

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry Exam Skills [1.6]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20
Supplementary Questions	Pg 21 — Pg 41

Section A: Compulsory Questions

Sub-Section [1.6.1]: Apply Midpoint to Find a Reflected Point

Question 1	
Find the reflection of the point (4, 2) about the line $x = 6$.	
(8,2)	

Question	2
Z	_

The point (2,3) is reflected in the line y=b to become the point (2,9). Find the value of b.

b = 6

Find the perpendicular bisector between the points (3,6) and (-2,-9).

Midpoint is $\left(\frac{1}{2}, -\frac{3}{2}\right)$ and the line joining the points is y = 3x - 3.

So we want a line with gradient $-\frac{1}{3}$ through the point $\left(\frac{1}{2}, -\frac{3}{2}\right)$. Therefore, the perpendicular bisector is

$$y = -\frac{1}{3}x - \frac{4}{3}$$

<u>Sub-Section [1.6.2]</u>: Apply Parallel and Perpendicular Lines to Geometric Problems

Question 4

ſ

Find the equation of the line that is parallel to y = 2x + 3 that passes through the point (1, 4).

y = 2x + 2

Question 5

Find the area of the triangle formed by the lines y = x + 2, y = 8 - x and the y-axis.

Lines intersect at (3,5). Triangle base = 8-2=6 and triangle height = 3. Therefore, triangle area is $\frac{1}{2} \times 6 \times 3 = 9$

O4:	
Ouestion	n

Find the minimum distance between the line y = 3 - x and the point (4, 3).

Want the equation of line perpendicular to y = 3 - x and through the point (4,3). Therefore line with gradient 1 and through (4,3)

$$y = x - 1$$

Now y = x - 1 and y = 3 - x intersect at the point (2, 1).

Therefore, the minimum distance is the distance between the points (4,3) and (2,1)

$$d = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$

Sub-Section [1.6.3]: Solve Coordinate Geometry Problems With Transformations

Ouestion 7

The area bounded by the lines y = x, y = -x + 10 and the x-axis is 25 square units. Use this to find the area bounded by:

a. The lines y = 2x, y = -2x + 20 and the x-axis.

Both lines have been dilated by a factor of 2 from the x-axis. Therefore area is 50 square units.

b. The lines y = x - 5, y = -x + 15 and the x-axis.

Both lines have been shifted 5 units to the right. The area does not change. Therefore area is 25 square units.

c. The lines $y = \frac{2}{3}x$, $y = -\frac{2}{3}x + 20$ and the x-axis.

The lines have both undergone a dilation by factor 3 from the y-axis followed by a dilation by factor 2 from the x-axis. Therefore the bound area has increased by a factor $2 \times 3 = 6$.

The bound area is now $25 \times 6 = 150$ square units.

Find the equation of the tangent line to the transformed graphs in the following scenarios.

a. The original function is $f(x) = x^3$, and the tangent line to the graph of y = f(x) at x = 1 is y = 3x - 2. The graph of f is dilated by a factor 2 from the x-axis, then translated up by 4 units. Find the equation of the tangent to the transformed graph when x = 1.

y = 2(3x - 2) + 4. Tangent is y = 6x

b. The original function is $f(x) = \sqrt{x}$, and the tangent line to the graph of y = f(x) at x = 4 is $y = \frac{1}{4}x + 1$. The graph of f is reflected about the y-axis, then translated 3 units to the left. Find the equation of the tangent line when x = -7.

 $g(x) = \frac{1}{4}x + 1$. The tangent when x = -7 is given by

 $g(-(x+3)) = 1 + \frac{1}{4}(-x-3) = \frac{1}{4} - \frac{1}{4}x$

c. Let $f(x) = (x-2)^2 + 1$, the graph of y = f(x) has a tangent y = 2x - 4 when x = 3. Find the equation of the tangent to $y = \frac{1}{2}x^2 - 4x + 9$ when x = 6.

Let
$$g(x) = \frac{1}{2}x^2 - 4x + 9 = 2\left(\frac{1}{2}x - 2\right)^2 + 1 = 2\left(\left(\frac{1}{2}x - 2\right)^2 + 1\right) - 1$$

Therefore $g(x) = 2f\left(\frac{1}{2}x\right) - 1$

A dilation by factor 2 from the y-axis maps x = 3 to x = 6. Therefore the equation of the tangent is

$$y=2\left(2x\times\frac{1}{2}-4\right)-1=2x-9$$

Question 9

a. Find the values of a such that the area bounded by the graphs of y = x, y = -x + a and the x-axis is 9 square units.

