CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Transformations Exam Skills [1.4]

Workbook

Outline:

Recap of Transformations Pg 3-14		
➤ Image And Pre-Image		
Dilation		
Reflection		
Translation		
Basic Transformation of Points		
➤ The Order Of Transformations		
Interpreting The Transformation Of Points		
Applying Transformations To Functions	Exam 1	Pg 30-34
, 5	CXdIII I	L8 20-24
Finding The Applied Transformations		
	Tech Active Exam Skills	Pg 35-37
<u>Transformations Exam Skills</u> Pg 15-29		
Quick Method	Exam 2	Pg 38-42
Finding Opposite Transformations		J
Finding Domain, Range, Points and Tangents		
of Transformed Functions		
Finding Transformations of Inverse Functions		
Multiple Pathways for the Same		
Transformation		
Manipulating the Function to Find Appropriate		
Transformations		
riunsionnations		

Learning Objectives:

- \square MM34 [1.3.1] Applying x' and y' notation to find transformed points, find the interpretation of transformations and altered order of transformations.
- MM34 [1.3.2] Find transformed functions.
- MM34 [1.3.3] Find transformations from transformed function (Reverse Engineering).

Section A: Recap of Transformations

Sub-Section: Image and Pre-Image

What do we call an original coordinate and a transformed coordinate?

Image and Pre-Image

The original coordinate is called the ______.

(x, y)

The transformed coordinate is called the ______

Pre-Image: (x, y)

Image: (x', y')

NOTE: The x' and y' notation will be used quite heavily!

Sub-Section: Dilation

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d

Question 1

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 4 from the x-axis.

Dilation by a factor 2 from the y-axis.

Reflection in the x-axis.

Translation by 3 units in the negative direction of the x-axis.

Translation by 5 unit in the positive direction of the *y*-axis.

Key Takeaways

- \checkmark The transformed point is called the image and is denoted by (x', y').
- ▼ The dilation factor is multiplied by the original coordinates.
- Reflection makes the original coordinates the negative of their original values.
- ✓ Translation adds a unit to the original coordinates.

Sub-Section: Basic Transformation of Points

R

Question 2

Find the image (x', y') after applying the following transformations to (x, y).

Translation by 3 units in the positive direction of the x-axis.

Translation by 2 unit in the negative direction of the *y*-axis.

Dilation by a factor 4 from the x-axis.

Dilation by a factor $\frac{1}{2}$ from the y-axis.

Reflection in the x-axis.

NOTE: Order is important!

Apply the next transformation on top of everything that has already been done!

Sub-Section: The Order Of Transformations

What is the Order of Transformations the same as?

The Order of Transformation

Order = BODMAS Order

Question 3

The series of transformations, "a dilation by a factor 2 from the y-axis, a reflection in the y-axis and a translation by 8 units left" yields the same result as the series of transformations, "a translation by c units right, a reflection in the y-axis and a dilation by a factor d from the y-axis." Find the values of c and d.

NOTE: Dilation factors don't change!

Sub-Section: Interpreting the Transformation of Points

Interpretation of Transformations

 \blacktriangleright When the ______ x' and y' are the subject, we can read the transformation _____

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- \blacktriangleright When the ______ x and y are the subjects instead, we must read the transformation in the _____ way.
- > This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

NOTE: This includes the order of transformation!

TIP: It is best to make x' and y' the subject before you interpret the transformations.

Question 4

Consider the transformation which maps:

$$x = -3x' - 4$$

$$y = 2y' + 2$$

a. State the transformations in DRT (Dilation, Reflection, Translation) order.

b. State the transformations in the translation in first order.

Key Takeaways

- \checkmark Transformations should be interpreted when x' and y' are isolated.
- ☑ The order of transformation follows the BODMAS order.
- ☑ To change the order of transformations, we either factorise or expand.

<u>Sub-Section</u>: Applying Transformations to Functions

Let's now work with functions!

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- > Steps:
 - 1. Transform the points.
 - 2. Make x and y the subjects.
 - **3.** Substitute them into the function.

Question 5

Apply the following transformations to the functions below:

a.
$$f(x) = (x+1)^3$$
.

Dilation by a factor 3 from the x-axis.

Reflection in the *y*-axis.

Translation by 4 units to the right.

Dilation by a factor 2 from the *y*-axis.

b. $f(x) = \cos(x)$.

