

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry Exam Skills [1.6]

Workbook

Outline:

<u>Recap</u>	Pg 02-15		
Warm-Up Test	Pg 16-19	Exam 1 Questions	Pg 26-30
Coordinate Geometry Exam Skills Reflect a Point Around a	Pg 20-25	Tech-Active Exam Skills	Pg 31-33
 Vertical/Horizontal Line Reflect a Point Around a Line Application of Angle Between Two 	Lines	Exam 2 Questions	Pg 34-39

Learning Objectives:

MM34 [1.6.1] - Apply midpoint to find a reflected point.

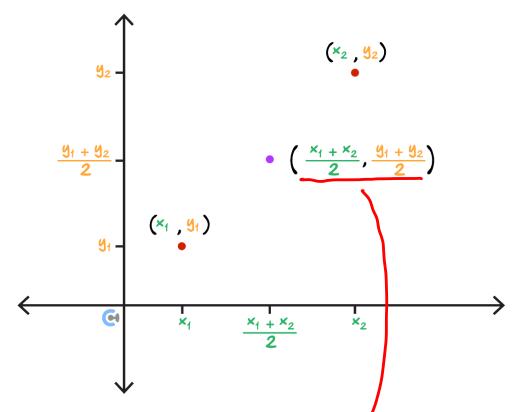
MM34 [1.6.2] - Find the angle between a line and x-axis or two lines.

Section A: Recap

All the students who were here last week, skip to section B: Warm-Up Test!

Definition

Midpoint



The midpoint, M, of two points A and B is simply the point halfway between A and B.

$$M(x_m, y_m) = ($$

The midpoint can be found by taking the ______ of the x-coordinate and y-coordinate of the two points.

Distance Between Two Points

The distance between two points (x_1, x_2) and (y_1, y_2) can be found using Pythagoras' theorem:

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Find the points on the line y = 2x - 6 which has a distance of $\sqrt{5}$ from the point (2, 1).

<u>Horizontal Distance</u>

Horizontal Distance = $\lambda \iota - \lambda_1$ where $x_2 > x_1$

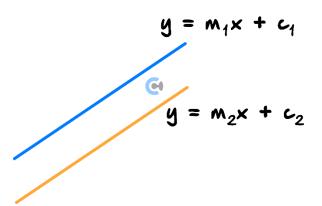
Find the difference between their x-values.

Vertical Distance

Vertical Distance= $y_1 - y_1$ where $y_2 > y_1$

Find the difference between their y-values.

Parallel Lines

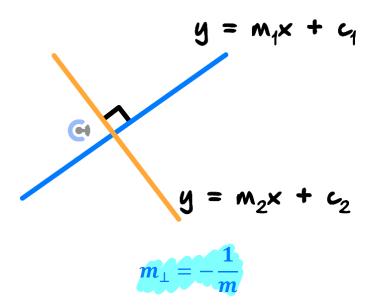


Parallel lines have the same gradient.

$$m_1 = m_2$$

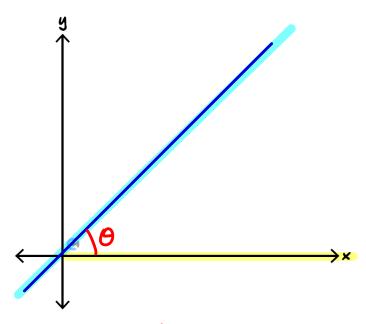
Find a line that is parallel to y = 3x - 1 passing through the point (-2, 6).

Perpendicular Lines



Find a line that is perpendicular to y = 3x - 1 passing through the point (1, 0).

Angle Between a Line and the x-axis

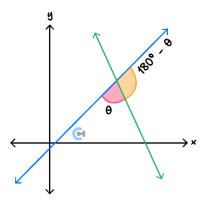


The angle between a line and the _______ fit x direction of the x-axis (anticlockwise) is given by:

$$tan(\theta) = m$$

Find the angle made between the line y = -x + 2 and the x-axis measured in the anticlockwise direction.

Acute Angle Between Two Lines



$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

Alternatively:

$$an(heta) = egin{bmatrix} m_1 - m_2 \\ \hline 1 + m_1 m_2 \end{bmatrix}$$

• For your understanding, note that this formula is derived from the tan compound angle formula covered in SM34.

