

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials [1.7]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20
Supplementary Questions	Pg 21 – Pg 37

Section A: Compulsory Questions

Sub-Section [1.7.1]: Applying Factor and Remainder Theorems

Question 1

a. State the remainder when $x^3 - 3x + 2$ is divided by x - 3.

We can write $x^3 - 3x + 2 = (x - 3)Q(x) + r$ for some quadratic Q. Hence,

$$r = 3^3 - 3(3) + 2 = 20$$

b. State the remainder when $x^4 + 2x + 1$ is divided by 2x + 2.

We can write $x^4 + 2x + 1 = (2x + 2)Q(x) + r$ for some cubic Q. Hence,

$$r = (-1)^4 + 2(-1) + 1 = 0$$

c. Is x - 3 a factor of $f(x) = x^3 - 8x + 3$?

x-3 is a factor of f(x) if and only if f(3) = 0. As

$$f(3) = (3)^3 - 8(3) + 3 = 27 - 24 + 3 = 6 \neq 0,$$

x-3 is not a factor of f.

Question 2

Let $f(x) = ax^3 + 4x + 1$. Find the value of a such that f(x) has a factor of 2x + 1.

We require $f\left(-\frac{1}{2}\right) = \frac{-a}{8} - 2 + 1 = 0.$

Hence a = -8

CONTOUREDUCATION

Question 3

a. Let $f(x) = ax^2 + 3x + c$. Find the values of a and b such that f has a factor of 2x + 5, and when f is divided by 2x + 1, it has a remainder of -6.

Since 2x + 5 is a factor of f, we see that, $f\left(\frac{-5}{2}\right) = 0$. Since f/(2x + 1) yields a remainder of |-6|, we see that, $f\left(\frac{-1}{2}\right) = -6$. From here we construct a pair of simultaneous equations,

$$f\left(\frac{-5}{2}\right) = \frac{25a}{4} - \frac{15}{2} + c = 0\tag{1}$$

$$f\left(\frac{-1}{2}\right) = \frac{a}{4} - \frac{3}{2} + c = -6\tag{2}$$

Subtracting (2) from (1) yields,

$$\frac{24a}{4} - \frac{15-3}{2} = 6 \implies 6a = 12 \implies a = 2.$$

Substituting this value of *a* into (2) yields, $c = -6 + \frac{3}{2} - \frac{a}{4} = \frac{-11}{2} + \frac{1}{2} = -5$

b. Tech-Active.

Let $g(x) = ax^3 + bx^2 + cx + d$, have the following properties,

- 1. g(x) has a factor of $x^2 1$.
- 2. g(x) divided by x 2 leaves a remainder of 7.
- 3. g(x) divided by 2x + 3 leaves a remainder of -4.

Find the values of a, b, c and d.

Since g(x) has a factor of $(x^2 - 1)$, and $(x^2 - 1)$ has both ± 1 as roots, we realize that:

$$g(-1) = g(1) = 0$$

Since $\frac{g(x)}{x-2}$ leaves a remainder of 7, we realize that g(2) = 7

Since $\frac{g(x)}{2x+3}$ leaves a remainder of -4, we realize that $g\left(\frac{-3}{2}\right) = -4$

This leaves us with a system of 4 simultaneous equations that we can solve for a, b, c, and d using a calculator.

Thus,

$$a = \frac{166}{105}$$
 and $b = -\frac{29}{35}$ and $c = -\frac{166}{105}$ and $d = \frac{29}{35}$

Sub-Section [1.7.2]: Finding Factored Forms of Polynomials

Question 4

Factorise the following polynomials:

a. $8x^3 + 27$.

We apply difference of cubes with a = 2x and b = 3, thus,

$$8x^3 + 27 = (2x + 3)((2x)^2 + 2(2x)(3) + (3)^2) = (2x + 3)(4x^2 + 12x + 9)$$

Since $12^2 - 4(4)(9) < 0$ we can not factorise this expression any further.

b. $x^3 - 4x^2 - x + 4$.

$$x^3 - 4x^2 + x - 4 = x^2(x - 4) - (x - 4) = (x - 4)(x^2 - 1) = (x - 4)(x - 1)(x + 1)$$

c. $x^3 + 2x^2 + x$.

$$x^3 + 2x + x = x(x^2 + 2x + 1) = x(x + 1)^2$$

Evaluate the following expression without a calculator:

d. $7^3 - 5^3$.

We apply the difference of cubes formula, giving us,

$$7^3 - 5^3 = (7 - 5)(49 + 35 + 25) = 2(109) = 218$$

- **a.** Let $f(x) = x^3 2x^2 5x + 6$.
 - i. Show that f(1) = 0.

$$f(1) = (1)^3 - 2(1)^2 - 5(1) + 6 = 1 - 2 - 5 + 6 = 0$$

ii. Hence, or otherwise, write f(x) in the form f(x) = (x - a)(x - b)(x - c) for integers a, b, c.

 Since $f(1) = 0$ we know that $(x - 1)$ is a factor of f , hence.	
$f(x) = (x-1)(ax^2 + bx + c) = ax^3 + (b-a)x^2 + (c-b)x - c$	
 By comparing the x^3 coefficient, we see that $a = 1$.	
By comparing the x^2 coefficient, we see that $b - a = b - 1 = -2 \implies b = -1$.	
By comparing the x coefficient, we see that $c - b = c + 1 = -5 \implies c = -6$.	
We can check our result with the constant term as $-c = -(-6) = 6$.	
 Hence $f(x) = (x - 1)(x^2 - x - 6) = (x - 1)(x - 3)(x + 2)$ Note you should be able to do this in your head and do not need to show this working.	
Note you should be able to do this in your head and do not need to show this working.	

b. Factorise $g(x) = x^3 - 2x^2 - 9x + 18$.

 $g(x) = x^{2}(x-2) - 9(x-2) = (x^{2}-9)(x-2) = (x-3)(x+3)(x-3)$

c. Find all of the real roots of $h(x) = x^3 + 2x^2 - 29x - 30$.