Dilation by a factor 3 from the *y*-axis.

Dilation by a factor $\frac{1}{2}$ from the *x*-axis.

Translation by 4 units to the left.

Translation by 2 units up.

Reflection in the *y*-axis.

Sub-Section: Finding the Applied Transformations

Now let's go backwards!

Reverse Engineering

- Steps:
 - **1.** Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Your turn!

Question 6

State a series of transformations (in order) that allow f(x) to be transformed into g(x).

a.
$$f(x) = 2e^{3x-4} + 1$$
 and $g(x) = e^{\frac{1}{3}x+2} + 2$.

b. $f(x) = (x-3)^3 + 2$ and $g(x) = 3(2x+5)^3 - 6$.

Key Takeaways

- ✓ We transform the coordinates first, then transform the function.
- ✓ To transform the function, replace its old variables with the new ones.
- \checkmark To find the transformations, simply equate LHS with RHS after separating the transformations of xand y.

Section B: Transformations Exam Skills

Sub-Section: Quick Method

Let's try to do it more quickly!

Active Recall: Interpretation of Transformations

 \blacktriangleright When the new variables x' and y' are the subject, we can read the transformation directly.

$$x' = x + 5 \rightarrow 5 right$$

- When the original variables x and y are the subject instead, we must read the transformation in the opposite way.
- > This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 right$$

Active Recall: In the transformed function, was the transformation of x stuck in x = t(x') or x' = t(x) form?

Ouick Method

- \blacktriangleright The transformation of x in the function is represented in the opposite way in the final function.
- For applying transformation in a quick method,

Apply everything for x in the opposite direction. Including the order!

For interpreting transformation in a quick method,

Read everything for x in the opposite direction. Including the order!

Question 7 Walkthrough.

Apply the following transformations to $y = \sin(x)$ using the quick method.

Dilation by a factor 3 from the x-axis

Dilation by a factor 2 from the y-axis

Reflection in the x-axis

Reflection in the *y*-axis

Translation of 2 units right

Translation of 3 units down

NOTE: For x, simply apply everything in the opposite way and order!

Your turn!

Question 8

Apply the following transformations to $y = \log_e(x)$ using the quick method.

Dilation by a factor $\frac{1}{5}$ from the x-axis

Dilation by a factor 3 from the y-axis

Reflection in the *x*-axis

Reflection in the y-axis

Translation of 5 units left

Translation of 2 units up

NOTE: For x, simply apply everything in the opposite way and order!

Now, interpreting transformations!

Question 9 Walkthrough

State the transformations required for $y = \sin(x)$ to transform into $y = 2\sin(3x + \pi) - 1$.

NOTE: The order is opposite to BODMAS for x.

Your turn!

Question 10

State the transformation required for $y = e^x$ to transform into $y = \frac{1}{3}e^{3(x+1)} + 1$.

Sub-Section: Finding Opposite Transformations

How can we undo transformations?

R

Analogy: Untying a shoelace

- Sam is being silly and ties his shoelace when he was meant to take off his shoes at a chocolate restaurant that he's booked 3 years in advance.
- ➤ Which knot should he start untying first? [First Knot, Last Knot]
- > Similarly, which transformations should we undo first? [First transformation, Last transformation]

Finding Opposite transformations

- Order is ______.
- All transformations are ______

Question 11

a. Find the transformation from $f(x) = 3(x+1)^2 - 1$ to $g(x) = -2x^2 + 3$.

b. Hence, state the transformation from $g(x)$ to $f(x)$.	

<u>Sub-Section</u>: Finding Domain, Range, Points, and Tangents of Transformed Functions

Analogy: Function, points, and tangents

Let's say your entire family decides to move 2 units right.

Family: Let's go 2 units right.

What does that mean for you?

You:

Similarly, if a function moves in a certain way, how should its points, tangents, domain, and range move? [Same way, Different way]

Finding domain, range, points, and tangents of transformed functions.

- Everything moves together as a function.
- Steps
 - 1. Find the transformations between two functions.
 - 2. Apply the same transformations to domain, range, points, and tangents.

Question 12 Walkthrough.

It is known that f(x) has a domain of [2,4] and a range of (0,20].

The function has been transformed to g(x) = -2f(x+5) + 2.

a. State the transformation from f(x) to g(x).

c. State the range of g(x).