The lines intersect at when $x = -x + a \implies x = \frac{a}{2}$. Therefore intersect at $\left(\frac{a}{2}, \frac{a}{2}\right)$. Take the triangle height as $\frac{a}{2}$, then the base is a. Solve

$$\frac{1}{2} \times \frac{a}{2} \times a = 9$$

$$a^2 = 36$$

$$a = \pm 6$$

b. Find the values of a such that the area bounded by the graphs of y = 2x, $y = -\frac{x}{2} + a$ and the x-axis is 20 square units.

The lines intersects at when $2x = -\frac{x}{2} + a \Rightarrow x = \frac{2}{5}a$. Therefore, intersect at $\left(\frac{2}{5}a, \frac{4}{5}a\right)$. Take the triangle height as $\frac{4}{5}a$, then the base is 2a.

Solve

$$\frac{1}{2} \times \frac{4}{5} a \times 2a = 20$$
$$a = \pm 5$$

c. Find the values of a such that the area bounded by the graphs of y = x + 2, y = -x + a and the y-axis is 9 square units.

The lines intersect at when $x + 2 = -x + a \implies x = \frac{a-2}{2}$. Therefore intersect at $\left(\frac{a-2}{2}, \frac{a+2}{2}\right)$. Take the triangle height as $\frac{a-2}{2}$, then the base is a-2. Solve

$$\frac{1}{2} \times \frac{a-2}{2} \times (a-2) = 9$$
$$(a-2)^2 = 36$$
$$a-2 = \pm 6$$
$$a = 8, -4$$

Sub-Section: Exam 1 Questions

Question 10

Consider the simultaneous linear equations:

$$\frac{k}{2}x + 3y = 4$$

$$6x + (2k + 1)y = 12$$

where k is a real constant.

a. Find the values of k for which there is a unique solution to the simultaneous equations.

The lines must have different gradients. Solve

$$\frac{k/2}{3} = \frac{6}{2k+1}$$

$$\implies k = -\frac{9}{2}, 4$$

$$\implies k = -\frac{9}{2}, 4$$

Therefore, unique solution for $k \in \mathbb{R} \setminus \left\{-\frac{9}{2}, 4\right\}$

b. Find the value of *k* for which there are infinitely many solutions.

The y-intercepts must be equal. Therefore solve,

$$\frac{4}{3} = \frac{12}{2k+1}$$

$$\implies k = k$$

infinitely many solutions if k = 4.

c. Find the value of *k* for which there are no solutions.

Question 11

Consider the line segment AB with coordinates A(1,0) and B(7,12).

a. Find the coordinates of M, the midpoint of AB.

M(4,6)

b. Find the equation of the perpendicular bisector of the line segment AB.

AB has gradient 2. So perpendicular bisector has gradient $-\frac{1}{2}$ and goes through M(4,6). Therefore,

$$y = -\frac{1}{2}x + 8$$

c. Let *D* be the point (16, 0). Find the area of the triangle *AMD*.

AMD is a right angled triangle.

$$|AM| = \sqrt{3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$$

$$|AM| = \sqrt{3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$$

 $|MD| = \sqrt{12^2 + 6^2} = \sqrt{180} = \sqrt{45 \times 4} = 6\sqrt{5}$

Therefore area $AMD = \frac{1}{2} \times 3\sqrt{5} \times 6\sqrt{5} = 45$

d. Let E(2,0), F(8,12) and G(32,0). Find the area of the triangle EFG.

The points, A, M, D are dilated by factor 2 from x-axis and by factor 2 from y-axis. Therefore, area $EFG = 45 \times 2 \times 2 = 180$

Question 12

The point P(2,3) is reflected in the line y = 7 - x to become the point P'.

a. Find the coordinates of P'.

Want the line with gradient 1 passing through the point P(2,3). This line is

$$y = x + 1$$

Now we find the intersection of the lines y = 7 - x and y = x + 1

$$7 - x = x + 1 \implies x = 3$$

 \therefore Intersect at $(3, 4)$

Therefore we have P'(4,5)

b. The point P can also be mapped to P' if it undergoes a reflection in the line x = a, followed by a reflection in the line y = b. State the values of a and b.

a = 3 and y = 4

Consider a function f(x), the graph of y = f(x) has a tangent line given by y = 2x - 5 and a normal line given by $y = -\frac{1}{2}x + 10$, when x = 6.

a. Find the area bounded by the tangent line, normal line and the *y*-axis.

When x = 6, y = 7. Normal line has y-intercept (0, 10) and tangent has y-intercept (0, -5). Therefore the triangle has area $\frac{1}{2} \times 6 \times 15 = 45$.

The graph of y = f(x) is dilated by a factor of 2 from the y-axis and by a factor of $\frac{3}{2}$ from the x-axis. Let this tranformed graph be given by y = g(x).

b. Find the equation of the tangent to the graph of y = g(x) when x = 12.