We first test ± 1 as factors.

For x = 1 we see that $h(1) = 1 + 2 - 29 - 30 \neq 0$, hence x - 1 is not a factor of h.

For x = -1 we see that $h(-1) = (-1)^3 + 2(-1)^2 - 29(-1) - 30 = -1 + 2 + 29 - 30 = 0$, hence x + 1 is a factor of h.

Now we factorise h(x) using the process in part a, thus $h(x) = (x+1)(x^2+x-30) = (x+1)(x-6)(x+5)$

Hence all the roots of h are x = -5, -1, 6.

d. Tech-Active.

Factorise $P(x) = 6x^5 + 11x^4 - 49x^3 - 41x^2 + 115x - 42$.

Use the factorise function on your calculator. Hence,

P(x) = (x-1)(x-2)(x+3)(2x-1)(3x+7)

ONTOUREDUCATION

Question 6

- **a.** Let $f(x) = 9x^3 54x^2 x + 6$.
 - i. According to the rational root theorem, what are the possible rational roots of f?

We first check that all coefficients of f are integers and have a GCD of 1. The first part is obviously true, whilst the second part is true as one of the coefficients of f is -1. Now the possible roots of f are of the form.

$$\pm \frac{p}{a}$$

where p divides 6 and q divides 9. Thus p = 1, 2, 3, 6 and q = 1, 3, 9 and our roots can be,

$$1, -1, 2, -2, 3, -3, 6, -6, \frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}, \frac{1}{9}, -\frac{1}{9}, \frac{2}{9}, -\frac{2}{9}$$

ii. Hence, or otherwise, find all of the roots of f.

$$f(x) = 9x^2(x-6) - (x-6) = (x-6)(9x^2 - 1).$$

Hence if x is a root of x, either x - 6 = 0 and x = 6, or $9x^2 - 1 = 0$ and $x = \pm \frac{1}{3}$.

b. Show that the polynomial $P(x) = x^3 - 5$ has no rational roots.

A rational root, x of $x^3 - 5$ will be of the form $\pm \frac{p}{q}$, where p divides 5 and q divides 1. This leaves us with the following options,

$$x = -1, 1, -5, 5$$

We evaluate all of our prospective roots, specifically,

$$P(1) = 1 - 5 = -4$$

$$P(-1) = -1 - 5 = -6$$

$$P(5) = 125 - 5 = 120$$

$$P(-5) = -125 - 5 = -130.$$

As none of the roots evaluate to 0 we see that P(x) has no rational roots.

c. Consider $f(x) = x^3 + \frac{7x^2}{4} + \frac{7x}{2} - 1$. It is known that f has only positive roots. Factorise f(x). *Hint: To apply the rational root theorem all of your polynomial coefficients must be integers.*

We will apply the rational root theorem to $g(x) = 4f(x) = 4x^3 + 7x^2 + 14x - 4$ as it has coefficients that are integers and have a GCD of 1.

By the rational root theorem along with the fact that f has only positive roots we know that our roots are within this set of numbers,

$$\left\{1, 2, 4, \frac{1}{2}, \frac{1}{4}\right\}$$

Out of these roots we can exclude $a \in \left\{1, 2, 4, \frac{1}{2}\right\}$ as g(a) > 14a - 4 > 7 - 4 > 0.

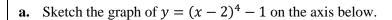
As $f\left(\frac{1}{4}\right) = \frac{1}{16} + \frac{7}{16} + \frac{7}{2} - 4 = 0$ we know that 4x - 1 is a factor of g.

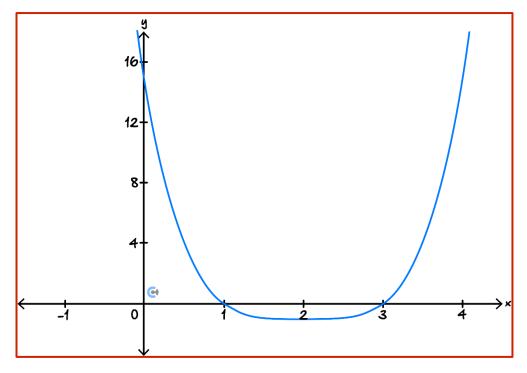
Hence, $g(x) = (4x - 1)(x^2 + 2x + 4)$. As $(2)^2 - 4(4)(1) < 0$ we can not factorise g further.

Thus $f(x) = \frac{1}{4}g(x) = \frac{1}{4}(4x - 1)(x^2 + 2x + 4)$

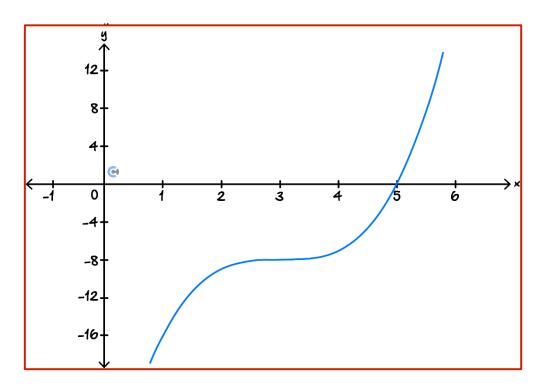
Sub-Section [1.7.3]: Graphing Factored and Unfactored Polynomials

Question 7

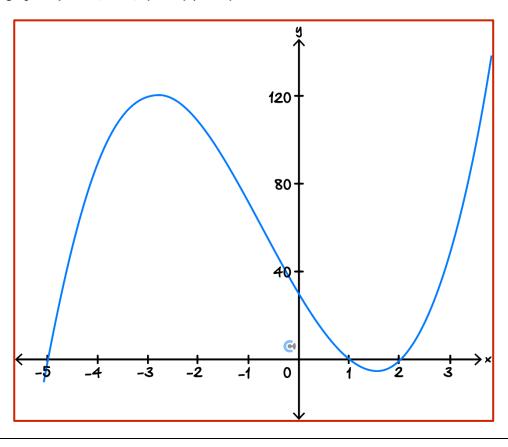




b. Sketch the graph of $y = (x - 3)^3 - 8$ on the axis below.