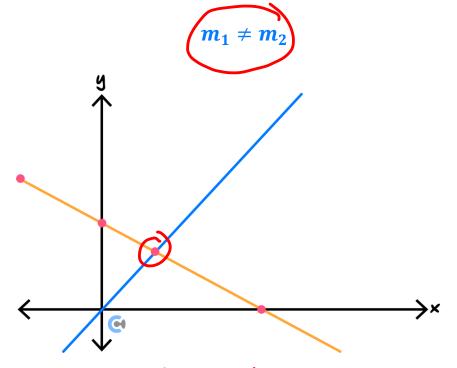
NOTE: |x| just takes the positive value of x.

Question 5 Tech-Active.

Find the acute angle between the lines x - 3y = 2 and $y = \frac{4}{5}x - 2$. Give your answer in degrees correct to two decimal places.

Exploration: Geometry of the Number of Solutions Between Linear Graphs

Unique Solution

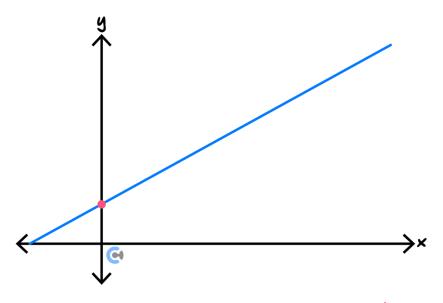


They just need to have different *'S

CONTOUREDUCATION

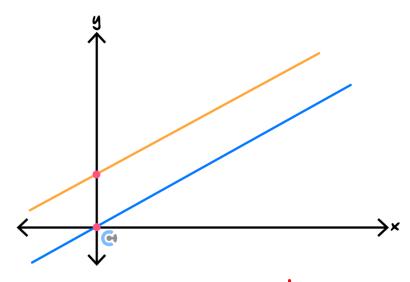
Infinite Solutions

$$m_1 = m_2 \text{ AND } c_1 = c_2$$



- They just need to have the same _____ and the same _____.
- No Solutions

$$m_1 = m_2 \text{ AND } c_1 \neq c_2$$



- They need to have the $\frac{5a^{2}}{c}$ but $\frac{diff}{diff}$ +c.
- They have to be two different _______ lines.

General Solutions of Simultaneous Linear Equations

- Two linear equations are either:
 - The same line is expressed in a different form. In this case, they have infinitely many solutions.
 - Unique lines that are parallel. In this case, they have no solutions.
 - Unique lines which are not parallel. In this case, they have exactly one solution.

Space for Personal N	otes		

Consider the following pair of simultaneous equations in terms of $a \in \mathbb{R} \setminus \{0\}$:

$$ax + 3y = 1$$

$$2x + (a+1)y = 1$$

a. Find the value of α for which there are no solutions to the simultaneous equations.

b. Find the value(s) of a for which there is a unique solution to the simultaneous equations.

c. Find the value of α for which there are infinite solutions to the simultaneous equations.

Solving Systems of Linear Equations with Parameters

Occurs when solving for three variables with two equations. We simply,

$$O$$
 Let $x = k$, or

$$\bigcirc$$
 Let $y = k$, or

Let
$$y = k$$
, or
Let $z = k$

And solve simultaneously.

Solve the following system of linear equations with the parameter of k.

$$k + 3z = 1$$

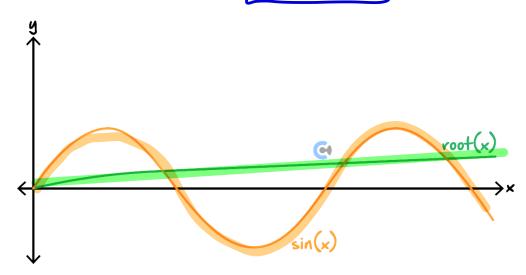
$$k+y=2$$

Definition

Addition of Ordinates

- Definition:
 - G Technique used to graph the sum/difference of two functions.

$$e. g. y = \sin(x) + \sqrt{x}$$



> The addition of ordinates involves adding the ______ of two functions.

Add two y-values

- Steps to sketching f(x) + g(x):
 - **1.** Sketch f(x) and g(x) on the same axes.
 - 2. Plot points for f(x) + g(x) by adding the **y-values** of f(x) and g(x).
 - \blacktriangleright At x-intercepts, the sum equals to the **other forcin**. Why?
 - \blacktriangleright At intersections, the sum equals to <u>double</u> the y-value. Why?
 - When functions are equidistant from x-axis, the sum equals to 0. Why?
 - **3.** Join the plotted points.

Question 8

Plot the sum of the two functions given below, using the addition of ordinates.

