

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Transformations Exam Skills [1.4]

Homework

Homework Outline:

Compulsory	Pg 2 – Pg 29
Supplementary	Pg 30 – Pg 61

Section A: Compulsory

Sub-Section [1.4.1]: Apply Quick Method to Find Transformations

Question 1
Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the following sequence of transformations:
A dilation by a factor of 3 from the y-axis, followed by,
A dilation by a factor of $\frac{1}{2}$ from the <i>x</i> -axis, followed by,
A translation 3 units upwards and 2 units left.
T maps the graph of $f(x) = \sqrt{x}$ onto the graph of g. Find the rule for g.
Question 2
A transformation, $T(x, y) = (ax + b, cx + d)$ maps the graph of $y = f(x)$ onto the graph of $y = 4 - 2f(3 - x)$. Find the values of a , b , c and d .

Question 3	
Describe a sequence of transformations that maps the graph of $y = e^{2x+3} + 2$ onto the graph of $y = 1 - 3e^{2x+3}$	e ^x .
Space for Personal Notes	

<u>Sub-Section [1.4.2]</u>: Apply Transformations of Functions to Find its Domain and range

Question	4
----------	---

The function $f[-1,3) \to \mathbb{R}$ has a range of (-3,5].

Find the domain and range of $g(x) = -2f(\frac{x}{2} - 1)$.

Question 5			
The function $f: [0,1] \to \mathbb{R}$ has a range of $[0,5]$.			
The following sequence of transformations maps the graph of f onto the graph of g :			
A dilation by a factor of 2 from the x -axis, followed by,			
A reflection in the y-axis, followed by,			
A translation of 3 units left and 1 unit up.			
Find the domain and range of g .			
Space for Personal Notes			

Onestion	
CHIESHIAN	n

Consider the function, $f: [-2,4) \rightarrow \mathbb{R}, f(x) = 3 - x^2$.

The function g(x) = af(b(x + c)) + d has a domain of (-1,1] and a range of [-1,3).

Find the values of a, b, c and d.

<u>Sub-Section [1.4.3]</u>: Apply Transformations of Functions to Find Transformed Points and Tangents

Question	-
Question	- 1

Find the image of the point A(2,3) under the transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = \left(2x - 3, -\frac{y}{2} + 1\right)$$

Question 8

The equation of the tangent to the graph of f(x) at the point (-3,5) is $y = \frac{1}{3}x + 6$.

The transformation, T(x, y) = (2x + 1, -y) maps the graph of f onto the graph of g.

Find the equation of the tangent to the graph of g when x is equal to -5.

Question 9		
The equation of the tangent to the graph of $f(x)$ when $x = 2$ is $y = -5x - 2$.		
The following sequence of transformations maps the graph of f to the graph of g :		
A dilation by a factor of 2 from the <i>y</i> -axis, followed by,		
\blacktriangleright A dilation by a factor of 3 from the <i>x</i> -axis, followed by,		
A reflection in the y-axis, followed by,		
\blacktriangleright A translation of 3 units in the positive direction of the <i>x</i> -axis, followed by,		
➤ A translation of 2 units in the negative direction of the <i>y</i> -axis.		
a. Find a point, A on the graph of g .		
	_	
b. Find the tangent to <i>g</i> at the point <i>A</i> .		
I ma the tangent to g at the point II.		
Space for Personal Notes		

Sub-Section [1.4.4]: Find Transformations with Constraints

Question 10		
Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the following sequence of transformations:		
\blacktriangleright A translation by a factor of a in the positive direction of the x -axis, followed by,		
A dilation by a factor of b from the y-axis.		
T maps the graph of $f(x) = x^2 + 1$ onto the graph of $g(x) = 4(x-1)^2 + 1$. Find the values of a and b.		

Space for Personal Notes			

	e of two translation $= 3(10 - 5x)^2$			
		 	 	·
		 	 	
		 	 	
pace for Persona	al Notes			

Question	12
Oueshon	14

Let $f(x) = 2(x + 1)^2$ and g(x) = 2 - 3x.

A transformation, T(x,y) = (x + a, by + c) maps the graph of $f \circ g$ onto the graph of $g \circ f$.

Find the values of a, b and c.

Sub-Section [1.4.5]: Find Transformations of the Inverse Functions

Question 13

Let $f: [0, \infty) \to \mathbb{R}, f(x) = \sqrt{x}$.

