

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry Exam Skills [1.6]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20
Supplementary Questions	Pg 21 – Pg 41

Section A: Compulsory Questions

<u>Sub-Section [1.6.1]</u>: Apply Midpoint to Find a Reflected Point

Question 1
Find the reflection of the point $(4,2)$ about the line $x=6$.
Question 2
The point (2, 3) is reflected in the line $y = b$ to become the point (2, 9). Find the value of b .
Space for Personal Notes

MM34 [1.6] - Coordinate Geometry Exam Skills - Homework

Question 3	
Find the perpendicular bisector between the points $(3,6)$ and $(-2,-9)$.	
Space for Personal Notes	

<u>Sub-Section [1.6.2]</u>: Apply Parallel and Perpendicular Lines to Geometric Problems

Question 4	Í
Find the equation of the line that is parallel to $y = 2x + 3$ that passes through the point $(1, 4)$.	
Question 5	
Find the area of the triangle formed by the lines $y = x + 2$, $y = 8 - x$ and the y-axis.	
Space for Personal Notes	

Question 6					
Find the minimum distance between the line $y = 3 - x$ and the point $(4,3)$.					
Space for Personal Notes					

<u>Sub-Section [1.6.3]</u>: Solve Coordinate Geometry Problems With Transformations

Question 7

The area bounded by the lines y = x, y = -x + 10 and the x-axis is 25 square units. Use this to find the area bounded by:

a. The lines y = 2x, y = -2x + 20 and the *x*-axis.

b. The lines y = x - 5, y = -x + 15 and the *x*-axis.

c. The lines $y = \frac{2}{3}x$, $y = -\frac{2}{3}x + 20$ and the x-axis.

Find the equation of the tangent line to the transformed graphs in the following scenarios.

a. The original function is $f(x) = x^3$, and the tangent line to the graph of y = f(x) at x = 1 is y = 3x - 2. The graph of f is dilated by a factor 2 from the x-axis, then translated up by 4 units. Find the equation of the tangent to the transformed graph when x = 1.

b. The original function is $f(x) = \sqrt{x}$, and the tangent line to the graph of y = f(x) at x = 4 is $y = \frac{1}{4}x + 1$. The graph of f is reflected about the y-axis, then translated 3 units to the left. Find the equation of the tangent line when x = -7.

c. Let $f(x) = (x-2)^2 + 1$, the graph of y = f(x) has a tangent y = 2x - 4 when x = 3. Find the equation of the tangent to $y = \frac{1}{2}x^2 - 4x + 9$ when x = 6.

Question 9

a. Find the values of a such that the area bounded by the graphs of y = x, y = -x + a and the x-axis is 9 square units.

b. Find the values of a such that the area bounded by the graphs of y = 2x, y = -x/2 + a and the x-axis is 20 square units.
c. Find the values of a such that the area bounded by the graphs of y = x + 2, y = -x + a and the y-axis is 9 square units.

Sub-Section: Exam 1 Questions

Onestion	1()

Consider the simultaneous linear equations:

$$\frac{k}{2}x + 3y = 4$$

$$6x + (2k + 1)y = 12$$

where k is a real constant.

ind the valu	e of k for which	there are i	nfinitely m	any solutio	ns.	

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Find the value of k for which there are no solutions.
Qu	estion 11
Coı	nsider the line segment AB with coordinates $A(1,0)$ and $B(7,12)$.
a.	Find the coordinates of M , the midpoint of AB .
b.	Find the equation of the perpendicular bisector of the line segment AB .
c.	Let D be the point (16,0). Find the area of the triangle AMD .
	

VCE Methods ¾ Questions? Message +61 440 138 726

d.	Let $E(2,0)$, $F(8,12)$ and $G(32,0)$. Find the area of the triangle EFG .	
Qι	estion 12	
Th	e point $P(2,3)$ is reflected in the line $y = 7 - x$ to become the point P' .	
a.	Find the coordinates of P' .	
b.	The point P can also be mapped to P' if it undergoes a reflection in the line $x = a$, followed by a reflection the line $y = b$. State the values of a and b .	in

Consider a function f(x), the graph of y = f(x) has a tangent line given by y = 2x - 5 and a normal line given by $y = -\frac{1}{2}x + 10$, when x = 6.

a. Find the area bounded by the tangent line, normal line and the *y*-axis.