Section B: Warm-Up Test (15 Marks)

INSTRUCTION: 15 Marks. 15 Minutes Writing.

Question 9 (3 marks)

Given that the distance between point A(3,4) and point B(m,2) is 3 units, find the possible values of m.

$$H_{2} = \underbrace{6 \pm \sqrt{36-1.4}}_{L}$$

$$= \underbrace{6 \pm \sqrt{30}}_{L}$$

$$= \underbrace{6 \pm \sqrt{30}}_{L}$$

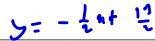
Question 10 (3 marks)

Find the equation of the line that passes through (2, 1) and is perpendicular to a line that makes an angle of 60° with the positive direction of the x-axis.

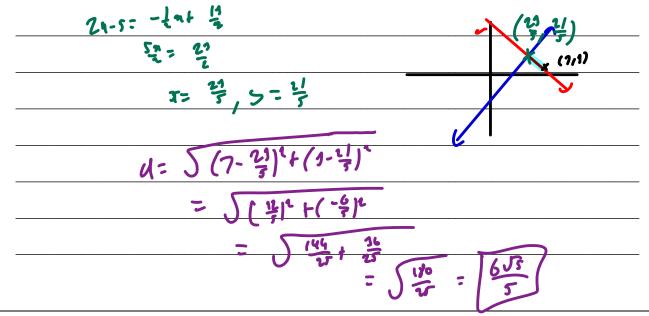
Question 11 (4 marks)

Sarah is standing at point Q(7,3) and wants to walk to the road, which is described by y = 2x - 5. But Sarah wants to reach the road by covering the least amount of distance possible.

a. Find the equation of the line that is perpendicular to $y \ne 2x - 5$ and passes through the poin Q(7,3). (2 marks)



b. Hence, find the shortest distance that Sarah can travel to reach the road. (2 marks)



Question 12 (5 marks)

Consider the simultaneous linear equations:

$$kx + 4y = 6$$
 $2x + (k-2)y = 3$
 $y = -\frac{ky}{y} + \frac{2}{k-2}$

Where k is a real constant.

a. Find the values of k for which there is a unique solution to the simultaneous equations. (2 marks)

mitm

k+-2,4 :.kER14-2,4)

b. Find the values of k for which there are infinitely many solutions. (2 marks)

h = 4

c. Find the values of k for which there are no solutions. (1 mark

Section C: Coordinate Geometry Exam Skills

Sub-Section: Reflect a Point Around a Vertical/Horizontal Line

Exploration: Reflection of a Point Around a Vertical/Horizontal Line

Consider a point reflected around y = 3.

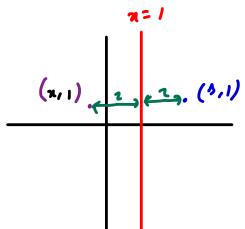
- What do you notice about their midpoint?
- What equation can we construct?

Definition

Reflection of a Point Around a Vertical/Horizontal Line

Midpoint must be on the line of reflection.

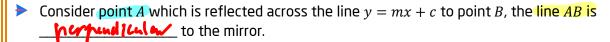
Find the reflection of (3, 1) around x = 1.



Sub-Section: Reflect a Point Around a Line

How about non-vertical/horizontal lines?

Exploration: Reflection of a Point in a Line

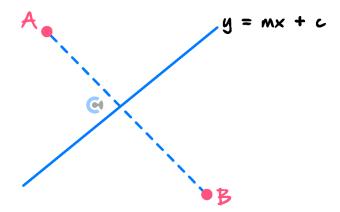




- \blacktriangleright The distance between A and the line is $\underline{\qquad}$ to the distance between the line and point B.
- Where would the midpoint of A and B lie?

ONTOUREDUCATION

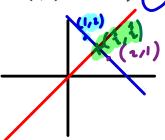
Finding the Reflection of a Point in a Line:



- > Steps:
 - 1. Find the perpendicular line passing through the point.
 - 2. Find the intersection between the original line and the perpendicular line.
 - **3.** Find the reflected point (x, y) by treating the intersection from **2.** as the midpoint between the original and reflected point.

Question 14 Walkthrough.