Let t(x) = 2x - 5, then the equation of the tangent at x = 12 is given by

$$y=\frac{3}{2}t\left(\frac{x}{2}\right)=\frac{3}{2}(x-5)$$

c. Consider the graph of y = g(x), a tangent and normal line are drawn to the graph at the point where x = 12. Find the area bounded by the tangent line, normal line, and the y-axis.

Equation of normal line passing through $\left(12, \frac{21}{2}\right)$ is $y = -\frac{2}{3}x + \frac{37}{2}$. Corner points of triangle formed by the tangent line, normal line and y - axis are

$$\left(0, \frac{37}{2}\right), \left(0, \frac{15}{2}\right), \text{ and } \left(12, \frac{21}{2}\right)$$

Now, area = $\frac{1}{2} \times 12 \times \left(\frac{37}{2} + \frac{15}{2}\right) = 156$

The perpendicular bisector of the points (2,4) and (5,-2) is:

A.
$$y = 2x + 3$$

B.
$$y = \frac{1}{2}x - \frac{3}{4}$$

C.
$$y = -\frac{1}{2}x + 3$$

D.
$$y = -2x + \frac{4}{3}$$

Question 15

It is known that the lines y = mx + 3 and y = 2x - 4 make an angle of 45° when they intersect.

The possible values of m are:

A.
$$m = -\frac{1}{3}$$
 only

B.
$$m = 3$$
 only

C.
$$m = -3, \frac{1}{3}$$

D.
$$m = -3, -\frac{1}{3}$$

The tangent to the graph of y = f(x) when x = 2 is y = 3x - 2. Find the equation of the tangent to the graph of $y = 2f\left(\frac{x}{3}\right)$ when x = 6.

- **A.** y = 6x 10
- **B.** y = 2x 4
- C. y = 3x 2
- **D.** y = 12x 4

Question 17

The simultaneous linear equations:

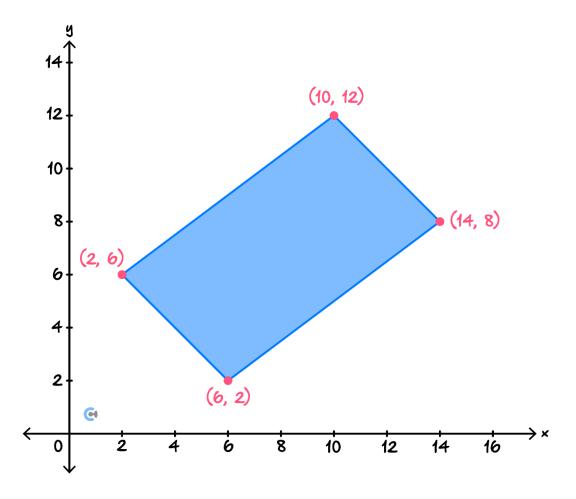
$$2x + (k+3)y = 4$$

$$(2-k)x + 2y = 1$$

where k is a real constant has infinitely many solutions for:

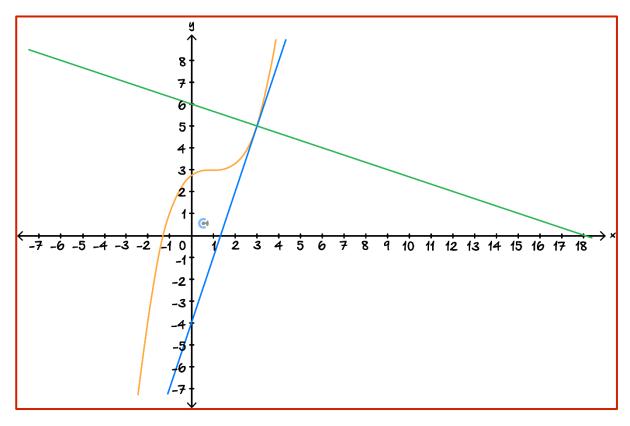
- **A.** k = 1
- **B.** k = -2
- C. k = -2, 1
- **D.** No value of k.

Find the area, in square units, of the parallelogram shown below:



- **A.** 48
- **B.** 72
- C. 56
- **D.** 54

Consider the function $f(x) = \frac{1}{4}(x-1)^3 + 3$. The graph of y = f(x) and it tangent line at the point where x = 3 is sketched on the axes below. The tangent line has a *y*-intercept at (0, -4).



a. State the equation of the tangent line to the graph of y = f(x) when x = 3.

Line through (3,5) and (0,-4)y = 3x - 4

b. State the angle that this tangent line makes with the positive x-axis, correct to the nearest degree.

arctan(3) = 72°

c. Find the equation of the normal line to the graph of y = f(x) when x = 3, and sketch it on the axes at the start of this question.

Line with gradient $-\frac{1}{3}$ and passing through the point (3,5).

$$y = -\frac{x}{3} + 6$$

d. Find the area of the triangle bounded by the tangent line, the normal line, and the y-axis.