The graph of y = f(x) is dilated by a factor of 2 from the y-axis and by a factor of $\frac{3}{2}$ from the x-axis. Let this tranformed graph be given by y = g(x).

b. Find the equation of the tangent to the graph of y = g(x) when x = 12.

c. Consider the graph of y = g(x), a tangent and normal line are drawn to the graph at the point where x = 12. Find the area bounded by the tangent line, normal line, and the y-axis.

Sub-Section: Exam 2 Questions

Question 14

The perpendicular bisector of the points (2,4) and (5,-2) is:

A.
$$y = 2x + 3$$

B.
$$y = \frac{1}{2}x - \frac{3}{4}$$

C.
$$y = -\frac{1}{2}x + 3$$

D.
$$y = -2x + \frac{4}{3}$$

Ouestion 15

It is known that the lines y = mx + 3 and y = 2x - 4 make an angle of 45° when they intersect.

The possible values of m are:

A.
$$m = -\frac{1}{3}$$
 only

B.
$$m = 3$$
 only

C.
$$m = -3, \frac{1}{3}$$

D.
$$m = -3, -\frac{1}{3}$$

The tangent to the graph of y = f(x) when x = 2 is y = 3x - 2. Find the equation of the tangent to the graph of $y = 2f\left(\frac{x}{3}\right)$ when x = 6.

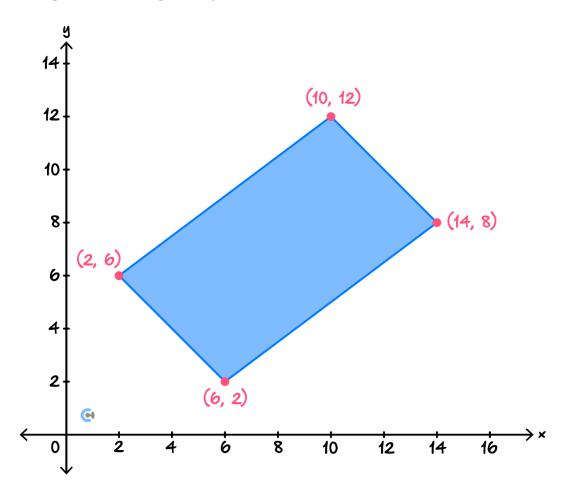
- **A.** y = 6x 10
- **B.** y = 2x 4
- C. y = 3x 2
- **D.** y = 12x 4

Question 17

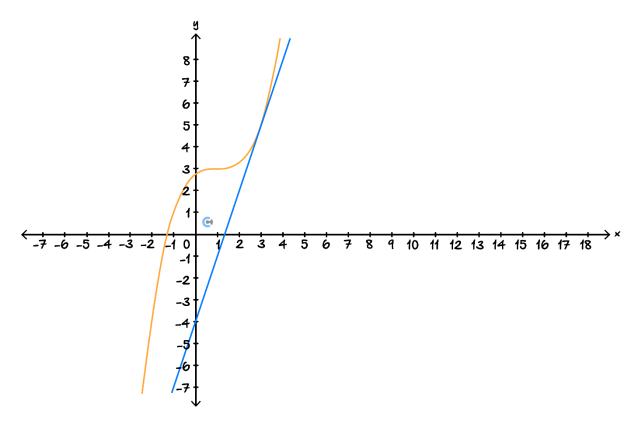
The simultaneous linear equations:

$$2x + (k+3)y = 4$$

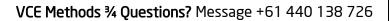
$$(2-k)x + 2y = 1$$


where k is a real constant has infinitely many solutions for:

- **A.** k = 1
- **B.** k = -2
- C. k = -2, 1
- **D.** No value of k.