Question 13

It is known that f(x) has an x intercept at (3,0) and a tangent of y = 2x - 6 at x = 3.

The function has been transformed to g(x) = 3f(2x - 1).

a. State the transformation from f(x) to g(x).

b. State the x intercept of g(x).

c. State the tangent of g(x) at x = 2.

NOTE: Everything changes with respect to the transformations.

Sub-Section: Finding Transformations of Inverse Functions

REMINDER: Don't forget Inverse Relations,

Inverse functions swap x and y.

<u>Discussion:</u> If f(x) moves 2 units right, where would $f^{-1}(x)$ go to?

Finding transformation of inverse functions

$$f(x) \rightarrow f(x-2)$$
: 2 Right

$$f^{-1}(x) \rightarrow f^{-1}(x) + 2:2 Up$$

- > Steps:
 - 1. Find the transformation between two original functions.
 - 2. Inverse the transformations found in 1.

Question 14 Walkthrough.

It is known that f(x) has been transformed to g(x) = 2f(x-3) + 1.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Active Recall: Steps on finding transformations of inverse functions

- 1. Find the transformation between two original functions.
- 2. Inverse the transformations found in 1.

Question 15

It is known that $f(x) = 2(x-1)^2 + 3$ has been transformed to $g(x) = 4(x+3)^2 + 1$.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Sub-Section: Multiple Pathways for the Same Transformation

<u>Discussion</u>: Consider the transformations required for $f(x) = x^2$ to $g(x) = (2x)^2$. What happens if we take the factor of 2 inside the square bracket out?

Multiple Pathways.

- \triangleright Same transformations can be done differently by either putting it in or out of the f().
- Commonly, look for basic algebra, index and log laws.

Question 16 Walkthrough.

Find the transformation for $y = x^3$ to transform into $y = 8x^3$ by using a dilation from the y-axis.

REMINDER: Don't forget Log Law,

$$\log_a(xy) = \log_a(x) + \log_a(y)$$

Ouestion	17
Oucsuon	1

Find the transformation for $y = \log_2(x)$ to transform into $y = \log_2(4x)$ by using translations only.

NOTE: This skill is important for MCQ questions.

<u>Sub-Section</u>: Manipulating the Function to Find Appropriate Transformations

<u>Discussion:</u> How can we find transformations between $\sqrt{x^2+1}$ to $\sqrt{(x+1)^2+4}$?

Manipulating the function to find appropriate transformations

- Steps
 - **1.** Identify the region of x.
 - **2.** Identify the region of *y*.
 - **3.** Manipulate the function so that all the changes are within the region of *x* or *y*.

TIP: To find the region of x and y, ask yourself "Where is x inside?" "where is y outside of?"

Question 18 Walkthrough.

Find the appropriate transformations for $\sqrt{x^2+1}$ to transform to $\sqrt{(x+1)^2+4}$.

NOTE: This was in JMSS SAC 1 of 2024.

Active Recall: Manipulating functions to find appropriate transformations

- Steps
 - 1. Identify the ______.
 - 2. Identify the______.
 - **3.** Manipulate the function so that _____ are within the region of x or y.

Your turn!

REMINDER: Don't forget Log Law,

$$\log_a(x^y) = y \log_a(x)$$

Question 19

Find the appropriate transformations from $2 \log_2((x+1)^3) + 4$ to $\log_2(x^2 - 4x + 4)$.

Section C: Exam 1 (20 Marks)

Question 20 (2 marks)
The series of transformations given by "a dilation by a factor of 4 from the x -axis, reflection in the x -axis, and a translation of 2 units up" yields the same result as the series of transformations given by "a translation by a units down, a reflection in the x -axis, and a dilation by a factor of b from the x -axis." Find the values of a and b .
Question 21 (4 marks)
The following sequence of transformations,
 A translation 2 units up A translation 3 units left A dilation by factor 2 from the x-axis A dilation by factor ¹/₃ from the y-axis A reflection in the x-axis
is applied to the function $f(x)$ so that $f(x)$ is mapped to $g(x) = \sqrt{x}$.
a. Find a sequence of transformations that map $g(x)$ to $f(x)$. (2 marks)
·
·

b. Find the rule for *f* (*x*). (2 marks)

Question 22 (4 marks)

Consider the functions $f(x) = x^2 - 6x + 11$ and $g(x) = 8(x+1)^2 - 10$.

a. Find a sequence of three transformations in the order DTT that maps f(x) to g(x). (2 marks)

Question 23 (5 marks)

Consider the function $f(x) = 3\sqrt{(x-2)^2 + 3} - 2$ defined on the domain [0, 6].