 $Area = \frac{1}{2} \times 10 \times 3 = 15$

e. The graph of y = f(x) undergoes a dilation by factor 2 from the *y*-axis, a dilation by factor 3 from the *x*-axis, and is translated 2 units to the right. A tangent and normal line are drawn to this new graph at the point where x = 8.

Find the area of the triangle bounded by this tangent line, normal line, and the x-axis.

New tangent line: $y = \frac{9}{2}x - 21$. New normal line: $y = \frac{151}{9} - \frac{2x}{9}$ Tangent and normal intersect at (8, 15)Area $= \frac{1}{2} \times 15 \times \left(\frac{151}{2} - \frac{14}{3}\right) = \frac{2125}{4}$

A soccer field in the shape of a parallelogram is being constructed. As part of the planning phase, the field is modelled on the cartesian plane.

Two adjacent sides of the field are modelled by the equations y = x + 35 and $y = \frac{305}{6} - \frac{7x}{12}$.

The corner diagonally opposite to the corner formed by these two lines is the point $\mathcal{C}(140,80)$. All measurements are in metres.

a. Show that the field has vertices A(10,45), B(80,115) and D(70,10).

Vertex at the intersection of y = x + 35 and $y = \frac{305}{6} - \frac{7x}{12}$. Solve,

$$x + 35 = \frac{305}{6} - \frac{7x}{12}$$

$$\implies x = 10 \implies y = 10 + 35 = 45$$

Therefore vertex at (10, 45)

Line through (140, 80) with gradient $-\frac{7}{12}$ is given by

$$y = \frac{485}{3} - \frac{7x}{12}$$

Vertex at the intersection of the line y = x + 35 and $y = \frac{485}{3} - \frac{7x}{12}$ is the point (80, 115) Now the line through (140, 80) with gradient 1 is

$$y = x - 60$$

Vertex at the intersection of the line y = x - 60 and $y = \frac{305}{6} - \frac{7x}{12}$ is the point (70, 10)

b. Find the exact dimensions of the field.

Length = $|AB| = 70\sqrt{2}$

Width = $|AD| = 5\sqrt{193}$

The field is $70\sqrt{2} \times 5\sqrt{193}$ metres.

c. Find the angle $\angle BAD$ in degrees, correct to two decimal places.

 $\angle BAD = \left| \arctan(1) - \arctan\left(-\frac{7}{12}\right) \right| = 75.26^{\circ}$

d. Find the area of the soccer field.

The height is perpendicular. Line with gradient -1 through the point (10, 45) is

$$y = 55 - x$$

The line y = 55 - x and y = x - 60 intersect at $\left(\frac{115}{2}, -\frac{5}{2}\right)$.

Therefore the parallelogram height is given by

$$h = \sqrt{\left(\frac{115}{2} - 10\right)^2 + \left(45 + \frac{5}{2}\right)^2} = \frac{95}{\sqrt{2}}$$

So the area is $A = 70\sqrt{2} \times \frac{95}{\sqrt{2}} = 6650$ square metres.

e. The vertices that make up the soccer field are all dilated by a factor of 2 from the x-axis and by a factor of 2 from the y-axis. What is the area of the field formed from these transformed vertices?

 $2 \times 2 \times 6650 = 26600$ square metres.

Section B: Supplementary Questions

Sub-Section [1.6.1]: Apply Midpoint to Find a Reflected Point

Question 21	j
The point $(-1,5)$ is reflected in the line $y=2$. Find the coordinates of the reflected point.	
(-1,-1)	

Question 22

The point (2, -3) is reflected about a line to become the point (-10, -3). State the equation of the line.

x = -4

Find the perpendicular bisector of the line segment joining the points (4, -2) and (-1, 0).

Midpoint is $\left(\frac{3}{2}, -1\right)$ and the line joining the points is $y = -\frac{2}{5}x - \frac{2}{5}$

So we want a line with gradient $\frac{5}{2}$ through the point $\left(\frac{3}{2}, -1\right)$. Therefore, the perpendicular bisector is $y = \frac{5}{2}x - \frac{19}{4}$

Question 24

The point (1, -6) is reflected in a line to become the point (5, -4). Find the equation of the line.

