

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Polynomials [1.7]

Test Solutions

20 Marks. 1 Minute Reading. 22 Minutes Writing

Results:

Test Questions	/ 17	
Extension Test Question	/3	

Section A: Test Questions (17 Marks)

Question 1 (5 marks)

Tick whether the following statements are true or false.

		True	False
a.	A root which corresponds to a polynomial with a factor of $x + 4$ is 4. (0.5 marks)		✓
b.	If $f(2) = 4$, then $f(x) \div (2x - 4)$ has a remainder of 4. (0.5 marks)		✓
c.	The remainder of $(x^3 + x^2 - x + 1) \div (x + 1)$ is 2. (0.5 marks)	✓	
d.	To factorise a quartic, we must first find two roots by trial and error. (0.5 marks)	✓	
e.	The rational root theorem suggests that $ax^3 + bx^2 + cx + d$ will have roots that are factors of d divided by the factors of a . (0.5 marks)	✓	
f.	All odd functions must have odd powers for power functions. (0.5 marks)	✓	
g.	Even functions are always symmetrical around the x -axis. (0.5 marks)		✓
h.	The maximal domain of $f(x) = x^{\frac{3}{2}}$ is given by $[0, \infty)$. (0.5 marks)	✓	
i.	$f(x) = x^{\frac{2}{3}}$ is an even function. (0.5 marks)	✓	
j.	If $f(-x) = -f(x)$, then it is an even function. (0.5 marks)		✓

VCE Methods 34 Questions? Message +61 440 138 726

Question 2 (3 marks)						
Consider the function $f(x) = x^3 + ax^2 + bx$. If $x - 2$ is a factor of $f(x)$ and the remainder of $f(x) \div (x - 3)$ is given by 12, find the value(s) of a and b .						
a = -1, b = -2						

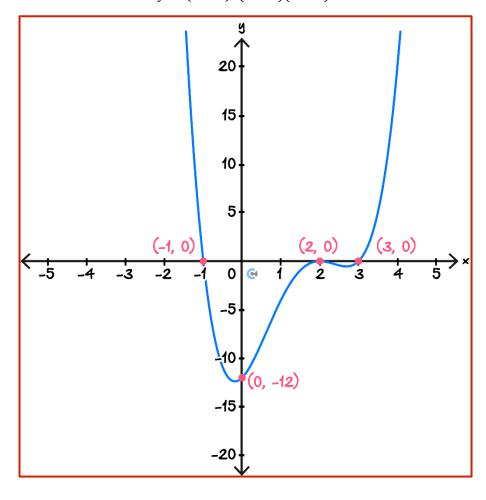
Question 3 (3 marks)

Solve the following equation for x.

$$2x^3 - 5x^2 - 28x + 13 = -2$$

x = -3

$$x = \frac{1}{2}$$


x = 5

Question 4 (3 marks)

Sketch the graph of the following function on the axes below. Label all axes intercepts with their coordinates.

$$y = (x-2)^2(x-3)(x+1)$$

Question 5 (3 marks)

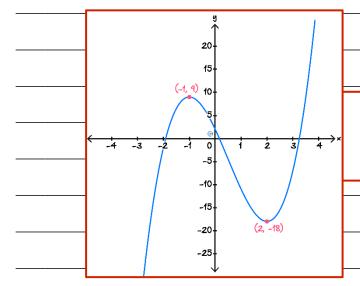
It is known that f(x) is an even function where f(-2) = 4 and f'(-2) = 3.

Let g(x) = f(x) + 2.

Find the values of g(2) and g'(2).

$$g(2) = f(2) + 2 = 6$$

$$g'(2) = f'(2) = -3$$



Section B: Extension Test Question (3 Marks)

Question 6 (3 marks)

Consider $f(x) = 2x^3 - 3x^2 - 12x + 2$.

Given that the turning point occurs at x = -1 and x = 2, find the value(s) of k such that f(x) + k = 0 has 3 solutions.

From the graph, the turning points of f(x) at (-1,9) and (2,-18).

 $\therefore k \in (-9{,}18)$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

