

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials [1.7]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20	
Supplementary Questions	Pg 21 – Pg 37	

Section A: Compulsory Questions

<u>Sub-Section [1.7.1]</u>: Applying Factor and Remainder Theorems

Ouestion	1
Question	ı

- **a.** State the remainder when $x^3 3x + 2$ is divided by x 3.
- **b.** State the remainder when $x^4 + 2x + 1$ is divided by 2x + 2.
- **c.** Is x 3 a factor of $f(x) = x^3 8x + 3$?

Question 2

Let $f(x) = ax^3 + 4x + 1$. Find the value of a such that f(x) has a factor of 2x + 1.

ONTOUREDUCATION VCE Methods ¾ Questions? Message +61 440 138 726

Question 3

b. Tech-Active.

Let $g(x) = ax^3 + bx^2 + cx + d$, have the following properties,

- 1. g(x) has a factor of $x^2 1$.
- 2. g(x) divided by x 2 leaves a remainder of 7.
- 3. g(x) divided by 2x + 3 leaves a remainder of -4.

Find the values of a, b, c and d.

<u>Sub-Section [1.7.2]</u>: Finding Factored Forms of Polynomials

Qı	uestion 4
Fa	ctorise the following polynomials:
a.	$8x^3 + 27$.
b.	$x^3 - 4x^2 - x + 4$.
c.	$x^3 + 2x^2 + x.$
Ev	aluate the following expression without a calculator:
d.	$7^3 - 5^3$.

Question 5

a. Let $f(x) = x^3 - 2x^2 - 5x + 6$.

i. Show that f(1) = 0.

ii. Hence, or otherwise, write f(x) in the form f(x) = (x - a)(x - b)(x - c) for integers a, b, c.

b. Factorise $g(x) = x^3 - 2x^2 - 9x + 18$.

c. Find all of the real roots of $h(x) = x^3 + 2x^2 - 29x - 30$.

d. Tech-Active.

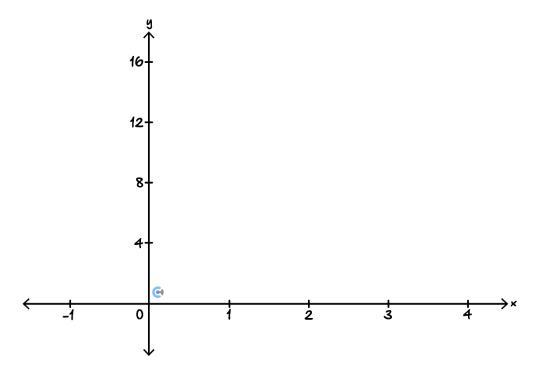
Factorise $P(x) = 6x^5 + 11x^4 - 49x^3 - 41x^2 + 115x - 42$.

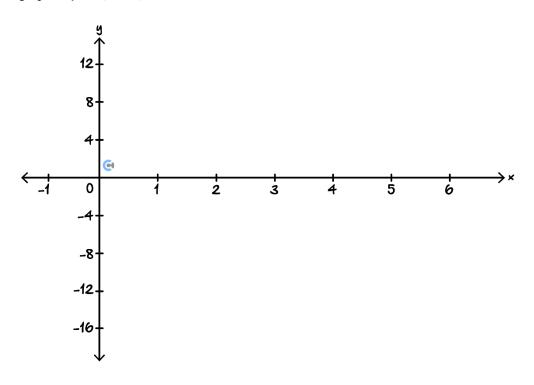
Question 6

- **a.** Let $f(x) = 9x^3 54x^2 x + 6$.
 - i. According to the rational root theorem, what are the possible rational roots of f?

ii. Hence, or otherwise, find all of the roots of f.

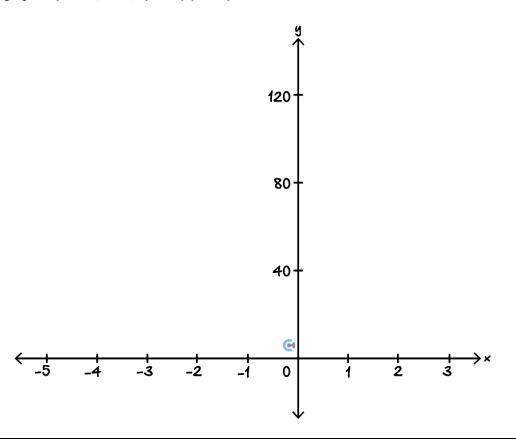
b. Show that the polynomial $P(x) = x^3 - 5$ has no rational roots. c. Consider $f(x) = x^3 + \frac{7x^2}{4} + \frac{7x}{2} - 1$. It is known that f has only positive roots. Factorise f(x). Hint: To apply the rational root theorem all of your polynomial coefficients must be integers.



