
- **B.** $\{-2,2,4\}$
- C. $\{-5, -4, 2\}$
- **D.** {−5,2,4}

Consider the quartic $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^4 - 4x^3 - 12x^2$.

a. Find the coordinates of the point M at which the minimum value of the function f occurs.

b. State the values of $b \in \mathbb{R}$ for which the graph of y = f(x) + b has no x-intercepts.

A tangent line l is drawn to the graph of f when $x = \frac{1}{2}$ and has the equation $l(x) = -\frac{27}{2}x + \frac{55}{16}$.

c. Find the coordinates of all points where the line l intersects the graph of f.

Let $p: \mathbb{R} \to \mathbb{R}$, $p(x) = 3x^4 - 4x^3 - 12x^2 + 2a$, $a \in \mathbb{R}$.

d. Find the values of a for which:

i. p(x) = 0 has three solutions.

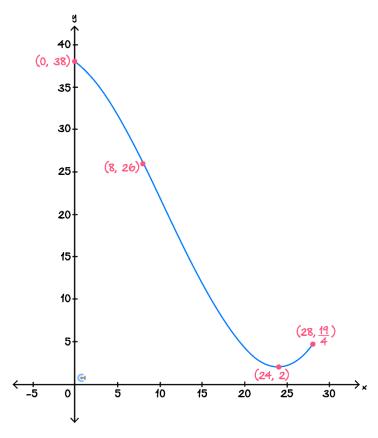
ii. p(x) = 0 has two solutions.

e. Find the value of k for which the function $g(x) = 3x^4 - (4 - k^2)x^3 - (12 + k)x^2 + (24 - 12k)x + 3k$ is an even function.

James is designing a waterslide that launches you into the water. The waterslide's cross-section is modelled by a function:

$$f:[0,28] \to \mathbb{R}, f(x) = ax^3 + bx^2 + cx + d.$$

The graph of f is shown below.



a. Show that $a = \frac{1}{256}$, $b = -\frac{1}{8}$, $c = -\frac{3}{4}$, d = 38.

b. f(x) can be written as f(x) = g(x)(x - 8) + r where r is an integer.

Find g(x) and r.

c. The slide is supported by a support beam with equation s(x) = 38 - ax where a > 0.

Find the values of a for which:

i. f(x) = s(x) has three solutions.

ii. f(x) = s(x) has one solution.

VCE Methods ¾ Questions? Message +61 440 138 726

Let $h: \mathbb{R} \to \mathbb{R}, h(x) = f(x)$.					
d.	Describe a sequence of translations that map the graph of $h(x)$ onto the graph of an odd function.				

Space for	Personal	Notes
-----------	----------	-------

Section B: Supplementary Questions

Sub-Section [1.8.1]: Apply Transformations to Restrict the Number of Positive/Negative x-Intercept(s)

Question 27

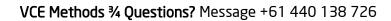
Let $f(x) = (x-1)(x+4)(x-2)^2$. Find the values of k such that f(x+k) has no positive x-intercepts.

Question 28

Let $f(x) = x^3 - 2x^2 - 5x + 6$. Find the values of k such that f(x + k) has exactly one negative x-intercept.

Question 29

Let $f(x) = 2x^2 - 15x + 14$ and $g(x) = x^2 - 10x + 8$. Find the values of k such that f(x + k) and g(x + k) have exactly two intersections with negative x-coordinates.



Question	30
Question	JU

ive <i>x</i> -intercept.			

Space for Personal Note:	5
--------------------------	---

<u>Sub-Section [1.8.2]</u>: Apply Discriminant to Solve Number of Solutions Questions

Question 31	١
Find the values of k such that the equation $x^2 - 2^k x + 4$ has no solutions.	
	<u> </u>
Question 32	<i>))</i>
Find the values of k such that the equation $x^2 - 2kx + 5k$ has exactly two solutions.	
Space for Personal Notes	

Question 33
Find the values of k such that the equation $(x^2 - kx + 4)(x^2 - 2\sqrt{3}x + k) = 0$ has exactly three solutions.

$f(x) = x^2 - 4x + 3$ and $g(x) = x^2 - 6x + k$. Find the values of k such that $f(g(x))$ has exactly four tions.