Find the area, in square units, of the parallelogram shown below:

- **A.** 48
- **B.** 72
- **C.** 56
- **D.** 54



Consider the function $f(x) = \frac{1}{4}(x-1)^3 + 3$. The graph of y = f(x) and it tangent line at the point where x = 3 is sketched on the axes below. The tangent line has a *y*-intercept at (0, -4).

a. State the equation of the tangent line to the graph of y = f(x) when x = 3.

b. State the angle that this tangent line makes with the positive x-axis, correct to the nearest degree.

c.	Find the equation of the normal line to the graph of $y = f(x)$ when $x = 3$, and sketch it on the axes at the start of this question.
d.	Find the area of the triangle bounded by the tangent line, the normal line, and the <i>y</i> -axis.
e.	The graph of $y = f(x)$ undergoes a dilation by factor 2 from the y-axis, a dilation by factor 3 from the x-axis, and is translated 2 units to the right. A tangent and normal line are drawn to this new graph at the point where $x = 8$.
	Find the area of the triangle bounded by this tangent line, normal line, and the x -axis.

Ouestion	20
Oucsuon	∠ ∪

A soccer field in the shape of a parallelogram is being constructed. As part of the planning phase, the field is modelled on the cartesian plane.

Two adjacent sides of the field are modelled by the equations y = x + 35 and $y = \frac{305}{6} - \frac{7x}{12}$.

The corner diagonally opposite to the corner formed by these two lines is the point $\mathcal{C}(140,80)$. All measurements are in metres.

a. Show that the field has vertices A(10,45), B(80,115) and D(70,10).

b. Find the exact dimensions of the field.

VCE Methods ¾ Questions? Message +61 440 138 726

	Title I (DAD)	
c.	Find the angle $\angle BAD$ in degrees, correct to two decimal places.	
d.	Find the area of the soccer field.	
		2
e.	The vertices that make up the soccer field are all dilated by a factor of 2 from the x -axis and by a factor of from the y -axis. What is the area of the field formed from these transformed vertices?	۷
Sp	ace for Personal Notes	
ı		

Section B: Supplementary Questions

MM34 [1.6] - Coordinate Geometry Exam Skills - Homework

<u>Sub-Section [1.6.1]</u>: Apply Midpoint to Find a Reflected Point

Question 21	
The point $(-1,5)$ is reflected in the line $y = 2$. Find the coordinates of the reflected point.	
Question 22	
The point $(2, -3)$ is reflected about a line to become the point $(-10, -3)$. State the equation of the line.	
Space for Personal Notes	

Question 23					
ind the perpend	cular bisector of the	e line segment join	ing the points (4,	(-2) and $(-1,0)$.	
	·				
	·				
	·				
Question 24					666
		. 1 .1	: (E 4) E	1.1 6.1	1.
he point $(1, -6)$	is reflected in a lin	e to become the p	oint (5, –4). Find	I the equation of th	ie line.
Space for Person					
Space for Perso					
Space for Perso					
Space for Perso					

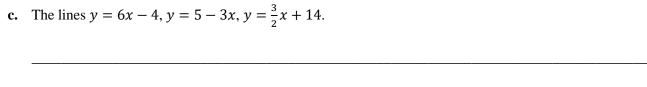
<u>Sub-Section [1.6.2]</u>: Apply Parallel and Perpendicular Lines to Geometric Problems

Question 27	
Find the distance between the point (2, 7) and the line $y = 3x - 1$.	
Space for Personal Notes	

uestion 28						
onsider the points	A(2,1), B(1,-2),	C(5,0) and $D(n)$	(n, n), where m, n	$n \in \mathbb{R}^+$. It is know	$vn that \angle ABC = \frac{1}{2}$	45°.
nd the values of 1	n and n such that $\angle h$	$BCD = 135^{\circ}$.				
						
pace for Person	al Notes					

<u>Sub-Section [1.6.3]</u>: Solve Coordinate Geometry Problems With Transformations