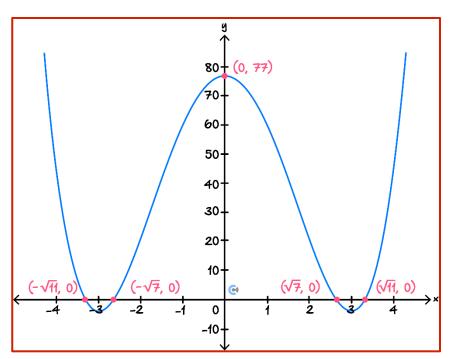


c. Sketch the graph of y = 3(x - 2)(x - 1)(x + 5) on the axis below.

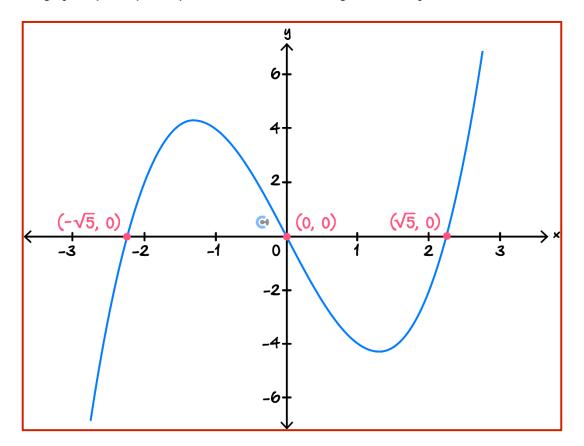


Question 8

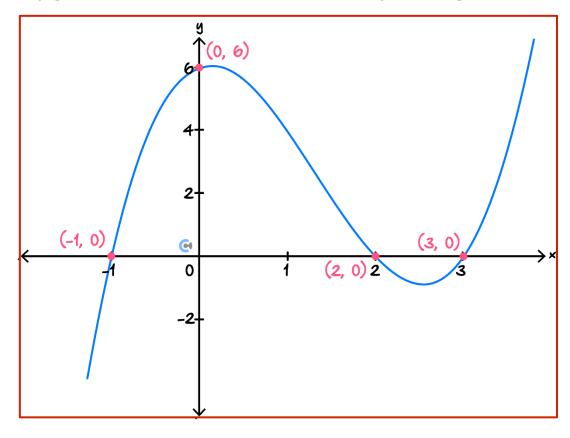
a. Sketch the graph of $y = (x^2 - 9)^2 - 4$ on the axis below, labelling axis intercepts with their coordinates.



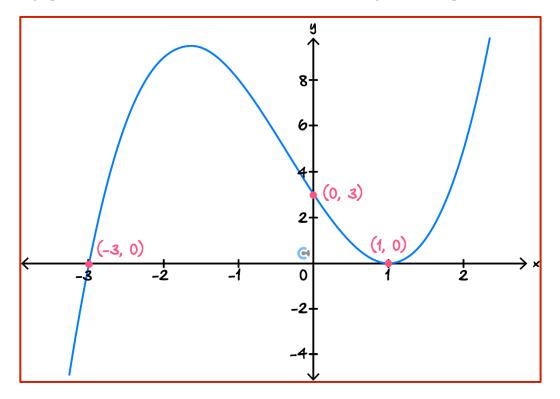
b. Sketch the graph of $y = x(x^2 - 5)$ on the axis below, labeling axis intercepts with their coordinates.



c. Sketch the graph of $y = x^3 - 4x^2 + x + 6$ on the axis below, labeling axis intercepts with their coordinates.

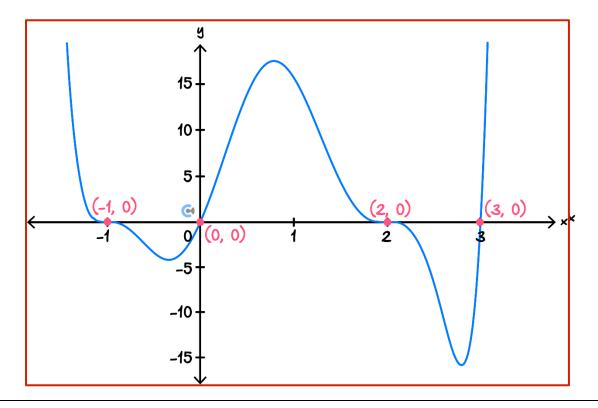


a. Sketch the graph of $y = x^3 + x^2 - 5x + 3$ on the axis below, labeling axis intercepts with their coordinates.

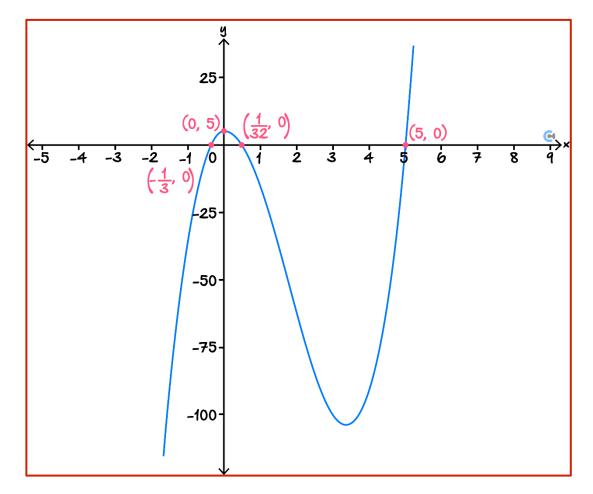


b. Tech-Active.

Sketch the graph of $y = x(x-2)^3(x+1)^3(x-3)$ on the axis below, labeling axis intercepts with their coordinates.



c. Sketch the graph of $y = 5 + 4x - 31x^2 + 6x^3$ on the axis below, labeling axis intercepts with their coordinates.



