CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry [1.5]

Workbook

Outline:

Simple Geometry

Pg 2-7

- Midpoint
- Distance between two points
- Vertical distance vs horizontal distance

Line Geometry

Pg 8-14

- Parallel and perpendicular lines
- Angle between a line and the x-axis
- Angle between two lines

Simultaneous Equations

Pg 15-23

- Systems of Linear Equations
- Finding simultaneous equation for three variables

Addition of Ordinates

Pg 24-27

Addition of Ordinates

Learning Objectives:

- MM34 [1.5.1] Find Midpoint, Distance (Horizontal & Vertical) Between Two Points Or Functions
- G

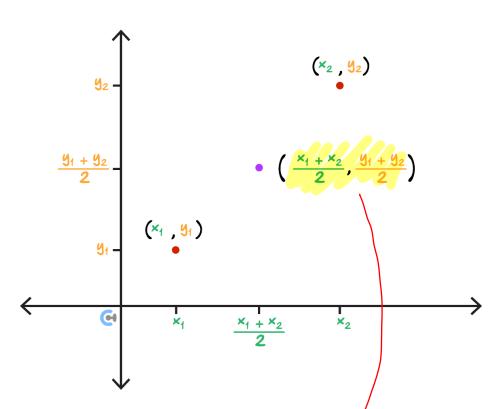
- MM34 [1.5.2] Find Parallel and Perpendicular Lines
- **MM34 [1.5.3]** Find the Angle Between a Line and x-axis or Two Lines
- MM34 [1.5.4] Find The Unknown Value for Systems of Linear Equations
- MM34 [1.5.5] Sketching the sum of two function's graph by using the addition of ordinates

Section A: Simple Geometry

Sub-Section: Midpoint

Discussion: How might we find a midpoint between two points?

Midpoint



The midpoint, M, of two points A and B is simply the point halfway between A and B.

$$M(x_m, y_m) = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

The midpoint can be found by taking the $\frac{Average}{y}$ of the x-coordinate and y-coordinate of the two points.

Sub-Section: Distance Between Two Points

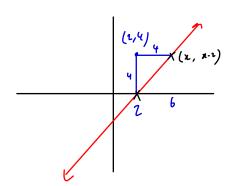
Distance Between Two Points

The distance between two points (x_1, y_1) and (x_2, y_2) can be found using Pythagoras' theorem:

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Question 1 Walkthrough.

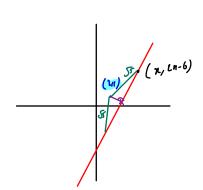
Find the points on the line y = x - 2 which have a distance of 4 from the point (2,4)



 $\int (n-1)^{2} + (n-1-1)^{2} = 4$ $(n-1)^{2} + (n-6)^{2} = 16$ $2^{2} - (6n + 1)^{2} = 6$ $2^{2} - (6n + 1)^{2} = 6$ (n-6)(n-1) = 0 (n-6)(n-1) = 0

Question 2

a. Find the points on the line y = 2x - 6 which has a distance of $\sqrt{5}$ from the point (2,1).



b. Give a reason as to why there are more than 1 points found in **part a.**

Question 3 Extension.

Find the points on the line y = 2x - 3 which have a distance of $2\sqrt{2}$ from the point (3,5).

TIP: Don't hesitate to define a point by letting its y value be the function (linear in the above question!)

Sub-Section: Vertical Distance vs Horizontal Distance

<u>Discussion:</u> How can we find a horizontal distance between two points?

Horizontal Distance

Horizontal Distance = $x_2 - x_1$ where $x_2 > x_1$

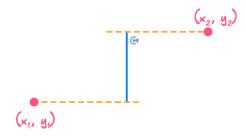
Find the difference between their x-values.

Question 4

Find the horizontal distance between the two points (7,3) and (11,4).

What about vertical distance then?

Vertical Distance



Vertical Distance= $y_2 - y_1$ where $y_2 > y_1$

Find the difference between their y values.

Question 5

Find the vertical distance between the two points (7,4) and (1,9).