Find the reflection of (1, 2) in the line $y \neq x$



Perrendicular Lim

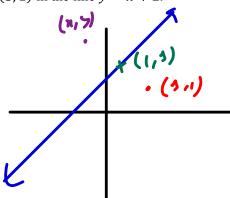
27 -114 C= 3 In tespection:

7: -4f: 2n=3 n: i

Active Recall: Steps for Finding the Reflection of a Point in a Line

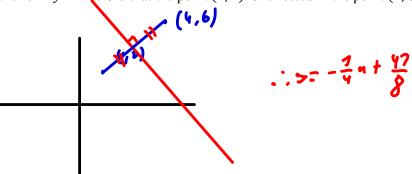
- 1. Find the ______ line passing through the point.
- 2. Find the ______ between the original line and the perpendicular line.
- **3.** Find the reflected point (x, y) by treating the intersection from **2.** as the _____ between the original and reflected point.

Find the reflection of (3, 1) in the line y = x + 2.



Question 16 Extension.

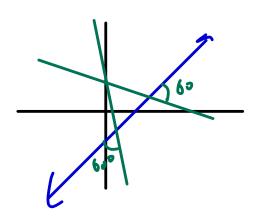
Find the equation of the line in the form y = mx + c that the point (1, 2) is reflected in the point (4, 6).



Sub-Section: Application of Angle Between Two Lines

Question 17 Walkthrough.

It is known that the angle between y = x - 1 and y = mx + 1 is given by 60°. Find the value(s) of m.



$$\begin{cases}
4n (60) = \int \frac{1-A}{1+A} \int \\
1 + A = -2 + \sqrt{3}
\end{cases}$$

$$H = -2 + \sqrt{3}$$

Question 18

It is known that the angle between y = 4x - 3 and y = mx + 5 is given by 45°. Find the value(s) of m.

Section D: Exam 1 Questions (16 Marks)

Question 19 (5 marks)

Consider the simultaneous linear equations:

$$(k+1)x + 3y = 6$$

 $4x + (k-3)y = 4$

9: $\frac{(k+1)x}{3}$

4: $\frac{y}{k-1}$

Where k is a real constant.

a. Find the values of k for which there is a unique solution to the simultaneous equations. (2 marks)

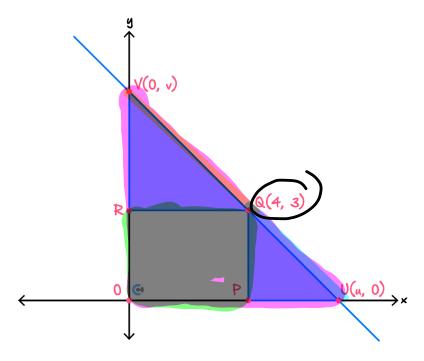
b. Find the value of k for which there are infinitely many solutions. (2 marks)

c.	Find the value of k for which there are no solutions. (1 mark) $k = -3$

Space for Personal Notes	

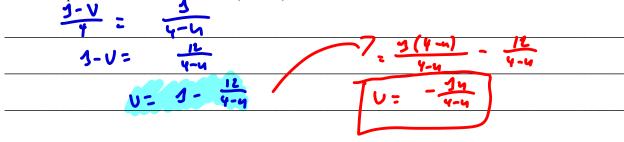
Question 20 (3 marks)

Consider the diagram below:



The rectangle OPQR has a vertex Q(4,3) on the line that passes through U and V.

a. Find an expression for v in terms of u. (1 mark)



b. Hence, find an expression for the shaded area in terms of u. (2 marks)

A= ZX4x	- 30 - 12
	- 342 -12 8-24
-	8-2h

Question 21 (6 marks)

The point P(5,2) is reflected in the line y = 2x - 3 to become the point P'.

a. Find the coordinates of P'. (3 marks)

5= - 146	(-1)/
:: 5= - late	(3/3)
24-1= - 24+9	U

ひったったりも	
In : I	歌: - 1, 21:1
.; n=1	2. a=1, 5=4
	.; P'(1,4)

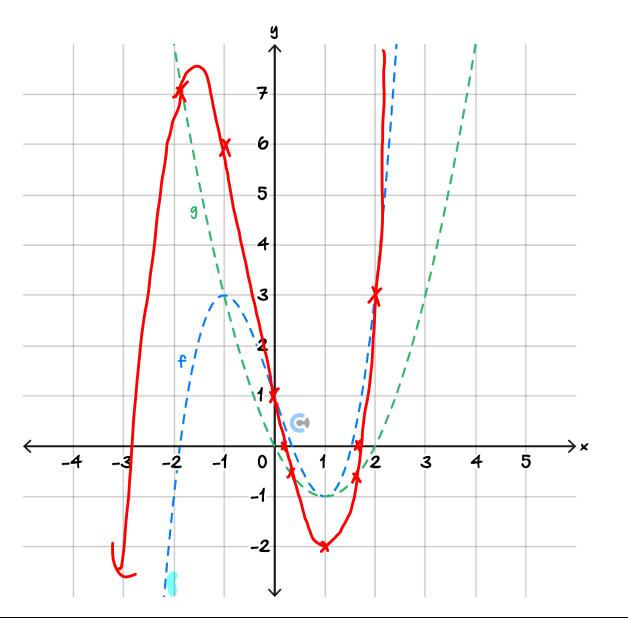
b. Find the minimum distance between the point P and the line y = x - 1. (3 marks)