Describe a sequence of transformations that maps the graph of f onto the graph of g, where the inverse function of g is defined as such:

$$g^{-1} \colon [-1,\infty) \to \mathbb{R}, g(x) = 2(x+1)^2$$

Question 14

Consider the one-to-one functions, f(x) and g(x). The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (2x + 3, y + 5) maps the graph of f onto the graph of g.

Describe a sequence of transformations that maps the graph of f^{-1} onto the graph of g^{-1} .

Oues	tion	15
Ques	uon	13

Consider the functions, $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x + 1$ and $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 2^{2-6x} - 3$.

The transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (ax + b, cy)$

maps the graph of f^{-1} onto the graph of g^{-1} . Find the values of a, b, and c.

 ·		

<u>Sub-Section [1.4.6]</u>: Find Opposite Transformations

Question 16	1
Describe a sequence of transformations that maps the graph of $y = 2(x - 3)^2 + 4$ onto the graph of $y = 2(x - 3)^2 + 4$ onto the graph of $y = 2(x - 3)^2 + 4$	x^2 .
Space for Personal Notes	

_	_	
()116	estion	17

The following sequence of transformations maps the graph of y = f(x) onto the graph of $y = 2 \log_e(3 - x) + 4$:

- A reflection in the y-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the x-axis, followed by,
- A translation of 3 units right and 4 units up.

Question 18

Let $f: [2, \infty) \to \mathbb{R}$, $f(x) = 4x^2 - 16x - 1$ and $g: (-\infty, 0] \to \mathbb{R}$, $g(x) = x^2$.

The transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (ax + b, y + c)$

maps the graph of f onto the graph of g. Find the values of a, b, and c.

Sub-Section: Exam 1 Questions

Question 19

a. A translation T maps the graph of $y = x \cos(x)$ onto the graph of $y = (\pi - x) \cos(x)$, where,

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x + a,y)$

And a is a real constant.

State the value of a.

b. The equation of the tangent to the graph of $y = x \cos(x)$ when x = 0 is y = x.

Find the equation of the tangent to the graph of $y = (x - \pi) \cos(x)$ when $x = \pi$.

Question 20

Let $f: (-\infty, -2) \to \mathbb{R}$, $f(x) = \frac{1}{2x+4}$ and $g: (-\infty, 0) \to \mathbb{R}$, $g(x) = \frac{1-4x}{2x}$.

a. Show that f(g(x)) = x.

b. Describe a sequence of **translations** that maps the graph of f onto the graph of g.

c. Let $k: (-\infty, -1) \rightarrow \mathbb{R}, k(x) = f(2x)$.

Describe a transformation that maps the graph of g onto the graph of k^{-1} , the inverse function of k.

d. Let $h: (-2, \infty) \to \mathbb{R}$, $f(x) = \frac{1}{2x+4}$ have the same rule as f but with a different domain.

Describe a sequence of transformations that maps the graph of g onto the graph of h.

_			
_			
-			

Question 21

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 9$.

a. Find the co-ordinates of the axis intercepts of f.

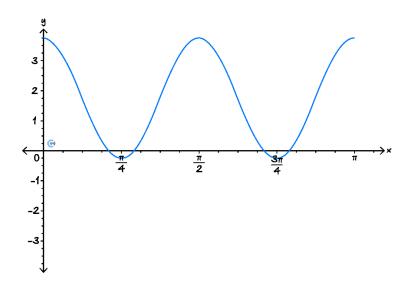
- **b.** Let the graph of *h* be a transformation of the graph of *f* where the transformations have been applied in the following order:
 - Dilation by a factor of $\frac{1}{3}$ from the y-axis.
 - \triangleright Dilation by a factor of 2 from the x-axis.
 - Translation by two units to the right.

State the co-ordinates of the axis intercepts of h.