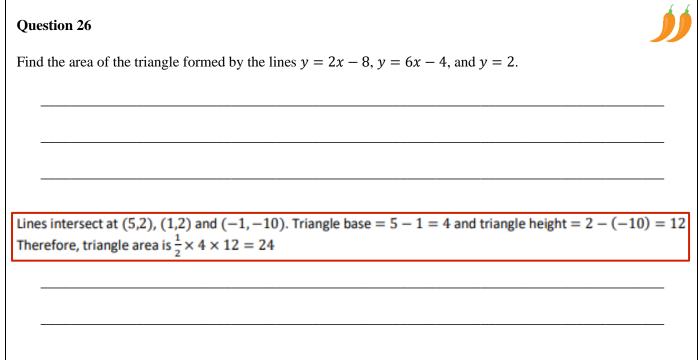
The line is the perpendicular bisector between (1, -6) and (5, -4)

Midpoint is (3, -5) and the line joining the points is $y = \frac{1}{2}x - \frac{13}{2}$

So we want a line with gradient -2 through the point (3, -5). Therefore, the perpendicular bisector is y = -2x + 1

<u>Sub-Section [1.6.2]</u>: Apply Parallel and Perpendicular Lines to Geometric Problems

Question 25	
Find the equation of the line that passes through the point $(-2,3)$ and is perpendicular to $y = x + 7$.	
y = -x + 1	
Overtion 26	



Find the distance between the point (2, 7) and the line y = 3x - 1.

Want the equation of line perpendicular to y = 3x - 1 and through the point (2,7) Therefore the line with gradient $-\frac{1}{3}$ and through (2,7)

$$y = -\frac{1}{3}x + \frac{23}{3}$$

Now y = 3x - 1 and $y = -\frac{1}{3}x + \frac{23}{3}$ intersect at the point $\left(\frac{13}{5}, \frac{34}{5}\right)$

Therefore, the minimum distance is the distance between the points (2,7) and $\left(\frac{13}{5}, \frac{34}{5}\right)$

$$d = \sqrt{\left(2 - \frac{13}{5}\right)^2 + \left(7 - \frac{34}{5}\right)^2} = \frac{\sqrt{10}}{5}$$

Consider the points A(2,1), B(1,-2), C(5,0) and D(m,n), where $m, n \in \mathbb{R}^+$. It is known that $\angle ABC = 45^\circ$. Find the values of m and n such that $\angle BCD = 135^\circ$.

 $\angle ABC$ is supplementary to $\angle BCD$. Therefore, ABCD is a parallelogram

Equation of AB is y = 3x - 5 and equation of BC is $y = \frac{1}{2}x - \frac{5}{2}$

AD is parallel to BC and goes through A. Therefore, AD is the line with gradient $\frac{1}{2}$ through (2,1)

$$y = \frac{1}{2}x$$

CD is parallel to AB and goes through C. Therefore, CD is the line with gradient 3 through (5,0)

$$y = 3x - 15$$

Now $y = \frac{1}{2}x$ and y = 3x - 15 intersect at (6,3)

m = 6 and n = 3

Sub-Section [1.6.3]: Solve Coordinate Geometry Problems With Transformations

Question 29

The area bound by the lines y = 2x - 4, y = -1 - x, and $y = \frac{1}{2}x + 2$ is $\frac{27}{2}$ square units. Hence, find the area bound by:

a. The lines y = 8x - 4, y = -1 - 4x and y = 2x + 2.

All lines have been dilated by a factor of $\frac{1}{4}$ from the y axis. Therefore the area is $\frac{27}{8}$ square units

b. The lines y = -2x + 4, y = 1 + x and $y = -\frac{1}{2}x - 2$.

All lines have been reflected in the x axis. The area does not change. Therefore the area is $\frac{27}{2}$ square units

c. The lines y = 6x - 4, y = 5 - 3x, $y = \frac{3}{2}x + 14$.

All lines have undergone a dilation by a factor of 3 from the x axis followed by a translation 8 units up. Therefore the area is $\frac{81}{2}$ square units

a. The original function is $f(x) = \frac{2}{(x-5)^2} - 16$, and the tangent line to the graph of y = f(x) at x = 6 is y = -4x + 8. The graph of f(x) is reflected in the *x*-axis, translated 2 units down, then dilated by a factor of $\frac{1}{2}$ from the *x* axis. Find the equation of the tangent to the transformed graph when x = 6.

$$y = \frac{1}{2}(-(-4x + 8) - 2)$$
. Tangent is $y = 2x - 5$

b. The graph of $f(x) = 2x^2 - 3x + 1$ has a tangent line at x = -1 with an equation of y = -7x - 1. f(x) undergoes a translation 3 units right, followed by a dilation by a factor of 4 from the x-axis. Find the equation of the tangent to the transformed graph when x = 2.

$$y = 4(-7(x - 3) - 1)$$
. Tangent is $y = -28x + 80$

c. Consider the graph $f(x) = x^2 - 6x + 4$. The line y = 2x - 12 is a tangent to f(x) at x = 4. Find the equation of the tangent to $y = 4x^2 - 28x + 32$ at x = 4.

$$f(x) = (x-3)^2 - 5$$

Let
$$g(x) = 4x^2 - 28x + 32 = (2x - 7)^2 - 17 = ((2x - 4) - 3)^2 - 5 - 12$$

Therefore g(x) = f(2x - 4) - 12

A dilation by a factor of $\frac{1}{2}$ from the y axis and translation 2 units right maps x=4 to x=4. Therefore the equation of the tangent is

$$y = 2(2x - 4) - 12 - 12 = 4x - 32$$

Question 31

a. Find the value of a such that the area bound by the graphs y = x - 2, y = ax + a and the y axis is 2 square units.