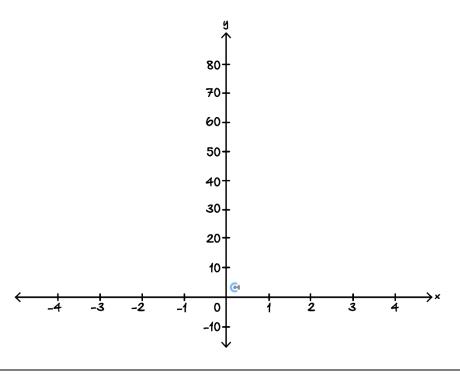

Sub-Section [1.7.3]: Graphing Factored and Unfactored Polynomials

Question 7

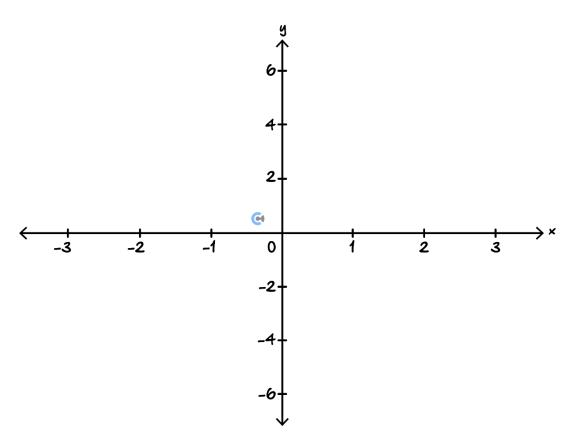
a. Sketch the graph of $y = (x - 2)^4 - 1$ on the axis below.



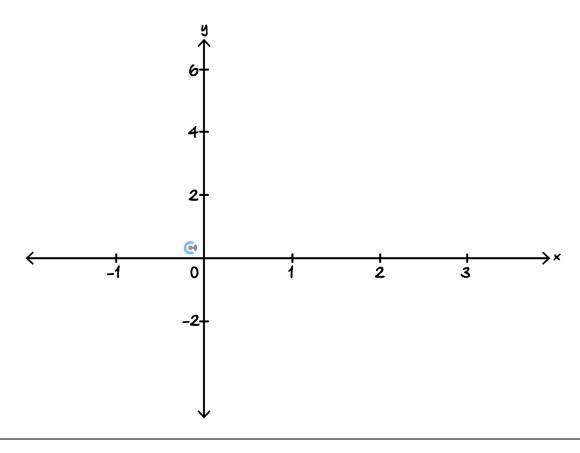
b. Sketch the graph of $y = (x - 3)^3 - 8$ on the axis below.


c. Sketch the graph of y = 3(x - 2)(x - 1)(x + 5) on the axis below.

Question 8

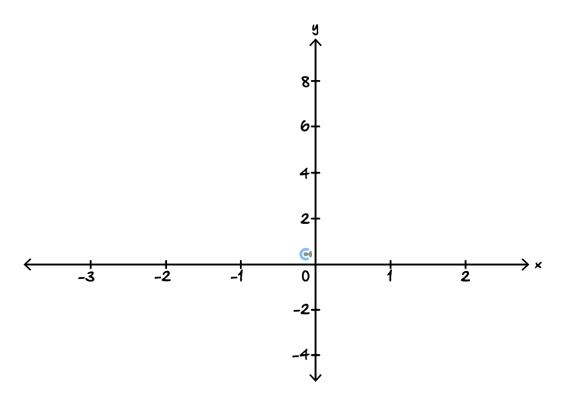


a. Sketch the graph of $y = (x^2 - 9)^2 - 4$ on the axis below, labelling axis intercepts with their coordinates.