<u>Sub-Section [1.7.4]</u>: Identify Odd and Even Functions

Question 10

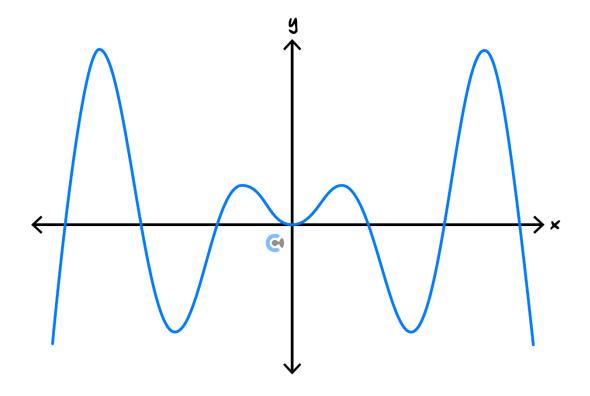
- **a.** Let f(x) be an even function and g(x) be an odd function.
 - i. State whether f(g(x)) is an even or an odd function.

As
$$f(g(-x)) = f(-g(x)) = f(g(x))$$
, $f(g(x))$ is an even function.

ii. State whether $f(x) \times g(x)$ is an even or an odd function.

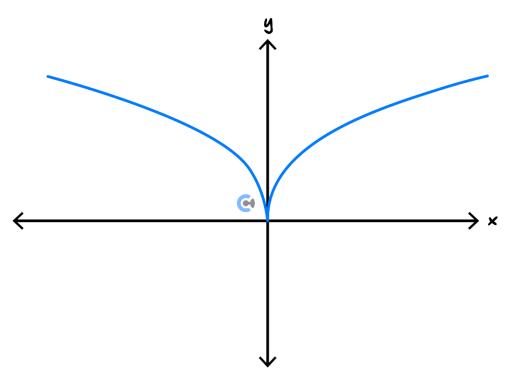
As
$$f(-x) \times g(-x) = f(x) \times (-g(x)) = -f(x) \times g(x)$$
, $f(x) \times g(x)$ is an odd function.

b. Part of the graph of f(x) is drawn below. State whether f is an odd or an even function.



f(x) is an even function.

c. Part of the graph of $y = x^{\frac{m}{n}}$ is drawn below where m and n are co-prime.



State whether m and n are even or odd.

As the domain of our graph is all reals, including negatives, n is odd.

As our function is even, m must be even.

a. Let $f(x) = (x-3)^3 + 5$.

Describe a sequence of transformations that map the graph of f onto the graph of an odd function.

We wish to transform the graph of f to the graph of $y = x^3$. Thus our transformation is,

- A translation 3 units in the negative direction of the x-axis, followed by,
- A translation of 5 units in the negative direction of the y-axis.
- **b.** Show that $P(x) = 2(x^4 + 3x^2 1)^3 5$ is an even function.

$$P(-x) = 2((-x)^4 + 3(-x)^2 - 1)^3 - 5$$
$$= 2(x^4 + 3x^2 - 1)^3 - 5 = P(x)$$

Hence P(x) is an even function.

c. Consider the function f(x). It is known that f(x + 2) is an even function.

If f(-1) = 3, f(7) = 5, and f(3) = 7, find the value of 2f(-3).

$$f(x + 2)$$
is even

$$f(-x+2) = f(x+2)$$

Hence

$$f(-3) = (f(-5) + 2) = f(5 + 2) = f(7)$$

 $2f(-3) = 2f(7) = 2 \times 5 = 10$

a. Let f(x) be an even function and g(x) be an odd one-to-one function.

If f(3) = 5, g(1) = 3, and g(3) = 4. Find $f(-3) + g^{-1}(-3)$.

As g is one to one and odd, g^{-1} is also an odd function. Hence,

$$f(-3) + g^{-1}(-3) = f(3) - g^{-1}(3) = 5 - 1 = 4$$

b. Tech-Active.

Let $f(x) = x^3 - 9x^2 + 7x$.

A transformation T(x, y) = (x + a, y + b) maps the graph of f(x) onto the graph of an odd function g. Find the values of a and b.

The rule for g is g(x) = f(x - a) + b. Thus,

$$g(x) = x^3 - (9 + 3a)x^2 + (3a^2 + 18a + 7)x - 7a - 9a^2 - a^3 + b$$

For g to be an odd function we require it's x^2 coefficient along with it's constant term to be equal to 0 Hence we solve simultaneously,

$$9 + 3a^2 = 0$$
 and $-7a - 9a^2 - a^3 + b = 0$

This yields a = -3 and b = 33.

c. James says that he's found a function, f(x) that is both odd and even.

Show that f(x) = 0 for all real x.

Since f(x) is an even function, f(-x) = f(x) for all real x.

Since f(x) is an odd function, f(-x) = -f(x) for all real x.

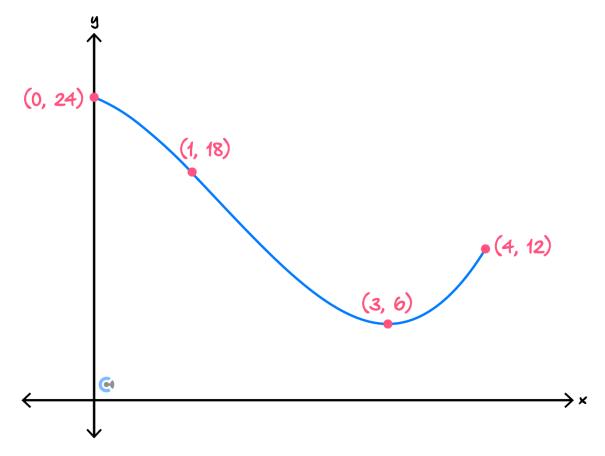
Combining these two facts we see that f(x) = f(-x) = -f(x) for all real x, hence $2f(x) = 0 \implies f(x) = 0$ for all real x.