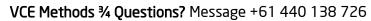
Question 22

The graph of y = f(x), where $f : [0, \pi] \to \mathbb{R}$, $f(x) = 2\cos(4x) + \sqrt{3}$ is shown below.

a. On the axes below, draw the graph of y = g(x), where g(x) is the reflection of f in the horizontal axis.



b. L	et $h: D \to \mathbb{R}$, $h(x) = 2\cos(4x) + \sqrt{3}$, where $h(x)$ has the same rule as $f(x)$ with a different domain.
	the graph of $y = h(x)$ is translated a units in the positive horizontal direction and b units in the negative extical direction so that it is mapped onto the graph of $y = g(x)$, where $a, b \in (0, \infty)$.
i.	Find the value for b .
ii	Find the smallest positive value for a .
ii	. Hence, or otherwise, state the domain, D , of $h(x)$.
Spac	e for Personal Notes



escribe a seque	nce of transformations that m	naps the graph of $y =$	$= 3 \sin(2x)$ onto the	graph of $y = \cos(x)$.
ace for Pers	nai notez			

Sub-Section: Exam 2 Questions

Question 24

The point A(1,5) lies on the graph of the function f. A transformation maps the graph of f to the graph of g, where g(x) = 2f(3 - x) + 2. The same transformation maps the point A to the point B.

The coordinates of the point P are:

- **A.** f(x) = (2, 12)
- **B.** f(x) = (4, 12)
- C. f(x) = (2,8)
- **D.** f(x) = (4,8)

Question 25

The point A(u, v) is transformed by $T(x, y) = \left(3x - 1, -\frac{1}{5}y + 2\right)$.

If the image of A is (1, 1), then A is:

- **A.** $(2, \frac{9}{5})$
- **B.** (2,5)
- **C.** $(\frac{2}{3}, 5)$
- **D.** $\left(\frac{2}{3}, \frac{9}{5}\right)$

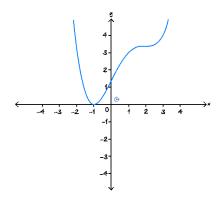
Question 26

The sequence of transformations that maps the graph of $y = e^x$ onto the graph of $y = e^{3x+6}$ is:

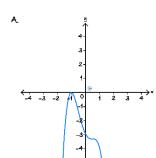
- **A.** A translation of 6 units right followed by a dilation by a factor of 3 from the y-axis.
- **B.** A translation of 6 units left followed by a dilation by a factor of $\frac{1}{3}$ from the y-axis.
- C. A translation of 2 units left followed by a dilation by a factor of 3 from the y-axis.
- **D.** A dilation by a factor of $\frac{1}{3}$ from the y-axis followed by a translation of 6 units right.

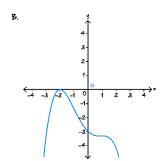
Question 27

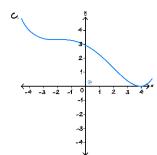
The graph of y = f(x) is shown below.

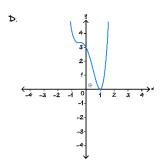


The corresponding part of the graph of the inverse function f(1 - 2x) is best represented by:









ONTOUREDUCATION

Question 28

The line $y = -\frac{1}{3}x + 5$ is tangent to the graph of f when x = 3.

The following sequences of transformations map the graph of f onto the graph of g:

- 1. A dilation by a factor of 2 from the y-axis, followed by,
- **2.** A translation of 3 units in the negative direction of the *y*-axis.

Which of the following statements is true?

- A. The line $y = -\frac{1}{6}x + 2$ is tangent to g at the point (3,4).
- **B.** The line $y = -\frac{2}{3}x + 2$ is tangent to g at the point (6,1).
- C. The line $y = -\frac{1}{6}x + 2$ is tangent to g at the point (6,1).
- **D.** The line $y = -\frac{2}{3}x + 2$ is tangent to g at the point $(\frac{3}{2}, 1)$.

Question 29

Consider the functions,

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 4x^3 - 3x^2 - 6x + 5$$

$$g: \mathbb{R} \to \mathbb{R}, g(x) = (4x - 5)(x + 1)^2$$

Find the co-ordinates of the axial intercepts of f.

i.	Hence, or otherwise, describe a sequence of reflections and dilations , T that maps the graph of f onto graph of g .
ii.	Describe a sequence of translations , S that maps the graph of f onto the graph of g .
The	e image of a point $P(u, v)$ under both S and T is the same.
Fin	d the values of u and v .

d. Show that h(x) = f(x) + g(x) has the property that h(-x) = -h(x).

Question 30

Consider the function, $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x$.