<u>Sub-Section [1.8.3]</u>: Apply Shape/Graph to Solve Number of Solutions Questions

Question 35
Question 35
Suppose $f(x) = x^2 - kx + 3$. Find the value of $k > 0$ so that $f(x) = k$ has exactly one solution.
Question 36
It is known that the quartic $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 8.5$ has turning points at $(1, -0.5), (2, 0.5)$ and
(3, -0.5). Find the values of k such that $f(x) = k$ has exactly two solutions.

Space for Personal Notes

•	2=
Question	31

·	
t is known that the quartic $f(x) = x^4 - 4x^3 - 8x^2 + 48x + 3$ has turning points at $(-2, -77)$, $(2,51)$ and $(2,51)$ and $(2,51)$ has exactly two solutions.	and

$2x^4$	Let $f(x) = x^4 - 16x^3 + 46x^2 - 48x + 20$ and $g(x) = -x^4 + 2x^2 + 3$. It is known that the quartic $h(x) = 2x^4 - 16x^3 + 44x^2 - 48x + 17$ has turning points at $(1, -1)$, $(2, 1)$ and $(3, -1)$. Hence or otherwise, find the value of k such that $f(x) = g(x) + k$ has exactly three solutions.		
-			
_			
-			
-			
-			

<u>Sub-Section [1.8.4]</u>: Apply Odd And Even Functions

Question 39	Í
Show that the function given by $f(x) = x^5 - 2x^2 + 1$ is neither even nor odd.	
	, ,

Question 40	
Let $f(x) = x^4 - (k^2 - 5k + 6)x^3 + k^3x^2 + 10$. Find the value(s) of k so that $f(x)$ is an even function.	
	_
	_

Que	estion 41
	tangent to the graph of $f(x) = x^2 - 4$ at the point $x = 2$ is given by $h(x) = 4x - 8$. Denote the tangent to $f(x)$ at $f(x)$ at $f(x)$ by applying a reflection to $f(x)$.

Question 42	
--------------------	--

The tangent to the graph of $f(x) = x^3 - 3x$ at the point x = 2 is given by h(x) = 9x - 16. Denote the tangent to f(x) at x = -2 by k(x). The rule for k(x) can be obtained from the rule of h(x) via the following sequence of transformations:

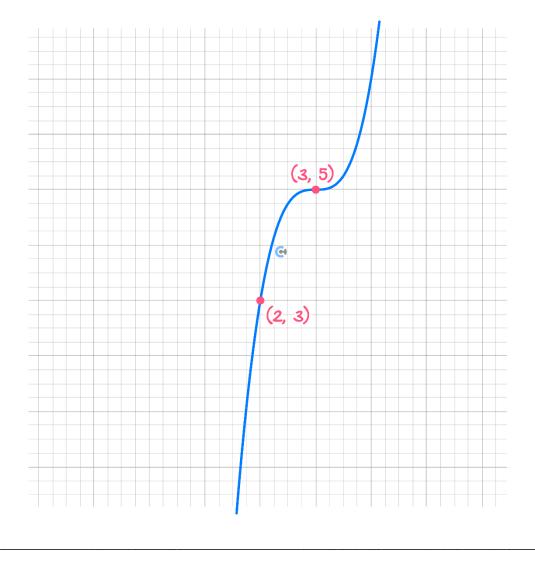
- A translation of α units in the positive direction of the α -axis.
- A translation of b units in the positive direction of the y-axis.

State the values of a and b and hence or otherwise, find the rule of k(x).

Sub-Section [1.8.5]: Identify Possible Rule(s) From a Graph

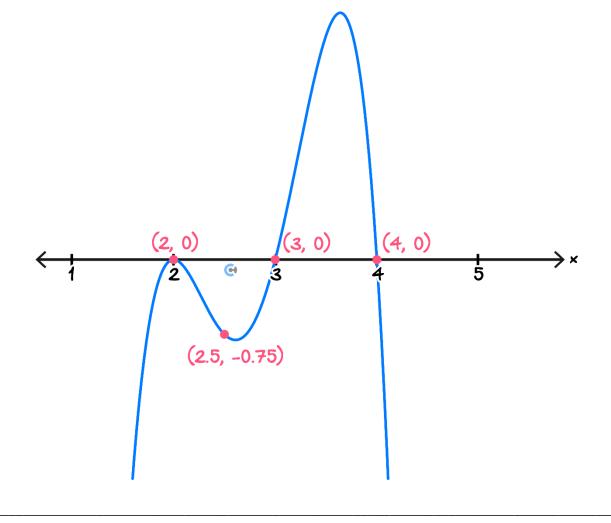
Question 43

Part of the graph of f(x) is plotted below. The point (3,5) is a stationary point of inflection. Find a possible rule for the function.