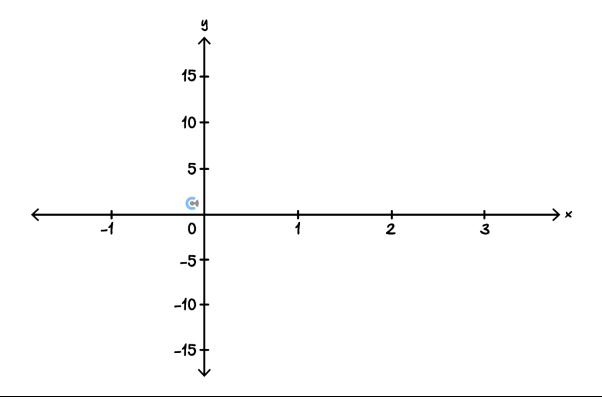


b. Sketch the graph of $y = x(x^2 - 5)$ on the axis below, labeling axis intercepts with their coordinates.

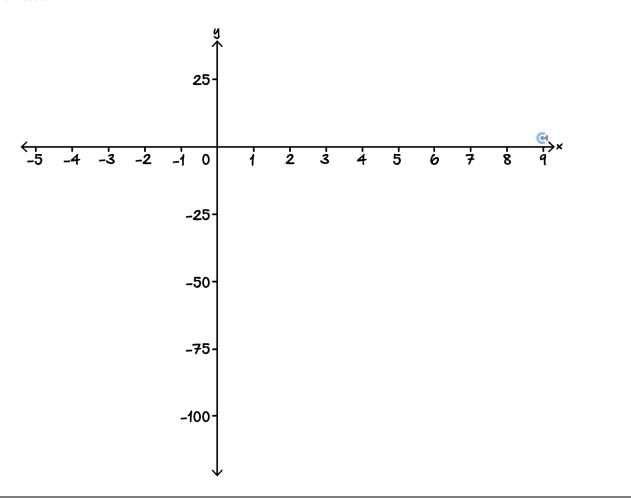
c. Sketch the graph of $y = x^3 - 4x^2 + x + 6$ on the axis below, labeling axis intercepts with their coordinates.



Question 9

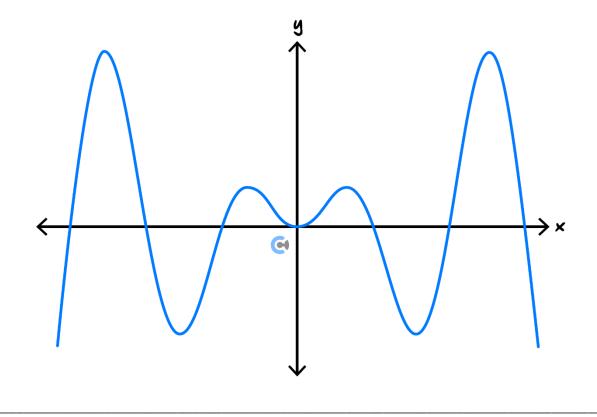


a. Sketch the graph of $y = x^3 + x^2 - 5x + 3$ on the axis below, labeling axis intercepts with their coordinates.

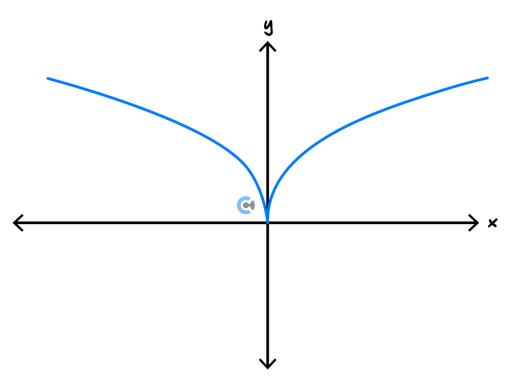

b. Tech-Active.

Sketch the graph of $y = x(x-2)^3(x+1)^3(x-3)$ on the axis below, labeling axis intercepts with their coordinates.

c. Sketch the graph of $y = 5 + 4x - 31x^2 + 6x^3$ on the axis below, labeling axis intercepts with their coordinates.



Sub-Section [1.7.4]: Identify Odd and Even Functions


Question 10

- **a.** Let f(x) be an even function and g(x) be an odd function.
 - i. State whether f(g(x)) is an even or an odd function.
 - ii. State whether $f(x) \times g(x)$ is an even or an odd function.

b. Part of the graph of f(x) is drawn below. State whether f is an odd or an even function.

c. Part of the graph of $y = x^{\frac{m}{n}}$ is drawn below where m and n are co-prime.

