

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry [1.5]

Test Solutions

26.5 Marks. 33 Minutes Writing.

Results:

Test Questions	/ 20.5
Extension Test Questions	/6

Section A: Test Questions (20.5 Marks)

-	tion 1 (3.5 marks) if the following statements are true or false.		
		True	False
a.	Midpoint of two points is always the average of the x - and y -values.	✓	
b.	Distance between two points is derived from the Pythagoras theorem.	✓	
c.	Reflecting a point around the $y = 4$ line changes the x -value.		√
d.	Vertical distance between two points is the difference in their x -values.		✓
e.	Angle measured clockwise between the line and the x -axis is given by the relationship, $\tan \theta = m$.		√
f.	For two lines to have infinite solutions, their gradient and <i>y</i> -intercept has to be the same.	✓	
g.	Addition of ordinates is a graphing technique which involves adding the <i>x</i> -values of two graphs. It adds the <i>y</i> -values instead.		✓

Space for Personal Notes			

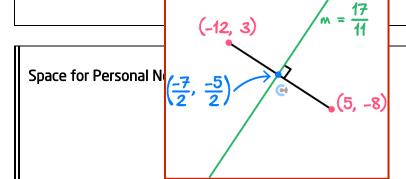
Question 2 (3 marks)

Given that the distance between point A(2,5) and point B(m, -4) is 15.0 units, find the possible values of m.

	/ h~ q < - b	1
Question 3 (3 marks)	(* .,	
Given that the distance between point A (2,5) and point $\sqrt{(2-4)^2 + (3-4)^2} = 15$	(B (m, -4)) is 15.0 units, find the possible values of m .	
 m2-4m+4 + 81 = 225		
m2-4m-140=0 (m +10)(m-14)=0		

m=-10, 14.

Question 3 (3 marks)

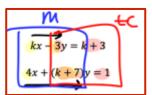

Find the equation of the perpendicular bisector of the line segment that joins (5, -8) and (-12,3). Express your answer in the form, ax + by + c = 0.

Hint: Perpendicular bisector cuts a line by the middle and makes 90 degrees.

Question 4 (3 marks)

Find the equation of the perpendicular bisector of the line segment that joins (5, -8) and (-12,3). Express your answer in the form ax + by + c = 0.

	11y = 17x +d
	SWb(-\frac{2}{2}, -\frac{2}{2})
	(x-\frac{7}{2}=1)x-\frac{3}{5}+q
m = 38 = -4	-22 = -119 + 2d
-12-3	64 = 2d
y = # x+c	3z= d
Sub (-7, -5)	1. 114 = 17x +32
	-17x+11y-32=0



Question 4 (5 marks)

Consider the simultaneous linear equations:

$$kx - 3y = k + 3$$

$$4x + (k+7)y = 1$$

where, k is a real constant.

a. Find the values of k for which, there is a unique solution to the simultaneous equations. (2 marks)

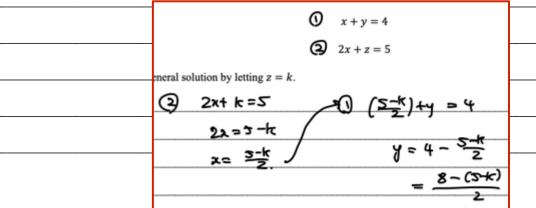
 M, +M2	(k+3)(k+4)+0	
 k_+_4_	k ≠ -3, -4	
-3 4 KHJ	,	
 k(k+7) + ~12	: KER\ 2-3,-4)	
K2+7K+12 #0		

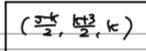
b. Find the value of k for which, there are infinitely many solutions. (2 marks)

C ₁ = C ₂	-3= k2+10k+2/	M1 = M2
-3 k+7	0=62+616724	K= -3; -4
K+3 = 1	U=(K+6)(K+4)	
-3 =(k+7)(k+3)	K=-4,-6	K=-4

c. Find the value of k for which, there are no solutions. (1 mark)