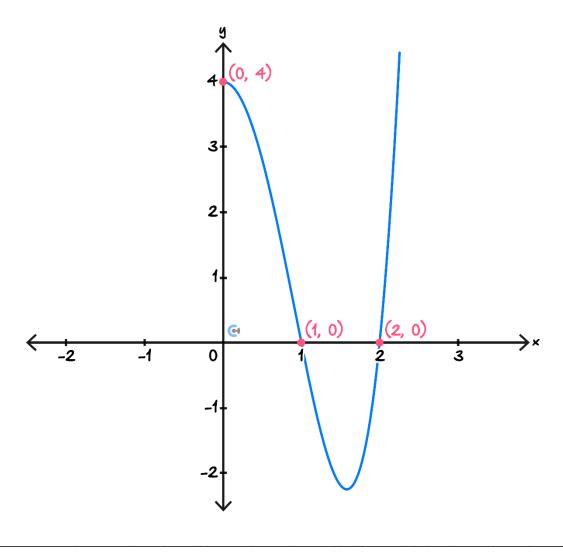


Question 4

Part of the graph of f(x) is plotted below. Find a possible rule for the function.

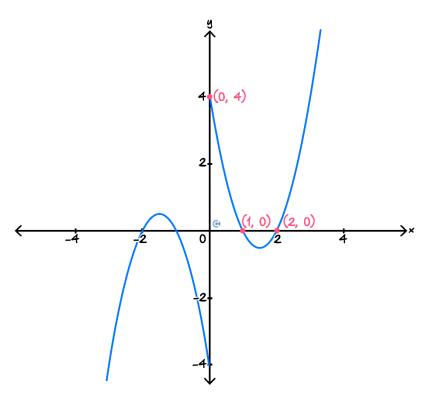


Part of the graph f(x) is plotted below. Find a possible rule for the function if the function is known to be even.



الالال

Part of the graph f(x) is plotted below.



Find a possible rule for the function if the function is known to be odd. Write your answer in the form.

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

Sub-Section: Exam 1 Questions

Question 47		
Find the value(s) of k so that the equation $(x^2 - kx + 16)(x^2 - 2\sqrt{7}x + k) = 0$ has:		
a. Exactly one solution.		
b. Exactly four solutions.		
Question 48		

Suppose that $f(x) = x^2 - 7x + 6$ and $g(x) = x^2 - kx + 1$. Find the values of k so that the equation f(g(x)) has:

a.	Exactly two solutions.

b. Exactly four solutions.

Question 49

Suppose that f(x) is an odd function such that $f(x) = (x - 2)^2$ for x > 0.

a. Write down a possible rule for f(x) in the form:

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

b. It is known that the tangent to f(x) at the point x = 3 is given by the rule h(x) = 2x - 5. By applying an appropriate sequence of transformations to h(x), find the rule for the tangent at the point x = -3.

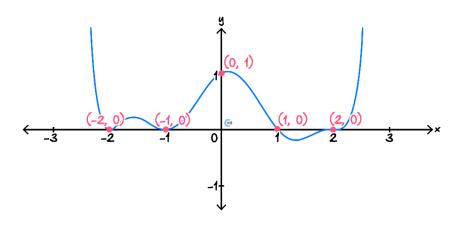
Consider a quartic of the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$. It is known that the quartic satisfies the following conditions:

- f(1) = 0.
- f(2) = 0.
- f(0) = 4.
- \blacktriangleright Also, f(x) is even.
- **a.** Find the values of a, b, c, d and e.

b. Verify that f(x) can be factorised to (x-1)(x+1)(x-2)(x+2).

c. Find the values of k so that f(x + k) has exactly two positive x-intercepts.