The lines intersect when $x-2=ax+a \Rightarrow x=\frac{a+2}{1-a}$. Therefore intersect at $\left(\frac{a+2}{1-a},\frac{3a}{1-a}\right)$. Take the triangle height as $\frac{a+2}{1-a}$, then the base is a+2. Solve

$$\frac{1}{2} \times \frac{a+2}{1-a} \times (a+2) = 2$$

$$a = -8,0$$

b. It is known that the triangle formed by the lines y = 2x + 6, y = -x - a, and the x-axis has an area of 5. Find the values of a.

The lines intersect when 2x + 6 = -x - aTherefore, intersect at $\left(\frac{-a-6}{3}, \frac{-2a-6}{3}\right)$

Take the triangle height as $\frac{-2a-6}{3}$

Then the base is -3 - a.

Solve

$$\frac{1}{2}x\frac{-2a-6}{3}x(-3-a) = 5$$
$$a = -2\sqrt{6}$$

c. Find the values of a where the area between the lines y = ax, y = x - 4 and the y axis is 12.

The lines intersect when $ax = x - 4 \Rightarrow x = \frac{4}{1-a}$. Therefore intersect at $\left(\frac{4}{1-a}, \frac{4a}{1-a}\right)$

Take the triangle height as $\frac{4}{1-a}$, then base is 4. Solve

$$\frac{1}{2} \times \frac{4}{1-a} \times 4 = 12$$
$$a = \frac{1}{3}$$

ONTOUREDUCATION

Question 32

a. The shape bound by the lines $y = -\frac{1}{2}x - 1$, y = x + 5 and y = ax - 1 has an area of 8 square units. Find the value of a if $a \in (-\infty, 1)$.

The lines intersect at (0,-1), (-4,1) and $\left(\frac{6}{a-1},\frac{5a+1}{a-1}\right)$ Take the base of the triangle as $\sqrt{\left(-4-\frac{6}{a-1}\right)^2+\left(1-\frac{5a+1}{a-1}\right)^2}=\frac{2\sqrt{2}(a+1)}{a-1}$

Height of triangle is perpendicular to base and goes through (0, -1). Therefore, want a line with a

Gradient -1 and through (0, -1)

Intersection between y = x + 5 and y = -x - 1 is (-3,2)

Height of triangle is $\sqrt{(0 - (-3))^2 + ((-1) - 2)^2} = 3\sqrt{2}$

Solve $\frac{1}{2} \times \frac{2\sqrt{2}(2a+1)}{a-1} \times 3\sqrt{2} = 8$

 $a = -\frac{7}{2}$

b. Hence or otherwise, find the values of m and c such that the area bound by the graphs y = -2x + 2, y = 4x + 8, and y = mx + c is 2 square units. Assume $m, c \in (1, \infty)$.

All lines have undergone a dilation by a factor of 1/4 from the y-axis and a translation 3 units up, making the new area $\frac{1}{4} \times 8 = 2$

The equation of the original lines was $y = -\frac{7}{2}x - 1$.

Therefore, the equation of the new line is $y = 7 - \frac{7}{2}(4x) - 1 + 3 = -14x + 2$

m = -14 and c = 2

Sub-Section: Exam 1 Questions

Question 33

Consider the simultaneous linear equations:

$$2ax - (a+1)y = -1$$

$$\frac{x}{2a+1} + 3y = 4a + 5$$

where a is a real constant.

a. Find the values of a for which there is a unique solution to the set of equations.

The lines must have different gradients. Solve

$$\frac{2a}{a+1} \neq -\frac{1}{6a+3}$$

$$a \neq -\frac{1}{3}, -\frac{1}{4}$$

Therefore, unique solution for $a \in \mathbb{R} \setminus \left\{-\frac{1}{3}, -\frac{1}{4}\right\}$

b. Find the value of a for which there are no unique solutions.

The y intercepts must not be equal. Solve

$$\frac{1}{a+1} \neq \frac{4a+5}{3}$$

$$a \neq -2, -\frac{1}{4}$$

Therefore, unique solution for $a=-\frac{1}{3}$

c. Find the value of a for which there are infinitely many solutions.

 $a = -\frac{1}{4}$

Question 34

Consider the points A(8, -2) and B(2, 6).

a. Find the equation of the line that is parallel to the line segment AB, and also contains the point C(6,9).

Gradient of AB is $\frac{-2-6}{8-2} = -\frac{4}{3}$ Line with gradient $-\frac{4}{3}$ and through (6,9) $y = -\frac{4}{3}x + 17$

b. Find the equation of the perpendicular bisector of AB.