- **a.** The function g is obtained by applying the following sequence of transformations to f.
- A dilation by factor $\frac{1}{2}$ from the y-axis.
- \rightarrow A dilation by factor 3 from the x-axis.

State the domain of g. (1 mark)

- A translation 2 units right.
- \triangleright A reflection in the x-axis.

	ii.	Find the rule for $g(x)$. (2 marks)
		t $h(x) = \sqrt{(x-1)^2 + 3} + 1$. Write down a sequence of three transformations that map $f(x)$ to $h(x)$. marks)
l		
Que	estic	on 24 (2 marks)
follo	owii	er the function f with inverse function f^{-1} . The function f is transformed to the function g by the f ing sequence of transformations: A dilation by factor 2 from the f -axis and a translation 1 unit down. Write the transformations that take f^{-1} to g^{-1} .

Question 25 (3 marks)
It is known that $f(x)$ has a tangent $y = 2x + 1$ at $x = 2$. $f(x)$ is transformed into $g(x)$ be the following sequence of transformations: A dilation by factor 3 from the x -axis, followed by a dilation by factor $\frac{1}{2}$ from the y -axis followed by a translation 4 units left and a translation 2 units up.
Find the equation of the tangent of $g(x)$ at $x = -3$.
Space for Personal Notes

34

Section D: Tech Active Exam Skills

G

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

Question 26 Tech-Active.

Apply the following transformations to $y = 2\sin(2x) + 3$.

Dilation by a factor 3 from the x-axis.

Dilation by a factor $\frac{1}{2}$ from the y-axis.

Reflection in the *y*-axis.

Translation of 3 units right.

Translation of 4 units down.

(d)

Mathematica UDF:

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms] Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x-\pi/2, 2y, y-1\}$]

$$Sin\left[\frac{x}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

In[*]:= ApplyTransformInvList[x^2 , {x, y}, {x-1, 2*x, y+3}]
Out[*]:=

$$1 - 8 x + 4 x^2$$

In[a]: ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2*x, y+3\}$]

Out[o]=
-3 + f[2 (-1 + x)]

In[*]:= ApplyTransformInvList[2 * Cos[x] - 1, {x, y}, {x - Pi / 2, 2 * y, y - 1}]
Out[*]:=

Sin[x]

TI UDF:

transform()

Transform a Function

transform
$$\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir. 2·cos(x)-1

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

transform_inv()

Invert a Transformation

transform_inv
$$(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir.
 x²-3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

 \blacktriangleright Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section E: Exam 2 (17 Marks)

Question 27 (1 mark)

Let $f: [0,4\pi] \to \mathbb{R}$, $f(x) = 2 \sin(\frac{x}{2}) + 4$. The graph of f is transformed by a reflection in the x-axis, followed by a dilation of factor 2 from the y-axis, then a dilation by a factor of 2 from the x-axis. The resulting graph is defined by:

- **A.** $g:[0,8\pi] \to \mathbb{R}, g(x) = -4\sin(\frac{x}{4}) 8$
- **B.** $g: [0.8\pi] \to \mathbb{R}, g(x) = -8\sin\left(\frac{x}{4}\right) + 4$
- C. $g:[0,8\pi] \to \mathbb{R}, g(x) = -8\sin(\frac{x}{4}) + 8$
- **D.** $g: [0, 4\pi] \to \mathbb{R}, g(x) = -4\sin\left(\frac{x}{2}\right) + 8$

Question 28 (1 mark)

The point P(2,4) lies on the graph of f. The point Q(6,12) lies on the graph of h. A transformation that maps the graph of f to the graph of h also maps the point P to the point Q. The relationship between f and h could be given by:

- **A.** $h(x) = \frac{1}{2} f(x+4)$
- **B.** h(x) = 2f(x-2)
- C. h(x) = 3f(x 4)
- **D.** h(x) = 3f(x+4)

Question 29 (1 mark)

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the curve with equation $y = 3\sin(x)$ onto the curve with equation $y = \cos(2x)$, has the rule:

- **A.** $T(x,y) = \left(\frac{x}{2} + \frac{\pi}{2}, -\frac{y}{3}\right)$
- **B.** $T(x,y) = \left(\frac{x}{2} \frac{\pi}{4}, \frac{y}{3}\right)$
- C. $T(x,y) = \left(\frac{x}{2} + \frac{\pi}{2}, \frac{y}{3}\right)$
- **D.** $T(x,y) = (-2x + \frac{\pi}{2}, -3y)$

Question 30 (1 mark)

A sequence of transformations is applied to create the image rule $y = -2\sqrt{x-3} + \frac{1}{2}$ from the original function $y = \sqrt{x}$, in an appropriate order, could be:

- **A.** A reflection in the *x*-axis, then a dilation by a factor of 4 from the *y*-axis, followed by a translation 3 units to the right and finally a translation of $\frac{1}{2}$ unit up.
- **B.** A dilation by a factor of 2 from the *y*-axis, followed by a reflection in the *x*-axis, a translation 3 units to the left, and finally a translation of $\frac{1}{2}$ unit up.
- C. A reflection in the x-axis, a dilation by a factor of $\frac{1}{4}$ from the y-axis, a translation 3 units to the right, and finally a translation of $\frac{1}{2}$ unit up.
- **D.** A dilation by a factor of 2 from the x-axis, followed by a reflection in the y-axis, a translation 2 units right, and finally a translation of $\frac{1}{2}$ unit up.

Question 31 (1 mark)

If the graphs of y = h(x) and y = k(x) intersect at (p,q), then the graphs of $y = 2h\left(\frac{x}{3}\right)$ and $y = 2k\left(\frac{x}{3}\right)$ intersect at:

- **A.** $\left(3p, \frac{q}{2}\right)$
- **B.** $\left(\frac{p}{3}, 2q\right)$
- C. (3p, 2q)
- **D.** $(3p, \frac{q}{3})$

Question 32 (12 marks)

Consider the functions,

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 2x^3 - 3x^2 + 1$$

$$g: \mathbb{R} \to \mathbb{R}, g(x) = (x+1)^2(2x-1)$$

a.

i. Find the coordinates of the axial intercepts of f. (1 mark)

ii. Hence or otherwise, describe a sequence of reflections and dilations that map the graph of f onto the graph of g. (2 marks)

The	equation to the ta	ngent of a at a	r = -2 is $v =$	= 12r + 19 Hs	e this to fin	d the equation	on of the tan	noent
	equation to the tagen $x = -1$. (2 mark		y = -2 is $y = -2$	= 12x + 19. Uso	e this to fin	d the equation	on of the tan	ngent
			y = -2 is $y = -2$	= 12x + 19. Uso	e this to fin	d the equation	on of the tan	ngent
			y = -2 is $y = -2$	= 12x + 19. Use	e this to fin	d the equation	on of the tan	ngent
			y = -2 is $y = -2$	= 12x + 19. Uso	e this to fin	d the equation	on of the tan	ngent

Consider the fe	ollowing	transformations:
-----------------	----------	------------------

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x - 1, 3y + 2)$$

	$S: \mathbb{R}^2 \to \mathbb{R}^2, S(x, y) = (-x + 2, 2y - 2)$
c.	Find the rule for the image of g after it has undergone the transformation T followed by the transformation S (3 marks)
d.	Find the coordinates of the point $P(u, v)$, if the image of the point P under T and S is the same. (2 marks)

Contour Check

<u>Learning Objective</u>: [1.3.1] - Applying x' and y' notation to find transformed points, find the interpretation of transformations and altered order of transformations.

Key Takeaways
☐ The transformed point is called the and is denoted by
☐ The dilation factor is to the original coordinate.
☐ Reflection makes the original coordinates the of their original values.
☐ Translation a unit to the original coordinate.
Transformations should be interpreted when are isolated.
☐ The order of transformation follows the order.
□ To change the order of transformations, we either
<u>Learning Objective</u> : [1.3.2] - Find transformed functions.
Key Takeaways
□ To transform the function, replace its with the new one.

Learning Objective:	[1.3.3] - Find transformations from	transformed function
	(Reverse Engineering).	

Key Takeaways

 \square To find the transformations, simply equate the _____ after separating the transformations of x and y.

Space for Personal	Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>	
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods". 	

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