Sub-Section: Boss Question

Question 13

Samuel is building a ramp to throw students off who do not complete their homework.

The cross-section of the ramp is modelled by a function $f:[0,4] \to \mathbb{R}$, $f(x) = ax^3 + bx^2 + cx + d$. The graph of f is shown below.



a. Find the values of a, b, c and d.

We can construct a system of 4 equations, specifically,

$$f(0) = d = 24$$

$$f(1) = a + b + c + d = 18$$

$$f(3) = 27a + 9b + 3c + d = 6$$

$$f(4) = 64a + 16b + 4c + d = 12$$

Solving these equations simultaneously, yields, a = 1, b = -4, c = -3 and d = 24

- **b.** f(x) can be written as f(x) = g(x)(x-3) + r where r is an integer.
 - i. State the degree of g.

The degree of g is 2.

ii. State the value of r.

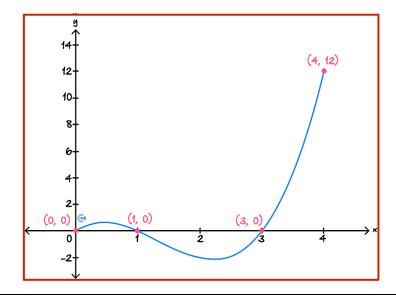
Since
$$f(3) = g(3)(3-3) + r = r$$
 we see that $r = 6$.

Samuel installs a ladder for the students to climb up to the top of the ramp. The cross-section of the ladder is given by the function $L: [0, 4] \to \mathbb{R}, L(x) = 24 - 6x$.

c. Solve f(x) = L(x) for x.

x = 0, 1, 3

d. Sketch the graph of f(x) - L(x) on the axis below, labeling axis intercepts and end-points with their co-ordinates.



Let h(x) have the same rule as f(x) but have a domain of all real numbers.

e. How many solutions does the equation h(x) = 1 have?

1 solution

f. Find a value of a such that h(x) = a has exactly two solutions.

Cubic will have exactly two roots if one root is repeated Hence h(r) = 0 and h'(r) = 0

$$h(x) = x^3 - 4x^2 - 3x + 24 - a$$
$$h'(x) = 3x^2 - 8x - 3$$

h'(r) = 0 gives, $r = 3, -\frac{1}{3}$

numbers a, b.

now we substitute the r values in h(x) = 0.

$$h(3) = 0$$

$$27 - 36 - 9 + 24 - a = 0$$

$$a = 6$$

Again
$$f\left(-\frac{1}{3}\right) = 0$$

$$a = \frac{662}{27}$$

Answer $a = \frac{662}{27}$ and a = 6

g. Describe a sequence of translations that map the graph of h onto Answer

The image of h under T is,

$$h(x) = x^3 - (3a+4)x^2 + (3a^2 + 8a - 3)x + 24 + 3a - 4a^2 - a^3 + b$$

Any sequence of translations is equivalent to the transformation T(x,y) = (x + a, y + b) for some real

For h(x) to be an odd function, both the x^2 coefficient along with the constant term must be 0. Hence we solve,

$$3a + 4 = 0$$
 and $3a - 4a^2 - a^3 + b + 24 = 0$

for a and b. This yields, $a = -\frac{4}{3}$ and $b = -\frac{412}{27}$. Hence our translations are,

- 1. A translation of $\frac{4}{3}$ units left
- 2. A translation of $\frac{412}{27}$ units down.

Section B: Supplementary Questions

Sub-Section [1.7.1]: Applying Factor and Remainder Theorems

Question 14

a. State the remainder when $x^2 + 5x - 3$ is divided by x + 2.

We can write $x^2 + 5x - 3 = (x + 2)Q(x) + r$ for some quadratic Q. Hence,

$$r = (-2)^2 + 5(-2) - 3 = -9$$

b. Is x - 2 a factor of $f(x) = x^4 - 16$?

x - 2 is a factor of f(x) if and only if f(2) = 0. As $f(2) = 2^4 - 16 = 0,$

x-2 is a factor of f.

c. Is x + 4 a factor of $g(x) = x^3 + 4x^2 + 2$?

x + 4 is a factor of g(x) if and only if g(-4) = 0. As

$$g(-4) = (-4)^3 + 4(-4)^2 + 2 = -64 + 64 + 2 = 2 \neq 0$$

x + 4 is not a factor of g.

Question 15

Let $f(x) = 2x^3 + ax^2 + ax + 3$. Find the value of a such that f(x) has a factor of 2x + 3.

We require $f\left(-\frac{3}{2}\right) = -\frac{27}{4} + \frac{9a}{4} - \frac{3a}{2} + 3 = 0$. Multiplying our expression by 4 yields,

$$-27 + 9a - 6a + 12 = 0 \implies 3a = 15 \implies a = 5$$

Let $f(x) = x^2 + ax + b$. Find the values of a and b such that f has a factor of -1, and when f is divided by 2x - 3, it has a remainder of -5.

Since -1 is a root of f, we see that, f(-1) = 0.

Since f/(2x-3) yields a remainder of -5, we see that, $f\left(\frac{3}{2}\right) = -5$. From here we construct a pair of simultaneous equations,

$$f(-1) = 1 - a + b = 0 \tag{1}$$

$$f\left(\frac{3}{2}\right) = \frac{9}{4} + \frac{3}{2}a + b = -5\tag{2}$$

Subtracting (2) from (1) yields,

$$-\frac{5}{4} - \frac{5a}{2} = 5 \implies -10a = 25 \implies a = \frac{-5}{2}.$$

Substituting this value of a into (1) yields, $b = a - 1 = \frac{-7}{2}$

Question 17

A cubic polynomial, g(x) has the following properties.

- 1. g(x) 3 has a factor of $(x 2)^2$.
- 2. g(x) divided by $x^2 1$ leaves a remainder of 2.

Find the rule for g(x).

The first statement implies that $g(x) - 3 = a(x - 2)^2(x - b)$ for some real numbers a and b.