Midpoint of AB is (5,2)

Perpendicular bisector has gradient $\frac{3}{4}$ and goes through (5,2)

$$y = \frac{3}{4}x - \frac{7}{4}$$

c. Find the coordinates of D, the point of intersection between the lines found in **part a.** and **b**.

(9,5)

d. Find the area of the quadrilateral *ABCD*.

ABCD is a trapezium $|AB| = \sqrt{(8-2)^2 + (-2-6)^2} = 10$ $|CD| = \sqrt{(9-6)^2 + (5-9)^2} = 5$ Height $= \sqrt{(9-5)^2 + (5-2)^2} = 5$ Therefore area $ABCD = \frac{1}{2}(10+5) \times 5 = \frac{75}{2}$

e. Let $E(\frac{8}{3}, -4)$, $F(\frac{2}{3}, 12)$, G(2, 18), and H(3, 10). Find the area of *EFGH*.

The points A, B, C, D are dilated by a factor of 2 from the x axis and by a factor of $\frac{1}{3}$ from the y axis Therefore, area $EFGH = \frac{75}{2} \times 2 \times \frac{1}{3} = 25$

The point P(4, 1) is reflected in the line y = 2x - 2 to become the point P'.

a. Find the coordinates of P'.

Want the line with gradient $-\frac{1}{2}$ passing through the point (4,1).

$$y = -\frac{1}{2}x + 3$$

Now we find the intersection of the lines y = 2x - 2 and $y = -\frac{1}{2}x + 3$

∴ Intersection at (2,2)

Therefore we have P'(0,3)

b. Find the point of intersection between the lines y = 2x - 2 and y = 7x - 27.

-(5,8)

c. The line y = 7x - 27 is reflected in the line 2x - 2. Find the equation of the new line.

The line passes through the points (5,8) and (0,3)

y = x + 3

At x = -2, the graph y = f(x) has a tangent line with the equation y = 3 - 2x, and a normal line given by $y = \frac{1}{2}x + 8$.

a. Find the area bounded by the tangent line, normal line, and the x-axis.

When x = -2, y = 7Normal line has x –intercept (-16,0) and tangent has x –intercept $\left(\frac{3}{2},0\right)$. Therefore, area of triangle is $\frac{1}{2} \times 7 \times \left(\frac{3}{2} + 16\right) = \frac{245}{4}$

The graph of f(x) is translated down 3 units, dilated by a factor of 2 from the x-axis, and dilated by a factor of 5 from the y-axis to become the graph g(x).

b. Find the equation of the normal line to y = g(x) at x = -4.

Let $t(x) = \frac{1}{2}x + 8$, then the equation of the tangent at x = -4 is given by $y = 2\left(t\left(\frac{1}{5}x\right) - 3\right) = \frac{1}{5}x + 10$

c. Find the area bounded by the x-axis, the tangent line and normal line of the graph y = g(x) at x = -4.

Area = $2 \times 5 \times \frac{245}{4} = \frac{1225}{4}$

Sub-Section: Exam 2 Questions

Question 37

The set of simultaneous equations:

$$\frac{5}{3k-4}y - \frac{x}{2} = \frac{3}{8}k + \frac{3}{2}$$

$$(k-6)x + 2ky = \frac{4}{3} - k$$

has no solutions for:

A.
$$k = 3$$
 or $k = -\frac{10}{3}$

B.
$$k = -\frac{10}{3}$$

C.
$$k = 3$$

D.
$$k \neq -\frac{2}{3}$$
 or $k \neq -\frac{10}{3}$

Question 38

The area of the triangle formed by the points (2,3), (-4,7) and (4,6) is:

A. 13 square units.

B. 25 square units.

C. 26 square units.

D. 19 square units.

The graph $f(x) = x^2 - 4x + 3$ has a tangent line and normal line constructed at x = 1. The area bound by the tangent line, the normal line, and the y-axis is $\frac{5}{4}$ square units. The area bound by the y-axis, tangent line, and normal line to the graph $y = -\frac{1}{2}x^2 + 4x - 3$ at x = -2 is:

- A. $\frac{5}{8}$ square units.
- **B.** $\frac{5}{4}$ square units.
- C. 5 square units.
- **D.** 8 square units.

Question 40

The acute angle formed between the lines y = 3x - 1 and y = mx + 5 is at least 45° when:

- **A.** $m \in \left[\frac{1}{2}, \infty\right)$
- **B.** $m \in \left[-2, \frac{1}{2}\right]$
- C. $m \in (-\infty, -2] \cup \left[\frac{1}{2}, \infty\right)$
- **D.** $m \in \left[-2,0\right) \cup \left(0,\frac{1}{2}\right]$

Question 41

The equation of the tangent line to f(x) at x = 2 is y = 1 - 4x. The equation of the normal line to f(x) at x = 2 is:

A.
$$y = \frac{1}{4}x - \frac{15}{2}$$

- **B.** $y = -\frac{1}{4}x + 1$
- C. y = 4x 2
- **D.** Cannot be determined

Consider the points A(6, -2) and B(3, 4).

a. Find the perpendicular bisector of AB.