 W(= M2	C(+ C2
K=-3,-4 Q	K#~4,~6
∴k•	-3

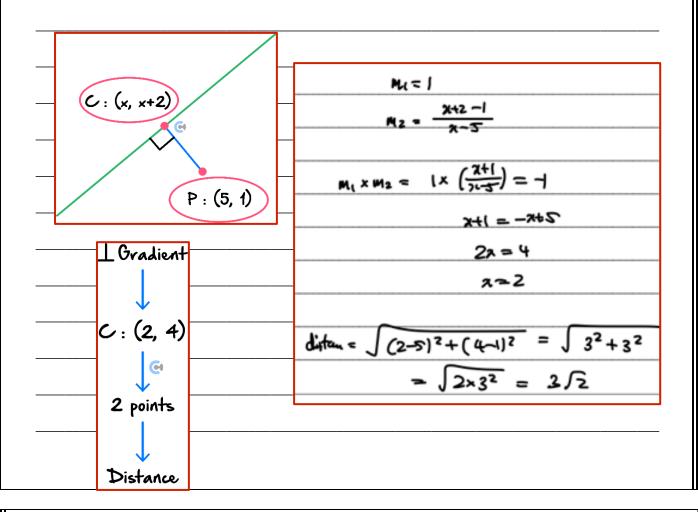

Question 5 (2 marks)


Consider the simultaneous linear equations:

$$x + y = 4$$

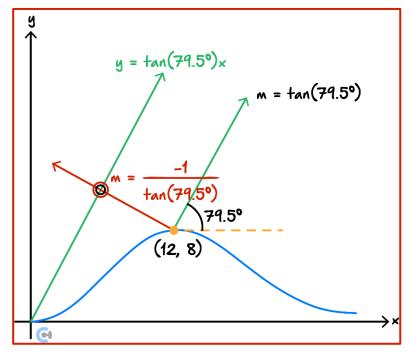
$$2x + z = 5$$

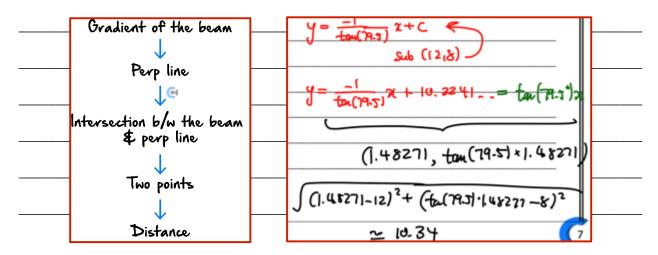
Find the general solution by letting z = k.



Question 6 (4 marks)

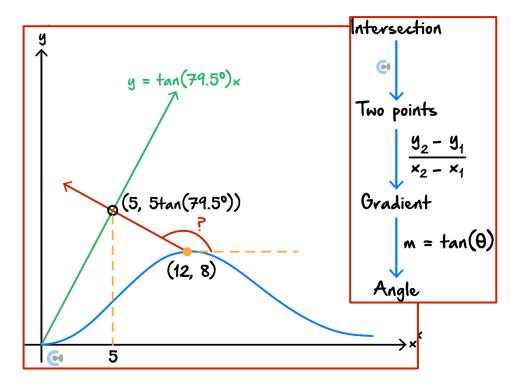
James is standing at point P(5,1) and wants to walk to the road, which is described by y = x + 2. But James wants to reach the road by covering the least amount of steps possible. Find the shortest distance he can travel to reach the road.




Section B: Extension Test Questions (6 Marks)

Question 7 (6 marks) Tech-Active.

Rohan is on a rollercoaster, which starts from the origin as shown in the diagram. When he is at the point (12, 8), he launches a UV beam at an angle of $\alpha = 79.5^{\circ}$ above the horizontal. Sometime before, another UV beam was launched parallel to Rohan's, such that they both travel together through space.


a. Find the shortest distance between the UV beam paths. Give your answer correct to two decimal places. (3 marks)

b. At what angle, should Rohan have launched his beam instead, such that the paths of the two beams would intersect at x = 5?

Find the coordinates of this intersection, giving your answer correct to two decimal places. (3 marks)

110.25

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