State whether m and n are even or odd.

CONTOUREDUCATION

Question 11

a. Let $f(x) = (x-3)^3 + 5$.

Describe a sequence of transformations that map the graph of f onto the graph of an odd function.

b. Show that $P(x) = 2(x^4 + 3x^2 - 1)^3 - 5$ is an even function.

c. Consider the function f(x). It is known that f(x + 2) is an even function.

If f(-1) = 3, f(7) = 5, and f(3) = 7, find the value of 2f(-3).

ONTOUREDUCATION

Question 12

a. Let f(x) be an even function and g(x) be an odd one-to-one function.

If f(3) = 5, g(1) = 3, and g(3) = 4. Find $f(-3) + g^{-1}(-3)$.

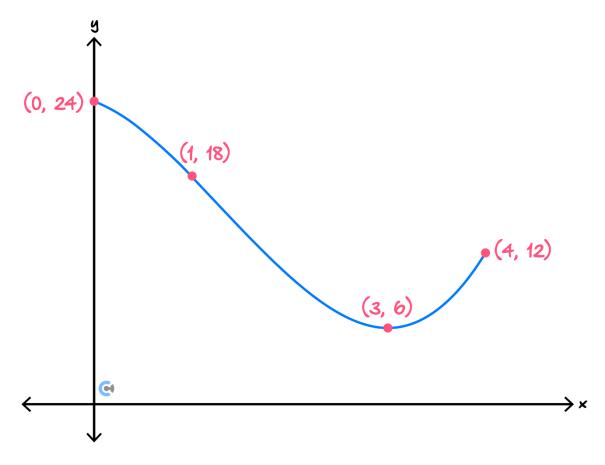
b. Tech-Active.

Let $f(x) = x^3 - 9x^2 + 7x$.

A transformation T(x, y) = (x + a, y + b) maps the graph of f(x) onto the graph of an odd function g. Find the values of a and b.

c. James says that he's found a function, f(x) that is both odd and even.

Show that f(x) = 0 for all real x.



Sub-Section: Boss Question

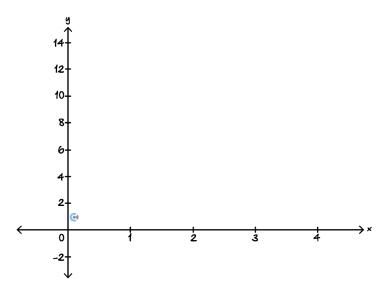
Question 13

Samuel is building a ramp to throw students off who do not complete their homework.

The cross-section of the ramp is modelled by a function $f:[0,4] \to \mathbb{R}$, $f(x) = ax^3 + bx^2 + cx + d$. The graph of f is shown below.

a. Find the values of a, b, c and d.

b. f(x) can be written as f(x) = g(x)(x-3) + r where r is an integer.


i. State the degree of g.

ii. State the value of r.

Samuel installs a ladder for the students to climb up to the top of the ramp. The cross-section of the ladder is given by the function $L: [0,4] \to \mathbb{R}, L(x) = 24 - 6x$.

c. Solve f(x) = L(x) for x.

d. Sketch the graph of f(x) - L(x) on the axis below, labeling axis intercepts and end-points with their co-ordinates.

Le	t $h(x)$ have the same rule as $f(x)$ but have a domain of all real numbers.
e.	How many solutions does the equation $h(x) = 1$ have?
f.	Find a value of a such that $h(x) = a$ has exactly two solutions.
g.	Describe a sequence of translations that map the graph of h onto the graph of an odd function.
Sp	pace for Personal Notes

Section B: Supplementary Questions

<u>Sub-Section [1.7.1]</u>: Applying Factor and Remainder Theorems

Question 14

- **a.** State the remainder when $x^2 + 5x 3$ is divided by x + 2.
- **b.** Is x 2 a factor of $f(x) = x^4 16$?
- **c.** Is x + 4 a factor of $g(x) = x^3 + 4x^2 + 2$?

Question 15

Let $f(x) = 2x^3 + ax^2 + ax + 3$. Find the value of a such that f(x) has a factor of 2x + 3.