Midpoint is $\left(\frac{9}{2},1\right)$ and the line joining the points is y=-2x+10. So we want a line with gradient $\frac{1}{2}$ through the point $\left(\frac{9}{2},1\right)$. Therefore, the perpendicular bisector is

 $y = \frac{1}{2}x - \frac{5}{4}$

b. Find the values of m such that the line y = mx forms a 45° angle with the line segment AB.

 $|\arctan(-2) - \arctan(m)| = 45$ $m = -\frac{1}{3}$, 3

c. Point C(m, n) and point D(p, q) are different points that lie on the perpendicular bisector of AB, where m, $n \in \mathbb{R}^+$. Find the coordinates of C and D such that the triangles ABC and ABD are both right angle triangles.

We want a line with gradient 3 and goes through (6,-2). Therefore, the line is y=3x-20 Intersection between $y=\frac{1}{2}x-\frac{5}{4}$ and y=3x-20 is $\left(\frac{15}{2},\frac{5}{2}\right)$

We want a line with gradient $-\frac{1}{3}$ and goes through (6,2). Therefore, the line is $y=-\frac{1}{3}x$

Intersection between $y = \frac{1}{2}x - \frac{5}{4}$ and $y = -\frac{1}{3}x$ is $(\frac{3}{2}, -\frac{1}{2})$

Therefore, $C\left(\frac{15}{2}, \frac{5}{2}\right)$ and $D\left(\frac{3}{2}, -\frac{1}{2}\right)$

d. The point C can be mapped onto point D by a reflection in the line y = a followed by a reflection in the line x = b. State the values of a and b.

$$a=1$$
 and $b=\frac{9}{2}$

e. Find the area of *ACBD*.

$$|AC| = \sqrt{\left(6 - \frac{15}{2}\right)^2 + \left(-2 - \frac{9}{2}\right)^2}$$

$$|AC| = \frac{\sqrt{178}}{2}$$

$$Area = \left(\frac{\sqrt{178}}{2}\right)^2 = \frac{89}{2}$$

f. Find the area of the square that has opposite corners at (7, -4) and (1, 8).

A, B have been dilated by a factor of 2 from the x axis and dilated by a factor of 2 from the y axis and translated 5 units left

Area =
$$\frac{89}{2} \times 2 \times 2 = 178$$

The function $f(x) = 2(x+3)^2 - 5$ has a tangent line with the equation y = 4x + 5.

a. Show that y = 4x + 5 is a tangent to f(x) at the point (-2, -3).

f(x) and the tangent line will intersect at the point of tangency $2(x+3)^2 - 5 = 4x + 5$ $2x^2 + 8x + 8 = 0$ $2(x+2)^2 = 0$

 $\begin{aligned}
x &= -2 \\
f(-2) &= -3
\end{aligned}$

Therefore, the point of tangency is (-2, -3)

b. Find the equation of the normal line to f(x) at x = -2.

Normal line has a gradient $-\frac{1}{4}$ and passes through (-2, -3) $y = -\frac{1}{4}x - \frac{7}{2}$

c. State the obtuse angle formed between the line y = 4x + 5 and the x-axis, correct to 2 decimal places.

 $\theta = 180 - \arctan(4) = 104.04^{\circ}$

d. Find the area enclosed by the tangent line, the normal line, and the x-axis.

Normal line has *x*-intercept (-14,0) and tangent has *x*-intercept $\left(-\frac{5}{4},0\right)$ Therefore, the triangle has area $\frac{1}{2} \times 3 \times \frac{51}{4} = \frac{153}{8}$

The graph of y = f(x) is translated 4 units right, dilated by a factor of 4 from the x-axis, and dilated by a factor of $\frac{2}{3}$ from the y-axis to become the graph y = g(x).

e. Find the equation of the tangent line to y = g(x) at $x = \frac{4}{3}$.

 $g(x) = 4f\left(\frac{3}{2}x - 4\right).$ The tangent when $x = \frac{4}{3}$ is given by $y = 4\left(4\left(\frac{3}{2}x - 4\right) + 5\right) = 24x - 44$

f. State the obtuse angle formed between the new tangent of y = g(x) at $x = \frac{4}{3}$, correct to 2 decimal places.

 $\theta = 180 - \arctan(24) = 92.39^{\circ}$

g. Find the area of the triangle formed between the x-axis, the tangent, and normal line to y = g(x) at $x = \frac{4}{3}$.

Area = $4 \times \frac{2}{3} \times \frac{153}{8} = 51$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