Since $x^2 - 1 = (x - 1)(x + 1)$, the second statement implies that g(1) = g(-1) = 2.

Hence, $a(1-2)^2(1-b) = a(1-b) = 2-3 = -1$ and $a(-1-2)^2(-1-b) = -9a(1+b) = 2-3 = -1$. Equating these two expressions yields,

$$a - ab = -9a - 9ab \implies 10a = -8ab \implies b = -\frac{5}{4}$$

Substituting this value into a(1-b) = -1 yields, $\frac{9a}{4} = -1 \implies a = -\frac{4}{9}$. Hence,

$$g(x) = -\frac{4}{9}(x-2)^2 \left(x + \frac{5}{4}\right) + 3$$

Sub-Section [1.7.2]: Finding Factored Forms of Polynomials

Question 18

Factorise the following polynomials:

a. $x^3 - 8$.

We apply difference of cubes with a = x and b = 2, thus,

$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

As $2^2 - 4 \times 4 < 0$ we cannot factorise our expression any further.

b. $x^3 - 7x^2 + 10x$.

 $x^3 - 7x^2 + 10x = x(x^2 - 7x + 10) = x(x - 2)(x - 5)$

c. $x^3 + 3x^2 - 4x - 12$.

 $x^3 + 3x^2 - 2x - 6 = x^2(x+3) - 4(x+3) = (x+3)(x^2-4) = (x+3)(x-2)(x+2)$

CONTOUREDUCATION

Question 19

a. Factorise $f(x) = x^3 + x^2 - 17x + 15$.

By the rational root theorem, our possible roots are $\pm 1, \pm 3, \pm 5$ and ± 15 . After some testing we see that f(1) = 0 hence x - 1 is a factor.

Thus $f(x) = (x-1)(x^2 + 2x + 15) = (x-1)(x+5)(x-3)$

b. Factorise $g(x) = x^3 - 4x^2 + x + 6$.

g(x) = (x+1)(x-2)(x-3)

c. Find all of the real roots of $h(x) = x^3 - 3x^2 + 4$.

By the rational root theorem, possible rational roots of h are $\pm 1, \pm 2, \pm 4$. After some testing we see that -1 is a root hence x + 1 is a factor of h.

Thus $h(x) = (x+1)(x^2-4x+4) = (x+1)(x-2)^2$.

Hence the real roots of h(x) are -1, 2.

a. Factorise $f(x) = x^3 - 5x^2 - 29x + 105$.

(x-7)(x-3)(x+5)

b. Factorise $g(x) = 18x^3 - 3x^2 - 28x - 12$.

 $(2+3x)^2(2x-3)$

c. Factorise $h(x) = 2x^3 + 14x^2 - 10x - 150$.

 $2(x-3)(x+5)^2$

Space for Personal Notes

MM34 [1.7] - Polynomials - Homework Solutions

CONTOUREDUCATION

Question 21

Let $f(x) = ax^2 + bx + c$ with a, b, c being co-prime non-zero integers, and assume that $\frac{p}{q}$ is a root of f with p and q co-prime and both non-zero.

a. Show that p divides c.

We know that $f\left(\frac{p}{q}\right) = a\frac{p^2}{q^2} + b\frac{p}{q} + c = 0.$

After subtracting c from both sides and multiplying both sides by q^2 we have that,

$$-cq^2 = p(ap + bq)$$

Hence p is a factor of cq^2 . Since q is coprime to p it follows that p divides c.

b. Show that q divides a.

Like in part a. we can rearrange $f\left(\frac{p}{q}\right) = 0$ to get the equation,

$$-ap^2 = q(bp + cq)$$

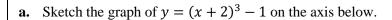
Thus we see that q divides ap^2 . Since p is coprime to q it follows that q divides a.

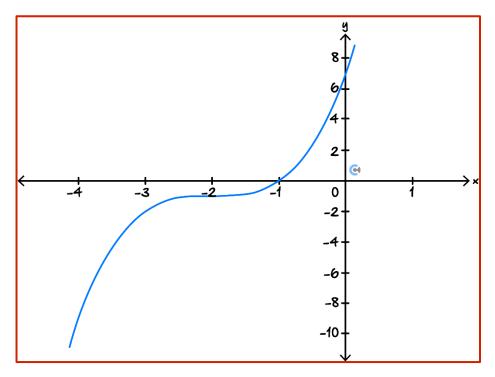
c. If a, b, c are not co-prime integers, where would your arguments for parts a and b breakdown?

In the equation $-cq^2 = p(ap + bq)$ we assume that ap + bq is an integer, hence p is a factor of $-cq^2$. If ap + bq is not an integer, this may no longer be the case.

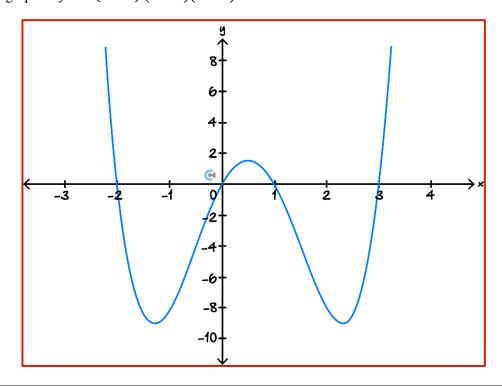
Sub-Section [1.7.3]: Graphing Factored and Unfactored Polynomials

Question 22

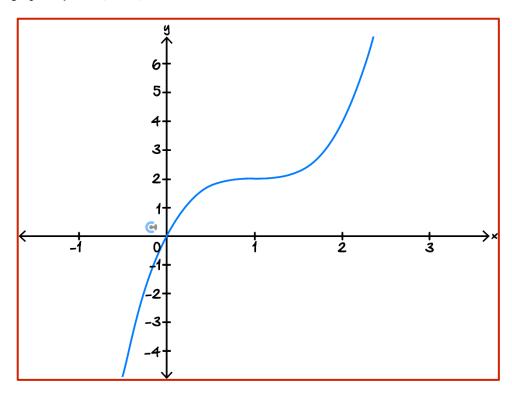




b. Sketch the graph of y = x(x-1)(x+2)(x-3) on the axis below.