Question 29



The area bound by the lines y = 2x - 4, y = -1 - x, and $y = \frac{1}{2}x + 2$ is $\frac{27}{2}$ square units. Hence, find the area bound by:

a. The lines y = 8x - 4, y = -1 - 4x and y = 2x + 2.

b.	The lines $y = -2x + 4$, $y = 1 + x$ and $y = -\frac{1}{2}x - 2$.

a. The original function is f(x) = 2/(x-5)² - 16, and the tangent line to the graph of y = f(x) at x = 6 is y = -4x + 8. The graph of f(x) is reflected in the x-axis, translated 2 units down, then dilated by a factor of ½ from the x axis. Find the equation of the tangent to the transformed graph when x = 6.
b. The graph of f(x) = 2x² - 3x + 1 has a tangent line at x = -1 with an equation of y = -7x - 1. f(x) undergoes a translation 3 units right, followed by a dilation by a factor of 4 from the x-axis. Find the equation of the tangent to the transformed graph when x = 2.

c. Consider the graph $f(x) = x^2 - 6x + 4$. The line y = 2x - 12 is a tangent to f(x) at x = 4. Find the equation of the tangent to $y = 4x^2 - 28x + 32$ at x = 4.

Question 31

a. Find the value of a such that the area bound by the graphs y = x - 2, y = ax + a and the y axis is 2 square units.

Find the valu	es of a where the area between the lines $y = ax$, $y = x - 4$ and the y axis is 12.	
i ma me vara	es of a where the area between the lines $y = ax$, $y = x$ if and the y axis is 12.	

CONTOUREDUCATION

_	_	
()114	estion	37
\ <i>/</i> U		24

v	value of a if $a \in (-\infty, 1)$.
_	
_	
_	
	
_	
_	
_	
F	Hence or otherwise, find the values of m and c such that the area bound by the graphs $y = -2x + 2$,
	$y = 4x + 8$, and $y = mx + c$ is 2 square units. Assume $m, c \in (1, \infty)$.
J	1% 1 0, and y 1,000 1 0 10 2 oquate anico. 11000112, 0 2 (2, 7).
_	
_	
_	
_	
_	

Sub-Section: Exam 1 Questions

Question 33

Consider the simultaneous linear equations:

$$2ax - (a+1)y = -1$$

$$\frac{x}{2a+1} + 3y = 4a + 5$$

where a is a real constant.

a. Find the values of α for which there is a unique solution to the set of equations.

b. Find the value of a for which there are no unique solutions.

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Find the value of a for which there are infinitely many solutions.			
Qu	estion 34			
Consider the points $A(8, -2)$ and $B(2, 6)$.				
a.	Find the equation of the line that is parallel to the line segment AB , and also contains the point $C(6,9)$.			
b.	Find the equation of the perpendicular bisector of AB .			

c. Find the coordinates of *D*, the point of intersection between the lines found in **part a.** and **b**. **d.** Find the area of the quadrilateral *ABCD*. **e.** Let $E(\frac{8}{3}, -4)$, $F(\frac{2}{3}, 12)$, G(2, 18), and H(3, 10). Find the area of *EFGH*.

Question 35					
The point $P(4, 1)$ is reflected in the line $y = 2x - 2$ to become the point P' .					
a.	a. Find the coordinates of P' .				
1.	Find the arrive of interest visit between the Process 200 2 and to 700 27				
D.	Find the point of intersection between the lines $y = 2x - 2$ and $y = 7x - 27$.				
c.	The line $y = 7x - 27$ is reflected in the line $2x - 2$. Find the equation of the new line.				

At x = -2, the graph y = f(x) has a tangent line with the equation y = 3 - 2x, and a normal line given by $y = \frac{1}{2}x + 8$.

a. Find the area bounded by the tangent line, normal line, and the x-axis.

The graph of f(x) is translated down 3 units, dilated by a factor of 2 from the x-axis, and dilated by a factor of 5 from the y-axis to become the graph g(x).

b. Find the equation of the normal line to y = g(x) at x = -4.

c. Find the area bounded by the x-axis, the tangent line and normal line of the graph y = g(x) at x = -4.