Question 16	
Let $f(x) = x^2 + ax + b$. Find the values of a and b such t $2x - 3$, it has a remainder of -5 .	that f has a factor of -1 , and when f is divided by

Question	17

לנונו

A cubic polynomial, g(x) has the following properties.

- 1. g(x) 3 has a factor of $(x 2)^2$.
- 2. g(x) divided by $x^2 1$ leaves a remainder of 2.

Find the rule for g(x).

<u>Sub-Section [1.7.2]</u>: Finding Factored Forms of Polynomials

Question 18

Factorise the following polynomials:

a. $x^3 - 8$.

b. $x^3 - 7x^2 + 10x$.

c. $x^3 + 3x^2 - 4x - 12$.

Question 19

a. Factorise $f(x) = x^3 + x^2 - 17x + 15$.

b. Factorise $g(x) = x^3 - 4x^2 + x + 6$.

c. Find all of the real roots of $h(x) = x^3 - 3x^2 + 4$.

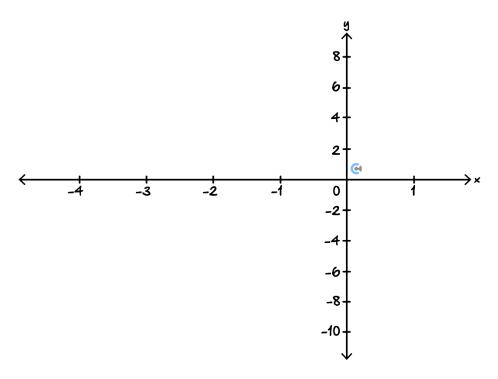
Question 20

a. Factorise $f(x) = x^3 - 5x^2 - 29x + 105$.

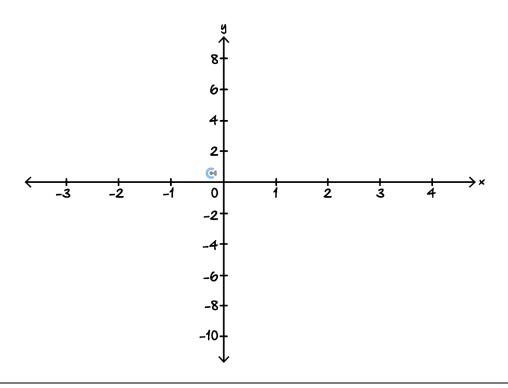
b. Factorise $g(x) = 18x^3 - 3x^2 - 28x - 12$.

VCE Methods 3/4 Questions? Message +61 440 138 726

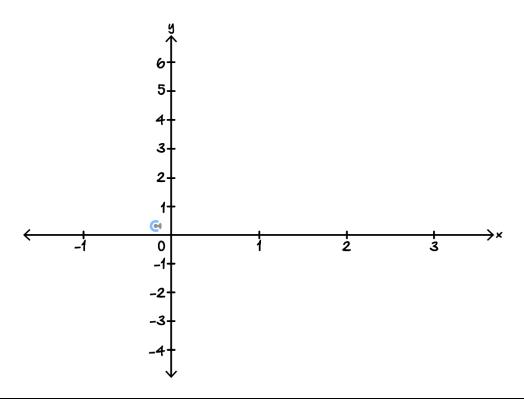
Question 21
Let $f(x) = ax^2 + bx + c$ with a, b, c being co-prime non-zero integers, and assume that $\frac{p}{q}$ is a root of f with p and q co-prime and both non-zero.
a. Show that <i>p</i> divides <i>c</i> .
b. Show that q divides a .
c. If a, b, c are not co-prime integers, where would your arguments for parts a and b breakdown?



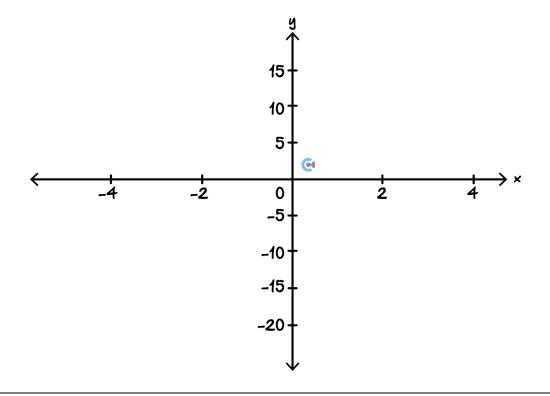
Sub-Section [1.7.3]: Graphing Factored and Unfactored Polynomials