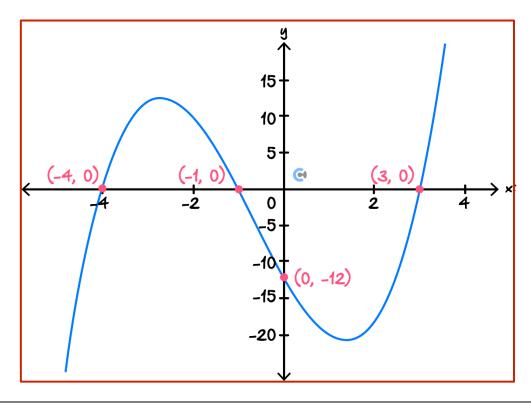


c. Sketch the graph of $y = 2(x - 1)^3 + 2$ on the axis below.

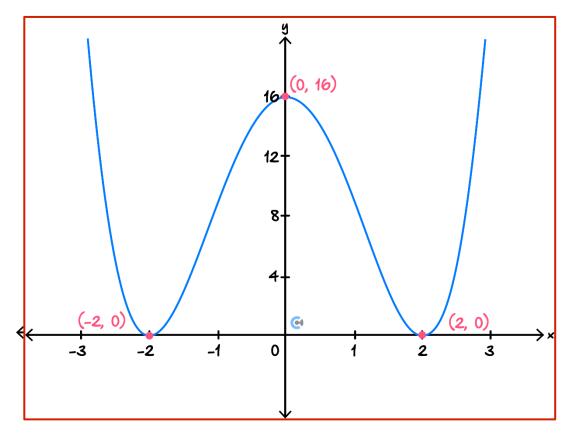


Question 23

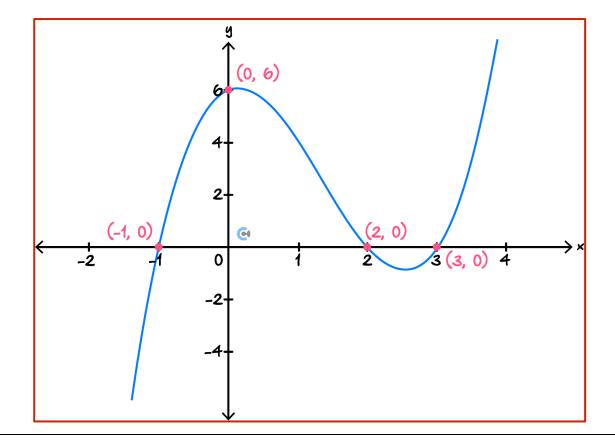
a. Sketch the graph of $y = x^3 + 2x^2 - 11x - 12$ on the axis below, labeling axis intercepts with their coordinates.



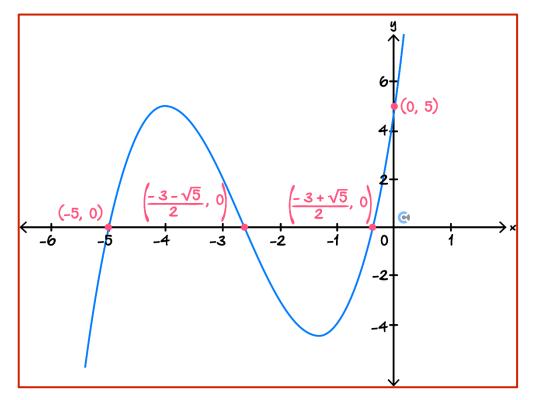
b. Sketch the graph of $y = x^4 - 8x^2 + 16$ on the axis below, labeling axis intercepts with their coordinates.



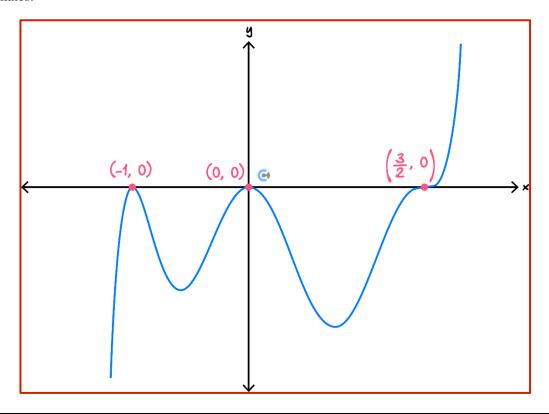
c. Sketch the graph of $y = x^3 - 4x^2 + x + 6$ on the axis below, labeling axis intercepts with their coordinates.



a. Sketch the graph of $y = x^3 + 8x^2 + 16x + 5$ on the axis below, labeling axis intercepts with their coordinates.

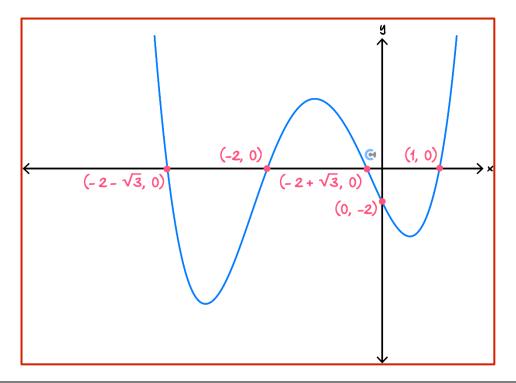


b. Sketch the graph of $y = x^2(2x - 3)^3(x + 1)^2$ on the axis below, labeling axis intercepts with their coordinates.