7

Key Takeaways

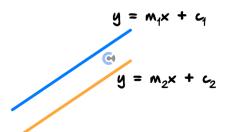
- Midpoint is simply an average point.
- Midpoint can be used to find the point reflected around any axis.
- Distance between two points is derived from Pythagoras theorem.
- \checkmark Horizontal distance is simply a difference in their x values.
- \checkmark Vertical distance is simply a difference in their y values.

Section B: Line Geometry

Sub-Section: Parallel and Perpendicular Lines

Discussion: What do we need for the two lines to be parallel?

Parallel Lines



Parallel lines have the _____gradient.

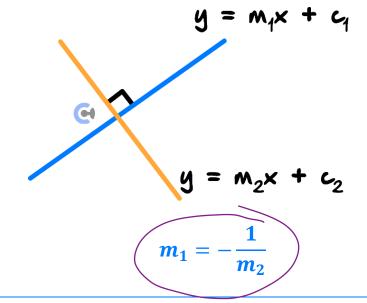
$$m_1 = m_2$$

Question 6

Find a line that is parallel to y = 5x - 1 passing through the point (-2, -6).

Discussion: What about perpendicular lines?

Perpendicular Lines



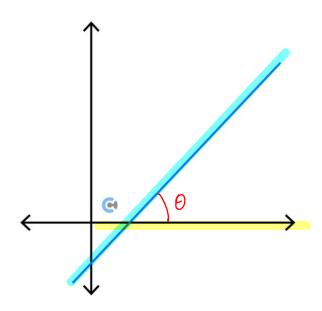
Question 7

Find a line that is perpendicular to y = 5x - 1 passing through the point (1,0).

Sub-Section: Angle Between a Line and the x-axis

How do we find the angle between a line and the x-axis?

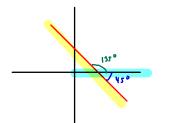
Angle between a Line and the x-axis



$$tan(\theta) = m$$

Question 8

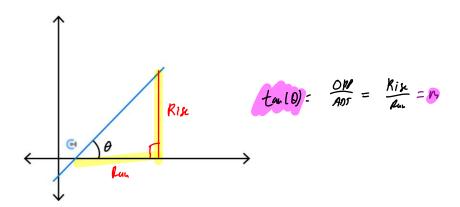
Find the angle made between the line y = 6x + 2 and the x-axis measured in the anticlockwise direction.



How does this formula work?

Exploration: Angle between a line and x-axis.

Consider a line in the visual below.



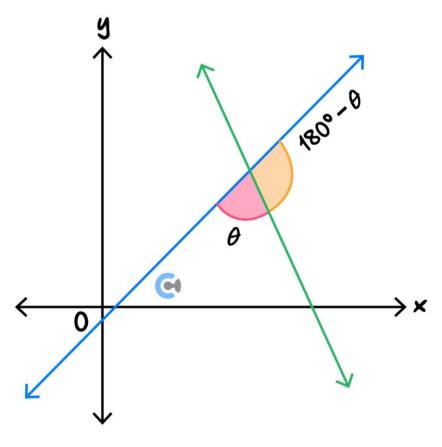
 \blacktriangleright Construct a right-angle triangle with the angle θ .

Consider the opposite and adjacent sides of the right-angle triangle. What can we call them?

Hence, what does $tan(\theta)$ equal to given that tan = opposite/adjacent?

Sub-Section: Angle Between Two Lines

Acute Angle Between Two Lines



$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

Alternatively:

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

• For your understanding, note that this formula is derived from the tan compound angle formula covered in SM34.

NOTE: |x| just takes the positive value of x.

Find the acute angle between the lines x - 3y = 2 and $y = \frac{4}{5}x - 2$. Give your answer in degrees correct to two decimal places.

$$\theta = || tan^{-1}(N_1) - tan^{-1}(N_2)||$$

$$= || tan^{-1}(\frac{1}{3}) - tan^{-1}(\frac{1}{5})||$$

$$= || 20.22^{\circ}$$

TIP: Make sure your CAS is in degrees.

Let's see if the formula is consistent with parallel lines!