The minimum degree of the following polynomial is:

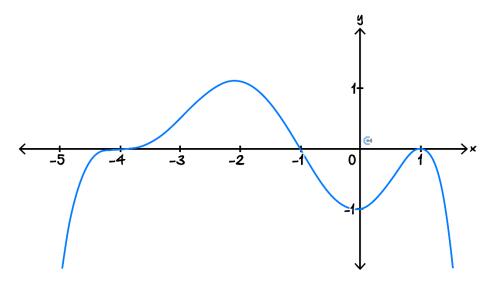


- **A.** 2
- **B.** 4
- C. 6
- **D.** 8

CONTOUREDUCATION

Question 52

A possible rule for the following function given below is:



A.
$$a(x-1)^3(x+4)^2(x+1)$$
 where $a < 0$.

B.
$$a(x-1)^3(x+4)^2(x+1)^3$$
 where $a > 0$.

C.
$$a(x-1)^2(x+4)^3(x+1)$$
 where $a < 0$.

D.
$$a(x-1)(x+4)^3(x+1)$$
 where $a > 0$.

Question 53

Let $f(x) = x^3 - (k^2 - 5k + 6)x^2 - (k^3 + 5k)x$. If f(x) is odd, then k must equal:

A. 1 or 3.

B. 1 or 2.

C. 2 or 3.

D. 2 or 6.

Let $g(x) = (x - 1)^2(x - 5)^2 - 4$. There will be exactly four solutions to the equation given by g(x) = k whenever:

- **A.** -16 < k < 8
- **B.** -4 < k < 12
- C. -4 < k < 0
- **D.** -4 < k < 16

Question 55

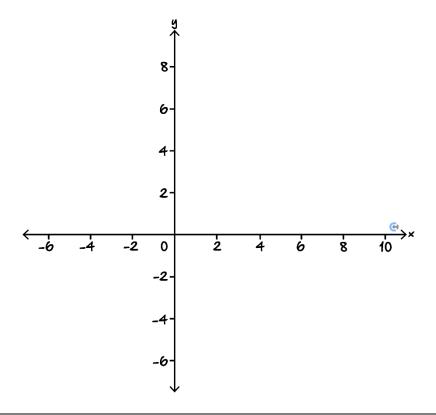
Let $h(x) = x^4 - 10x^2 + 9$. The function h(x + k) will have exactly three negative x-intercepts whenever:

- **A.** $1 < k \le 3$
- **B.** $1 \le k \le 3$
- C. $-3 < k \le 1$
- **D.** $-3 \le k \le 1$

Consider a cubic of the form $f(x) = ax^3 + bx^2 + cx + d$. Suppose that f(x) satisfies the following conditions:

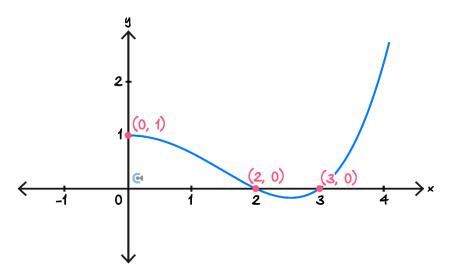
- f(0) = 4.
- f(1) = 0.
- f(-2) = 0.
- f(4) = 0.
- **a.** Calculate the values of a, b, c and d.

b. Sketch the graph of the function y = f(x), labelling all turning points and intercepts.



c.	Find the value(s) of k such that $f(x) - k = 0$ has exactly:		
	i.	2 solutions.	
	ii.	3 solutions.	
d.	Let solu	$g(x) = x^2 - kx + 5$. State the values of k such that $f(g(x)) = 0$ gives the maximum number of ations possible.	
Sp	ace	for Personal Notes	

The part of the graph of f(x) is shown below. Furthermore, it is known that the function f(x) is a quartic and also even.



a. State the rule for f(x).

b. The tangent to the graph of f(x) at x = 3 is given by $y = \frac{5}{6}x - \frac{5}{2}$.

i. Describe a sequence of transformation(s) that can be applied to h(x) to obtain the tangent to the graph of f(x) at x = -3.

ii. Hence, write down the rule for the tangent to the graph of f(x) at x = -3.

VCE Methods ¾ Questions? Message +61 440 138 726

c. Sta	ate the values of k so that $f(x - k)$ has exactly:
i.	3 positive <i>x</i> -intercepts.
ii.	3 negative <i>x</i> -intercepts.
Space	e for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