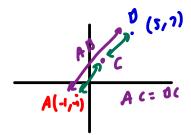
(4,4) 7 5 = -4+7
(5,1) X:4
u= \((5-4)^ +(2-1)^2
- 152

Question 22 (2 marks)

(1.6)

The graphs of f and g are sketched on the axes below. Sketch the graph of f + g on the same axes.





Section E: Tech-Active Exam Skills

Calculator Commands: Simultaneous Equations on CAS

System of Linear Equations

Example:

The simultaneous linear equations ax - 3y = 5 and 3x - ay = 8 - a have no solution for:

- A. a = 3
- B. a = -3
- C. Both a = 3 and a = -3.
- D. $a \in R \setminus \{3\}$
- $\mathsf{E.} \quad a \in R \setminus [-3,3]$

system_solve
$$(a \cdot x - 3 \cdot y = 5, 3 \cdot x - a \cdot y = 8 - a, a)$$

Solving: $\begin{bmatrix} a \cdot x - 3 \cdot y = 5 \\ 3 \cdot x - a \cdot y = 8 - a \end{bmatrix}$

Unique Solution: $a \neq -3$ and $a \neq 3$

No Solutions: $a = -3$

Infinite Solutions: $a = 3$

Overview:

This program takes two linear equations and a parameter and finds the parameter values for the system to obtain a unique solution, no solution, or infinite solutions.

Input:

system_solve(< equation 1 >, <
equation 2 >,
< parameter >)

Other Notes:

The program can only handle one parameter.

➤ Or menu – 3 – 7.

UDF line functions:

Normal Line

normal_line
$$(x^3-x,x,2)$$

Derivative: $3 \cdot x^2-1$

Gradient: 11

Perpendicular Gradient: $\frac{-1}{11}$

Passes Through: $\begin{bmatrix} 2 & 6 \end{bmatrix}$
 x -Intercept: $\begin{bmatrix} 68 & 0 \end{bmatrix}$

Vertical Intercept: $\begin{bmatrix} 0 & \frac{68}{11} \end{bmatrix}$

Normal Line: $\frac{68}{11} - \frac{x}{11}$

Overview:

This program will find all the necessary information related to a normal line at a point on a function, which includes:

- The derivative.
- The gradient and perpendicular gradient.
- The point on the function the normal line passes through.
- The axis intercepts of the normal line.
- > The equation of the normal line.

Input:

normal_line(< function >,< variable >,
< x point >)

Tangent Line

tangent_line
$$(x^3-x,x,2)$$

Derivative: $3 \cdot x^2-1$

Gradient: 11

Passes Through: $\begin{bmatrix} 2 & 6 \end{bmatrix}$
 x -Intercept: $\begin{bmatrix} \frac{16}{11} & 0 \end{bmatrix}$

Vertical Intercept: $\begin{bmatrix} 0 & -16 \end{bmatrix}$

Tangent Line: $11 \cdot x - 16$

Overview:

This program will find all the necessary information related to a tangent line at a point on a function, which includes:

- The derivative.
- The gradient of the tangent line.
- The point on the function the tangent line passes through.
- The axis intercepts of the tangent line.
- The equation of the tangent line.

Input:

tangent_line(< function >,< variable >,
< x point >)

Calculator Commands: Finding the Angle Between Two Lines

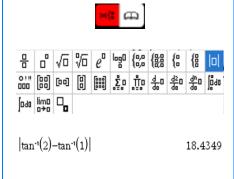
 \blacktriangleright The angle between two lines with gradients m_1 and m_2 respectively is

$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

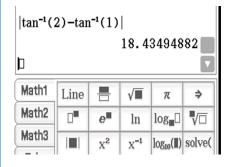
- Mathematica
 - Use the Abs[] function.

In[126]:= Abs[ArcTan[2] - ArcTan[1]] / Degree // N
Out[126]= 18.4349

- TI-Nspire
 - G Find the modulus sign.