Exploration: Understanding parallel lines using the angle between two lines formula

 \blacktriangleright When two lines are parallel, what must be the angle θ between them?

$$\tan(\overset{\cancel{\ell}}{o}) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Let's substitute the value of θ and see what we get!

This looks rather familiar!

And now perpendicular lines!

Exploration: Understanding perpendicular lines using the angle between two lines formula

 \blacktriangleright When two lines are perpendicular, what must be the angle θ between them?

$$an(90) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

under $= \left| \frac{m_1 - m_2}{(4n_1 m_2)} \right|$

Let's substitute the value of θ and see what we get! (Note: tan(90) = Undef)

This looks rather familiar, doesn't it?

Key Takeaways

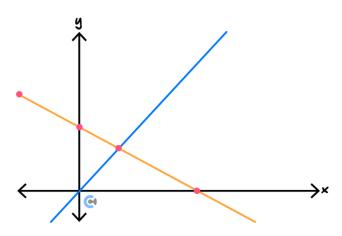
- ☑ Parallel lines have the same gradient.
- ✓ Perpendicular lines have negative reciprocal gradients.
- \checkmark Angle between a line and x-axis is given by $\tan^{-1}(m)$.
- Angle between two lines is given by $\left| \frac{m_1 m_2}{1 + m_1 m_2} \right|$.
- The parallel lines and perpendicular lines formula is consistent with the angle between the two lines formula.

Section C: Simultaneous Equations

Sub-Section: Systems of Linear Equations

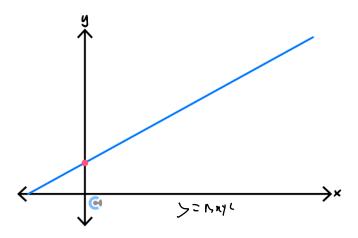
Exploration: Geometry of the number of solutions between linear graphs

Unique Solution



- They just need to have diff gradient.
- Infinite Solutions

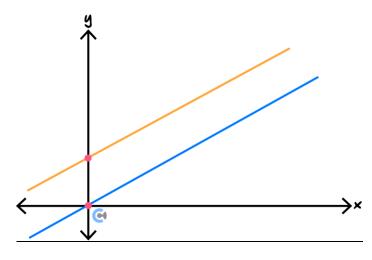
$$m_1 = m_2 AND c_1 = c_2$$



- They just need to have the same ______ and the same ______.
- In other words, they have to be the ______.

No Solutions

$$m_1 = m_2 AND c_1 \neq c_2$$



- They have to be two different Parallel lines.

General Solutions of Simultaneous Linear Equations

- Two linear equations are either:
 - The same line is expressed in a different form. In this case, they have infinitely many solutions.
 - Unique lines which are parallel. In this case, they have no solutions.
 - Unique lines which are not parallel. In this case, they have exactly one solution.

Question 10 Walkthrough.

Consider the following pair of simultaneous equations in terms of $a \in R \setminus \{0\}$:

(a+1)x + 2y = 1

$$6x + (a-3)y = 1$$

$$y = \frac{-(a+1)^n}{n} + \frac{1}{a-2}$$

$$y = \frac{-6n}{a-2} + \frac{1}{a-3}$$

a. Find the value(s) of α for which there are no solutions to the simultaneous equations.

$$\frac{a+1}{2} = \frac{6}{a-1}$$

$$\frac{a+1}{2} = \frac{6}{a-1}$$

$$\frac{a-1}{2} = \frac{6}{a-1}$$

$$\frac{a+1}{2} = \frac{6}{a-1}$$

b. Find the value(s) of a for which there is a unique solution to the simultaneous equations.

c. Find the value(s) of a for which there are infinite solutions to the simultaneous equations.

TIP: Substitute your answer back into the equations to see if the criteria are met for each part.

