

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

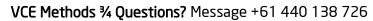
VCE Mathematical Methods ¾
Coordinate Geometry [1.5]

Test

26.5 Marks. 33 Minutes Writing.

Results:

Test Questions	/ 20.5
Extension Test Questions	/6


Section A: Test Questions (20.5 Marks)

Ouestion	1	(3.5)	marks'
Outsuon		1	marks

State if the following statements are true or false.

		True	False
a.	Midpoint of two points is always the average of the x - and y -values.		
b.	Distance between two points is derived from the Pythagoras theorem.		
c.	Reflecting a point around the $y = 4$ line changes the x -value.		
d.	Vertical distance between two points is the difference in their x -values.		
e.	Angle measured clockwise between the line and the <i>x</i> -axis is given by the relationship, $\tan \theta = m$.		
f.	For two lines to have infinite solutions, their gradient and <i>y</i> -intercept has to be the same.		
g.	Addition of ordinates is a graphing technique which involves adding the x -values of two graphs.		

Space	for	Personal	Notes
Space	101	i Ci Soliai	140167

	estion 2 (3 marks)
ive	en that the distance between point $A(2,5)$ and point $B(m,-4)$ is 15.0 units, find the possible values of m .
٠	
3	ce for Personal Notes

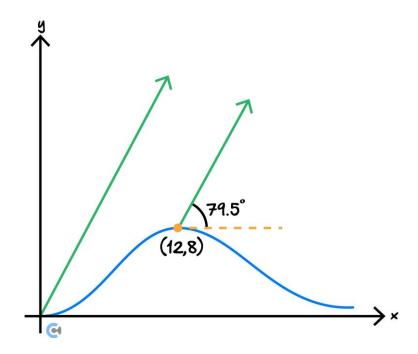
	ation of the perpendicular bisector of the line segment that joins $(5, -8)$ and $(-12,3)$. Express you form $ax + by + c = 0$	ır	
nswer in the form, $ax + by + c = 0$.			
int: Perper	ndicular bisector cuts a line by the middle and makes 90 degrees.		
		_	
pace for Po	ersonal Notes		

Question 4 (5 marks) Consider the simultaneous linear equations: kx - 3y = k + 34x + (k+7)y = 1where, k is a real constant. **a.** Find the values of k for which, there is a unique solution to the simultaneous equations. (2 marks) **b.** Find the value of k for which, there are infinitely many solutions. (2 marks) **c.** Find the value of k for which, there are no solutions. (1 mark)

Space for Personal Notes

VCE Methods 3/4 Questions? Message +61 440 138 726

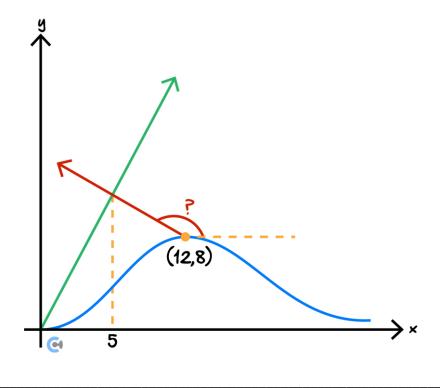
Question 5 (2 marks)	
Consider the simultaneous linear equations:	
x + y = 4	
2x + z = 5	
Find the general solution by letting $z = k$.	
	_
	_
	-
	-
	-
Space for Personal Notes	


	on 6 (4 marks)
nts to	is standing at point $P(5,1)$ and wants to walk to the road, which is described by $y = x + 2$. But James be reach the road by covering the least amount of steps possible. Find the shortest distance he can travel to e road.
ace ·	for Personal Notes

Section B: Extension Test Questions (6 Marks)

Question 7 (6 marks) Tech-Active.

Rohan is on a rollercoaster, which starts from the origin as shown in the diagram. When he is at the point (12, 8), he launches a UV beam at an angle of $\alpha = 79.5^{\circ}$ above the horizontal. Sometime before, another UV beam was launched parallel to Rohan's, such that they both travel together through space.



a. Find the shortest distance between the UV beam paths. Give your answer correct to two decimal places. (3 marks)

b. At what angle, should Rohan have launched his beam instead, such that the paths of the two beams would intersect at x = 5?

Find the coordinates of this intersection, giving your answer correct to two decimal places. (3 marks)

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