Question 22

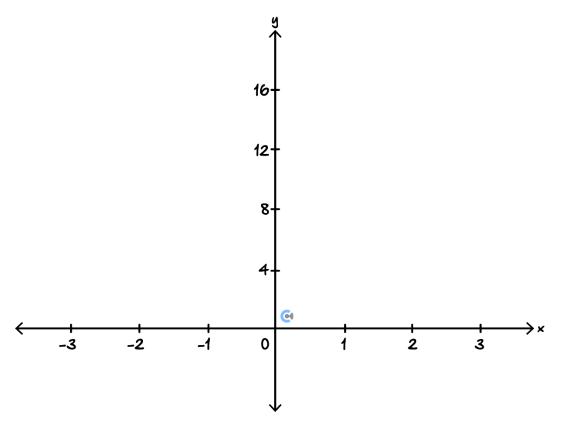
a. Sketch the graph of $y = (x + 2)^3 - 1$ on the axis below.



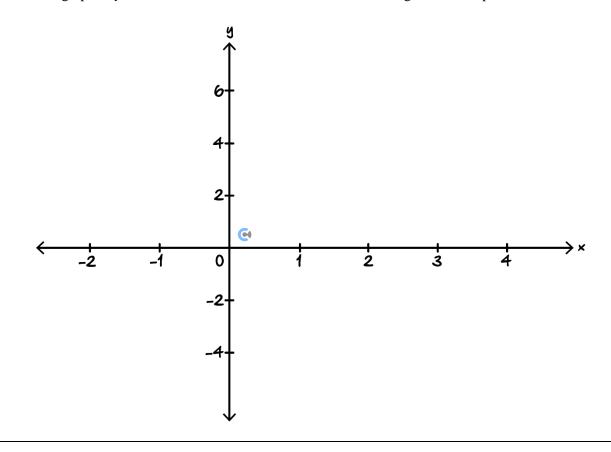
b. Sketch the graph of y = x(x-1)(x+2)(x-3) on the axis below.


c. Sketch the graph of $y = 2(x - 1)^3 + 2$ on the axis below.

Question 23

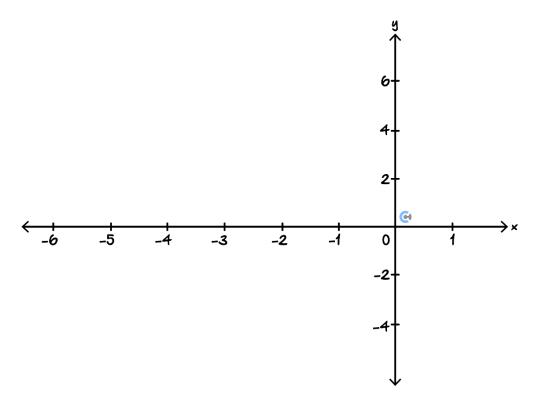


a. Sketch the graph of $y = x^3 + 2x^2 - 11x - 12$ on the axis below, labeling axis intercepts with their coordinates.



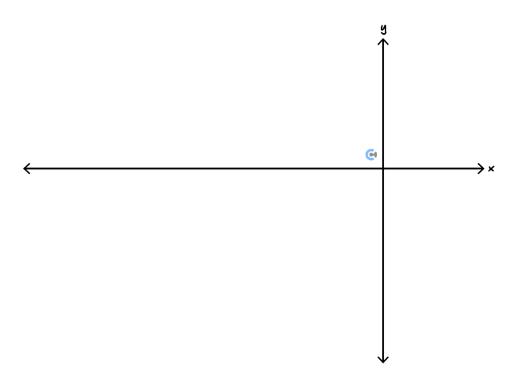
b. Sketch the graph of $y = x^4 - 8x^2 + 16$ on the axis below, labeling axis intercepts with their coordinates.

c. Sketch the graph of $y = x^3 - 4x^2 + x + 6$ on the axis below, labeling axis intercepts with their coordinates.