Sub-Section: Exam 2 Questions

Question 37

The set of simultaneous equations:

$$\frac{5}{3k-4}y - \frac{x}{2} = \frac{3}{8}k + \frac{3}{2}$$

$$(k-6)x + 2ky = \frac{4}{3} - k$$

has no solutions for:

A.
$$k = 3$$
 or $k = -\frac{10}{3}$

B.
$$k = -\frac{10}{3}$$

C.
$$k = 3$$

D.
$$k \neq -\frac{2}{3}$$
 or $k \neq -\frac{10}{3}$

Question 38

The area of the triangle formed by the points (2,3), (-4,7) and (4,6) is:

A. 13 square units.

B. 25 square units.

C. 26 square units.

D. 19 square units.

The graph $f(x) = x^2 - 4x + 3$ has a tangent line and normal line constructed at x = 1. The area bound by the tangent line, the normal line, and the y-axis is $\frac{5}{4}$ square units. The area bound by the y-axis, tangent line, and normal line to the graph $y = -\frac{1}{2}x^2 + 4x - 3$ at x = -2 is:

- A. $\frac{5}{8}$ square units.
- **B.** $\frac{5}{4}$ square units.
- C. 5 square units.
- **D.** 8 square units.

Question 40

The acute angle formed between the lines y = 3x - 1 and y = mx + 5 is at least 45° when:

- **A.** $m \in \left[\frac{1}{2}, \infty\right)$
- **B.** $m \in \left[-2, \frac{1}{2}\right]$
- C. $m \in (-\infty, -2] \cup \left[\frac{1}{2}, \infty\right)$
- **D.** $m \in \left[-2,0\right) \cup \left(0,\frac{1}{2}\right]$

Question 41

The equation of the tangent line to f(x) at x = 2 is y = 1 - 4x. The equation of the normal line to f(x) at x = 2 is:

- **A.** $y = \frac{1}{4}x \frac{15}{2}$
- **B.** $y = -\frac{1}{4}x + 1$
- C. y = 4x 2
- **D.** Cannot be determined

Question 42				
Consider the points $A(6, -2)$ and $B(3, 4)$.				
a.	Find the perpendicular bisector of <i>AB</i> .			
b.	Find the values of m such that the line $y = mx$ forms a 45° angle with the line segment AB.			
c.	Point $C(m, n)$ and point $D(p, q)$ are different points that lie on the perpendicular bisector of AB , where m , $n \in \mathbb{R}^+$. Find the coordinates of C and D such that the triangles ABC and ABD are both right angle triangles.			

VCE Methods ¾ Questions? Message +61 440 138 726

d.	The point C can be mapped onto point D by a reflection in the line $y = a$ followed by a reflection in the lin $x = b$. State the values of a and b .	е
e.	Find the area of <i>ACBD</i> .	
c	F' 14 C4 4 (1 ') (7 A) 1(4 O)	
f.	Find the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.	
f.	Find the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.	
f.		

The function $f(x) = 2(x+3)^2 - 5$ has a tangent line with the equation y = 4x + 5.

a. Show that y = 4x + 5 is a tangent to f(x) at the point (-2, -3).

b. Find the equation of the normal line to f(x) at x = -2.

c. State the obtuse angle formed between the line y = 4x + 5 and the x-axis, correct to 2 decimal places.

d. Find the area enclosed by the tangent line, the normal line, and the x-axis.

The graph of y = f(x) is translated 4 units right, dilated by a factor of 4 from the x-axis, and dilated by a factor of $\frac{2}{3}$ from the y-axis to become the graph y = g(x).

e. Find the equation of the tangent line to y = g(x) at $x = \frac{4}{3}$.

f. State the obtuse angle formed between the new tangent of y = g(x) at $x = \frac{4}{3}$, correct to 2 decimal places.

g. Find the area of the triangle formed between the x-axis, the tangent, and normal line to y = g(x) at $x = \frac{4}{3}$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