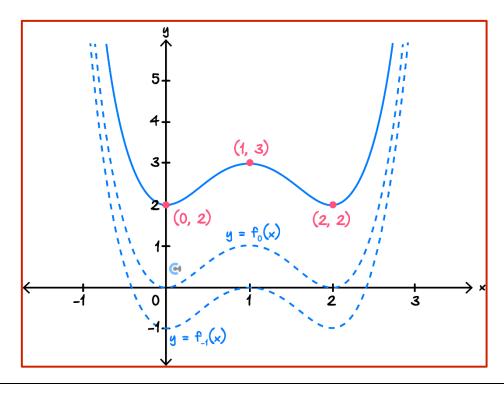
CONTOUREDUCATION

c. Sketch the graph of $y = x^4 + 5x^3 + 3x^2 - 7x - 2$ on the axis below, labeling axis intercepts with their coordinates.



Question 25

Let $f_k(x) = x^4 - 4x^3 + 4x^2 + k$. By considering f_0 and f_{-1} , sketch the graph of f_2 on the axis below, labeling axis intercepts and turning points with their coordinates.



Sub-Section [1.7.4]: Identify Odd and Even Functions

Question 26

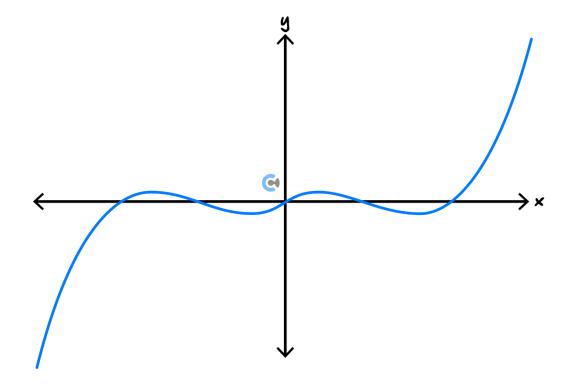
- **a.** Let f(x) and g(x) both be an odd functions.
 - i. State whether f(x) + g(x) is an even or an odd function.

As
$$f(-x) + g(-x) = -f(x) - g(x) = -[f(x) + g(x)]$$
, $f(x) + g(x)$ is an odd function.

ii. State whether $(f(x))^2 + 2f(x)g(x) + (g(x))^2$ is an even or an odd function.

$$(f(x))^2 + 2f(x)g(x) + (g(x))^2 = (f(x) + g(x))^2$$
 and is hence an even function.

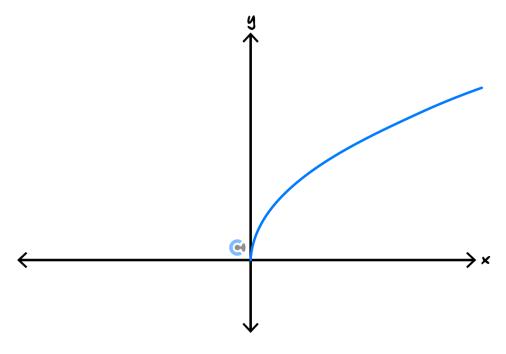
b. Part of the graph of f(x) is drawn below. State whether f is an odd or an even function.



f(x) is an odd function.

CONTOUREDUCATION

c. Part of the graph of $y = x^{\frac{m}{n}}$ is drawn below where m and n are co-prime.



State whether m and n are even or odd.

As the domain of our graph only positive numbers, n is even.

As m and n are co prime, m is thus odd.

a. Show that $f(x) = x^4 - 2x^3$ is neither an even nor an odd function.

Observe that $f(-x) = x^4 + 2x^3 \neq x^4 - 2x^3$, hence f is not an even function. Observe that $f(-x) = x^4 + 2x^3 \neq -x^4 + 2x^3$, hence f is not an odd function.

b. Describe a translation that maps the graph of $y = x^2 + 6x + 7$ onto the graph of an even function.

 $x^2 + 6x + 7 = (x + 3)^2 - 2$. Thus we want to map our graph onto the graph of $y = x^2 - 2$, hence we simply need to translate our graph 3 units to the right.

c. Consider the function f(x). It is known that f(2x + 3) is an odd function.

If f(5) = 4 and f(-1) = -3, find the value of f(1).

Let g(x) = f(2x + 3). Then,

f(1) = g(-1) = -g(1) = -f(5) = -4.

a. Let f(x) be a strictly increasing function with f(0) = 0.

If $(f(x))^2$ is an even function, show that f(x) is an odd function.

Since $(f(x))^2 = (f(-x))^2$ we know that for all x > 0 that $f(x) = \pm f(-x)$.

However since f is an increasing function it must be one to one, and thus $f(x) \neq f(-x)$ for x > 0.

Hence f(x) = -f(-x) for x > 0, which implies that f(x) = f(-x) for $x \neq 0$. Lastly we see that f(0) = -f(-0) = 0.

b. Let $f(x) = x^4 + 2x^3 + x^2$.

Describe a transformation that maps the graph of f onto the graph of an even function.

Observe that $f(x) = x^2(x+1)^2$.

We can map the graph of f onto the graph of $y = \left(x - \frac{1}{2}\right)^2 \left(x + \frac{1}{2}\right)^2$ which is an even function by translat-

ing it $\frac{1}{2}$ units right.

c. Let f(x) be an even function. The function,

$$g(x) = \begin{cases} f(x) + c & x \ge 0 \\ -f(x) + d & x < 0 \end{cases}$$

is an odd function.

Find the values of c and d.

We require g(0) = -g(-0) = g(0) = f(0) + c = 0 for g to be an odd function.

Hence c = -f(0).

Now for x > 0 we require that f(x) + c = g(x) = -g(-x) = f(-x) - d = f(x) - d.

Hence d = -c = f(0).

Question 29

Let $f(x) = x^4 - 4x^3 + x^2 + 6x + k$, where k is a real number.

The function g(x) = f(x - h) is an even function.

Find the value of h.

We observe that as k represents a vertical translation, it does not affect whether or not g is an even function. Thus for simplicity we set k = 0 and factorise f.

Thus $f(x) = x(x^3 - 4x^2 + x + 6) = x(x + 1)(x - 2)(x - 3)$.

Hence f(x+1) = (x+1)(x+2)(x-1)(x-2) is an even function and thus h = -1.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