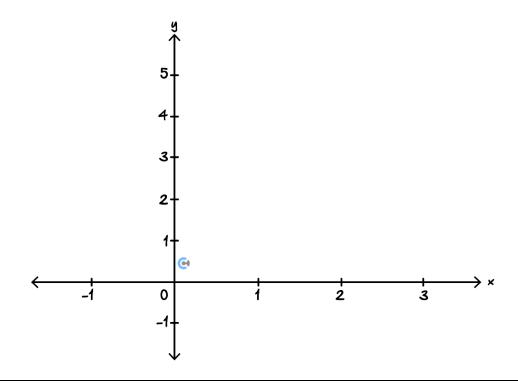


Question 24

a. Sketch the graph of $y = x^3 + 8x^2 + 16x + 5$ on the axis below, labeling axis intercepts with their coordinates.

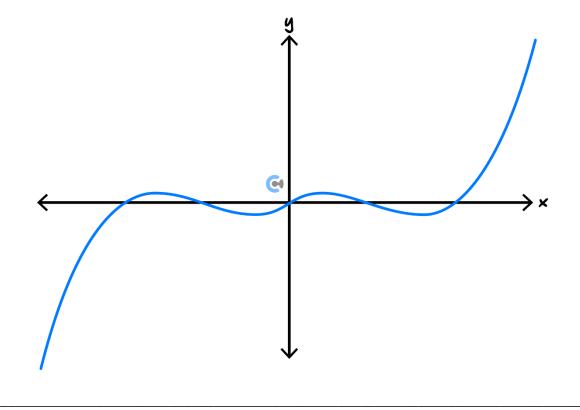


b. Sketch the graph of $y = x^2(2x - 3)^3(x + 1)^2$ on the axis below, labeling axis intercepts with their coordinates.

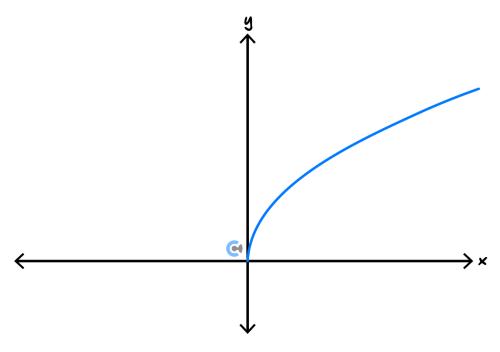

c. Sketch the graph of $y = x^4 + 5x^3 + 3x^2 - 7x - 2$ on the axis below, labeling axis intercepts with their coordinates.

Question 25

Let $f_k(x) = x^4 - 4x^3 + 4x^2 + k$. By considering f_0 and f_{-1} , sketch the graph of f_2 on the axis below, labeling axis intercepts and turning points with their coordinates.



Sub-Section [1.7.4]: Identify Odd and Even Functions


Question 26

- **a.** Let f(x) and g(x) both be an odd functions.
 - i. State whether f(x) + g(x) is an even or an odd function.
 - ii. State whether $(f(x))^2 + 2f(x)g(x) + (g(x))^2$ is an even or an odd function.

b. Part of the graph of f(x) is drawn below. State whether f is an odd or an even function.

c. Part of the graph of $y = x^{\frac{m}{n}}$ is drawn below where m and n are co-prime.

State whether m and n are even or odd.

ONTOUREDUCATION VCE Methods ¾ Questions? Message +61 440 138 726

Question 27

a. Show that $f(x) = x^4 - 2x^3$ is neither an even nor an odd function.

b. Describe a translation that maps the graph of $y = x^2 + 6x + 7$ onto the graph of an even function.

c. Consider the function f(x). It is known that f(2x + 3) is an odd function.

If f(5) = 4 and f(-1) = -3, find the value of f(1).

Question 28

a. Let f(x) be a strictly increasing function with f(0) = 0.

If $(f(x))^2$ is an even function, show that f(x) is an odd function.

b. Let $f(x) = x^4 + 2x^3 + x^2$.

Describe a transformation that maps the graph of f onto the graph of an even function.

c. Let f(x) be an even function. The function,

$$g(x) = \begin{cases} f(x) + c & x \ge 0 \\ -f(x) + d & x < 0 \end{cases}$$

is an odd function.

Find the values of c and d.

 _		

Question 29

Let $f(x) = x^4 - 4x^3 + x^2 + 6x + k$, where k is a real number.

The function g(x) = f(x - h) is an even function. Find the value of h.

_	 	 	 	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