Question 11

Consider the following pair of simultaneous equations in terms of $a \in R \setminus \{0\}$:

$$ax + 3y = 1$$

$$2x + (a + 1)y = 1$$

$$5 = -\frac{2n}{3} + \frac{1}{3}$$

$$2x + (a + 1)y = 1$$

a. Find the value(s) of α for which there are no solutions to the simultaneous equations.

$$a^{1} f = -\frac{2}{\alpha f_{1}}$$

$$a^{1} f = 6$$

$$a^{2} f = 6$$

$$a$$

b. Find the value(s) of a for which there is a unique solution to the simultaneous equations.

$$at -3,2$$
 $at R (4 -3,0,2)$

c.	Find the value(s) of α for which there are infinite solutions to the simultaneous equations.
	a=2

Question 12 Extension.

Consider the following pair of simultaneous equations in terms of $a \in R \setminus \{0\}$:

$$(1-2a)x - 3y = a+1$$

$$-2x + (a + 3)y = 2a + 2$$

a. Find the value(s) of a for which there are no solutions to the simultaneous equations.

b. Find the value(s) of α for which there is a unique solution to the simultaneous equations.

c. Find the value(s) of α for which there are infinite solutions to the simultaneous equations.

Sub-Section: Finding Simultaneous Equation for Three Variables

Solving Systems of Linear Equations with Parameters

Occurs when solving for three variables with two equations. We simply,

Let
$$x = k$$
, or

Let
$$y = k$$
, or

Let
$$z = k$$

And solve simultaneously.

Question 13 Walkthrough.

Solve the following system of linear equations with the parameter of k.

$$2x - y = 4 \quad () \qquad 2k - y = 4$$

$$(x) + z = 3$$
 (x) $k + z = 3$

NOTE: We can let any variable equal to k.

Discussion: How many solutions did we find in the question above?

Infinite

Question 14

Solve the following system of linear equations with the parameter of k.

$$x + 3z = 1$$

$$x + y = 2$$

Discussion: Why did we get infinite solutions?

Not enough late.

Key Takeaways

- ☑ Simultaneous equations can be solved using elimination or substitution methods.
- ☑ Two lines can have either unique, no or infinite solutions.
- ✓ For unique solutions, we just need different gradients.
- ightharpoonup For no solutions, we need the same gradient but different c value.
- \checkmark For infinite solutions, we need the same gradient and same c value.
- lacktriangleright When solving two simultaneous equations for three variables, we can let any variable equal to the parameter of k.
- When we have infinite solutions, it is also called general solutions.
- We always get infinite solutions when there are fewer equations than a number of variables.

Section D: Addition of Ordinates

Sub-Section: Addition of Ordinates

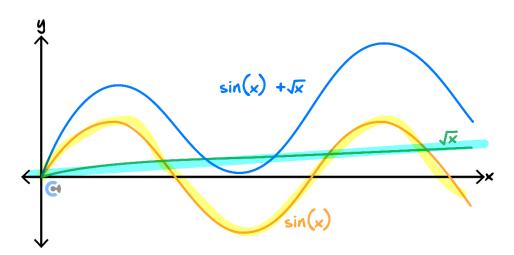
REMINDER: Don't forget Function is always equal to its _____ value.

Discussion: How can we sketch $\sin(x) + \sqrt{x}$?

Addition of Ordinates

- Definition:
 - Technique used to graph the sum/difference of two functions.

e. g.
$$y = \sin(x) + \sqrt{x}$$



Addition of ordinates involves adding the ______ of two functions.

Add two y values

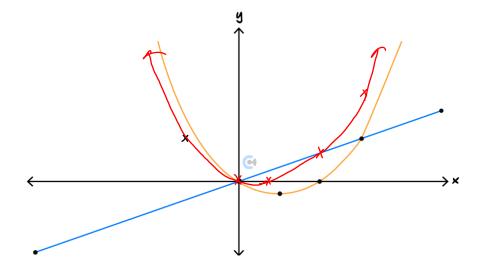
CONTOUREDUCATION

- > Steps to sketching f(x) + g(x)
 - **1.** Sketch f(x) and g(x) on the same axes.
 - **2.** Plot points for f(x) + g(x) by adding the y values of f(x) and g(x).
 - At x-intercepts, the sum equals to the other function. Why?
 - At intersections, the sum equals to $\frac{d\partial u}{\partial y}$ the y value. Why?
 - When functions are equidistance from x-axis, sum equals to Q. Why?
 - **3.** Join the plotted points.