- Casio Classpad
 - Modulus sign under Math1.



Calculator Commands: Finding the Gradients of Lines Given the Angle They Make

If we know the angle and one of the gradients m_1 or m_2 then we can find the other gradient by Solving,

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

- e.g. Find the gradient of the line that makes an angle of 60° with y=-x.
- Mathematica

- TI-Nspire
 - Find the modulus sign.

- Casio Classpad
 - Modulus sign under Math1.

Section F: Exam 2 Questions (13 Marks)

Question 23 (1 mark)

The perpendicular bisector of the points (3,6) and (7,-4) is:

A.
$$y = -x + 2$$

B.
$$y = \frac{2}{5}x - 1$$

C.
$$y = -\frac{5}{2}x + 1$$

D.
$$y = x + \frac{2}{5}$$

Question 24 (1 mark)

It is known that the lines y = mx + 4 and y = 3x - 5 make an angle of 45° when they intersect. The possible values of m are:

A.
$$m = -\frac{1}{2}$$
 only

B. m = 2 only

C.
$$m = -2, \frac{1}{2}$$

D.
$$m = -2, -\frac{1}{2}$$

Question 25 (1 mark)

The simultaneous linear equations:

$$2x - (k+3)y = 8$$

$$(2-k)x - 2y = 3$$

Where k is a real constant that has no solutions for:

- **A.** k = 1 only
- **B.** k = -2 only
- C. k = -2, 1
- **D.** $k \in \mathbb{R} \setminus \{-2, 1\}$

Question 26 (1 mark)

The acute angle made between the lines y = 2x - 3 and y = -x + 1 correct to the nearest degree is:

- **B.** 70
- **C.** 72
- **D.** 51

Question 27 (1 mark)

The simultaneous linear equations:

$$(k+1)x - 3y = 1 \quad 0 \le x \le 1$$

$$4x - (k+5)y = 1, 0 \le x \le 1$$

Where k is a real constant always has exactly one solution for:

unique sol,

A. k > 1

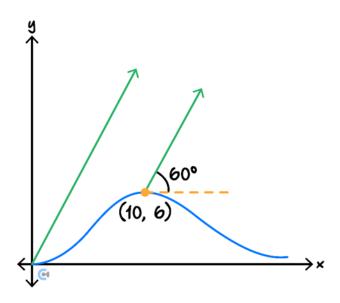
B. k > -6

C. $k \in [-6, \infty) \setminus \{1\}$

D. $k \ge -7$

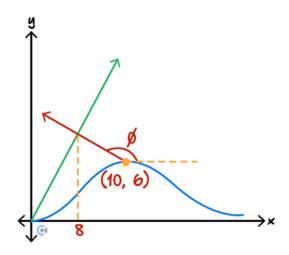
Question 28 (8 marks)

Emma is riding a bicycle on a hill, which starts from the origin as shown in the diagram. When she reaches the point (10, 6), she fires a laser at an angle of $\theta = 60^{\circ}$ above the horizontal. Meanwhile, David fires a laser from the origin that is parallel to Emma's laser such that both lasers travel together through space.



a. Find the shortest distance between the two laser paths. Give your answer correct to two decimal places. (3 marks)

Emma now changes the direction in which she fires her laser.



b. At what angle, \emptyset , should Emma have fired her laser such that the two lasers would intersect at x = 8? Give your answer correct to two decimal places. (3 marks)

c. Calculate the acute angle between these two laser paths when they intersect. Express your answer in degrees correct to two decimal places. (1 mark)

a.	Give your answer correct to two decimal places. (1 mark)	
	 	
	-	
<u>۔</u>	and for Demonstral Notes	
2b	ace for Personal Notes	

Contour Check

<u>Learning Objective</u>: [1.6.1] - Apply Midpoint to Find a Reflected Point.

Key Takeaways			
☐ The line between a point and its reflection is to the line it is reflected in.			
☐ The of a line and its reflection lies on the line it is reflected in.			
□ Steps for Finding the Reflection of a Point in a Line			
Find the line passing through the point.			
Find the between the original line and the perpendicular line.			
• Find the reflected point (x, y) by treating the intersection from 2 . as the between the original and reflected point.			
<u>Learning Objective</u> : [1.6.2] – Find the Angle Between a Line and x -axis or Two Lines.			
Key Takeaways			
$lue{}$ To find the angle between a line and the x -axis, we can use equation $m=$			
lacksquare To find the angle between two lines, we can use $ heta=$ or			
$tan(\theta) = $			

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Consults

What are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