Question 15 Walkthrough.

Two functions, f and g, are shown below.

Sketch the function f(x) + g(x) on the same axes, without finding or using the rule for either function.



NOTE: We always add their y values.

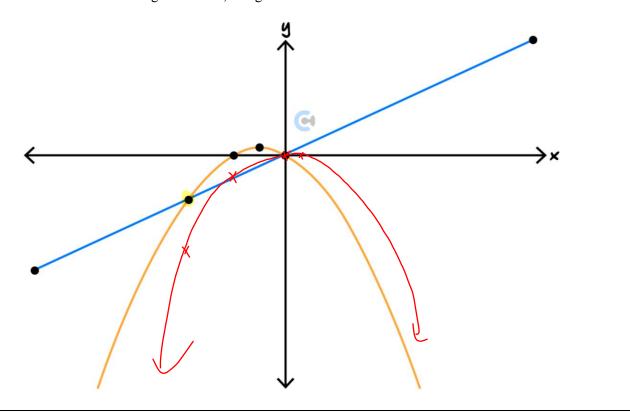
Your turn!

Active Recall: Steps to sketching f(x) + g(x)

- **1.** Sketch f(x) and g(x) on the same axes.
- **2.** Plot points for f(x) + g(x) by adding the _____ of f(x) and g(x).
 - At *x* intercepts, the sum equals to the ______.
 - At intersections, the sum equals to ______ the *y* value.
 - When functions are equidistance from x-axis, sum equals to _____.
- **3.** Join the plotted points.

Ouestion 16

Plot the sum of the two functions given below, using the addition of ordinates.



Key Takeaways

- ✓ Addition of Ordinates is used to sketch the sum of two functions.
- lacktriangle We always add their y values.
- \checkmark When we have an x-intercept for one graph, the sum graph intersects the other graph.
- lacktriangle When we have an intersection between two graphs, the sum graph equals to double their y value.
- \checkmark When we have an equidistance from the x-axis, the sum graph has an x-intercept.

Space for Personal Notes		

27

Contour Check

<u>Learning Objective</u>: [1.5.1] - Find Midpoint, Distance (Horizontal & Vertical)

Between Two Points Or Functions

Key Takeaways

- ☐ Midpoint is simply the ______ of 2 points.
- Horizontal distance is the distance between 1 values.
- Vertical distance is the distance between _____ values.

Learning Objective: [1.5.2] - Find Parallel and Perpendicular Lines

Key Takeaways

- Parallel lines have the ______ gradient.
- Perpendicular lines have <u>negative vei proca</u> gradient.

<u>Learning Objective</u>: [1.5.3] – Find the Angle Between a Line and x-axis or Two Lines

Key Takeaways

- To find the angle between a line and the x-axis we can use equation $m = \frac{\tan(\theta)}{\cos(\theta)}$.
- To find the angle between two lines we can use $\theta = \frac{\int du^{-1}(n_1) \int du^{-1}(n_2)}{\int \int du^{-1}(n_1) du^{-1}(n_2)}$ or $\tan(\theta) = \frac{\int du^{-1}(n_1) du^{-1}(n_2)}{\int \int du^{-1}(n_1) du^{-1}(n_2)}$.

<u>Learning Objective</u> : [1.5.4] - Find The Unknown Value for Systems of Linear Equations						
Key Takeaways						
□ Two linear equations have unique solution if they have						
Two linear equations have infinitely many solutions when they have gradient and constant.						
Two linear equations have no solution when they have gradient and gradient.						
<u>Learning Objective</u> : [1.5.5] - Sketching the sum of two function's graph by using the addition of ordinates						
Key Takeaways						
Addition of Ordinates is used to sketch the <u>ζαΛ</u> of two functions.						
We always add their values.						
\square When we have an x intercept for one graph, sum graph $\underline{\qquad}$ eggs $\underline{\qquad}$ the other graph.						
When we have an intersection between two graphs, the sum graph equals to						

 \square When we have an equidistance from the x-axis, sum graph has an $\underline{\hspace{0.1cm}}$ intercept.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