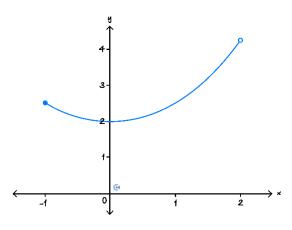
a. The transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x + 3, 2y)$$

maps the graph of f onto the graph of $g: \mathbb{R} \to \mathbb{R}$, g(x) = af(x). Find the value of a.

b. Hence, describe another transformation that maps the graph of f onto the graph of g.

c. Let $h: [-1,2) \to \mathbb{R}$, h(x) = f(x) + f(-x). The graph of h is drawn below.



i. State the range of h.

ii. H	Hence, or otherwise, state the domain and range of the image of the graph of h under T .
-------	--

iii. Describe a sequence of possible transformations that maps the graph h onto a graph with a domain of [-1,2) and a range of $\left(2,\frac{17}{4}\right]$.

d. The equation of the tangent to the graph of f when x = a is $y = 2^a (1 + \log_e(2)(x - a))$.

i. Find the equation of the tangent to the graph of h when x = a.

ii. Let k(x) = h(4 - x).

Find the equation of the tangent to the graph of k when x = a.

Section B: Supplementary

Sub-Section [1.4.1]: Apply Quick Method to Find Transformations

Question 31
Find the image of the graph of $y = x^2$ under the transformation, $T : \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (1 - 2x, y + 5)$.
Question 32
Describe a sequence of transformations that maps the graph of $y = x^3$ onto the graph of $y = 2(3x + 2)^3 - 3$.
Space for Personal Notes

Question 33	
Find the image of the graph of $y = 2 \log_2(x) - 3$ under the following sequence of transformations:	
\rightarrow A dilation by a factor of 3 from the <i>x</i> -axis, followed by,	
A translation of 2 units left and 3 units up, followed by,	
A reflection in the y-axis, followed by,	
A dilation by a factor of 5 from the <i>y</i> -axis.	
	_
	_
	_
	_
	_
	_
	_
	_

On	estion	34
νu	CSHOII	JŦ

Consider four linear functions, $p_1(x)$, $p_2(x)$, $q_1(x)$ and $q_2(x)$.

A transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x', y')$$

maps the graph of y = f(x) onto the graph of $y = (p_1 \circ p_2 \circ f \circ q_2 \circ q_1)(x)$. Express x' in terms of x and y' in terms of y.

<u>Sub-Section [1.4.2]</u>: Apply Transformations of Functions to Find its Domain and Range

Question 35	
The function $f: \mathbb{R} \to \mathbb{R}$ has a range of $[2, \infty)$.	
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (5-2x,3+y)$ maps the graph of f onto the graph of g . State domain and range of g .	the
Space for Personal Notes	

Question 36
The function $f: (-\infty, -1] \to \mathbb{R}$ has a range of $[-2, \infty)$.
Describe a sequence of transformations that maps the graph of f onto a graph of a function with a domain of $[0, \infty)$ and a range of $(-\infty, 2]$.
Space for Personal Notes

CONTOUREDUCATION

_	_	
Om	estion	37

Consider the function, $f: \mathbb{R}\setminus\{-2\} \to \mathbb{R}, f(x) = \frac{3}{(x+2)^2} - 5$.

The following sequence of transformations maps the graph of f onto the graph of g:

- \blacktriangleright A reflection in the x-axis, followed by,
- \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the y-axis, followed by,
- A translation of 3 units up and 2 units left.

State the domain and range of g.

CONTOUREDUCATION

Question 38

Let $f: (-2,1] \to \mathbb{R}, f(x) = 2(x+1)^2 - 3$.

Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, cy + d) where a and c are both non-zero.

The transformation T maps the graph of f onto the graph of g.

a. Explain why the range of g will always be of the form [p, q] for some real p < q.

b. Explain why the domain of g will always be of the form (p,q] or [p,q) for some real p < q.

c. For what values of a is the domain of g of the form (p,q].

<u>Sub-Section [1.4.3]</u>: Apply Transformations of Functions to Find Transformed Points and Tangents

Question	39
Question	כט

The equation of the tangent to the graph of f(x) at the point (1,3) is y = 2x + 1.

The transformation, $T(x,y) = \left(x, \frac{y}{3} + 1\right)$ maps the graph of f onto the graph of g.

Find the equation of the tangent to the graph of g at the point (1,2).

Question 40

The points (2,4) and (4,7) lie on the graph of f(x).

Evaluate g(2), where g(x) = 3f(6 - x) + 5.

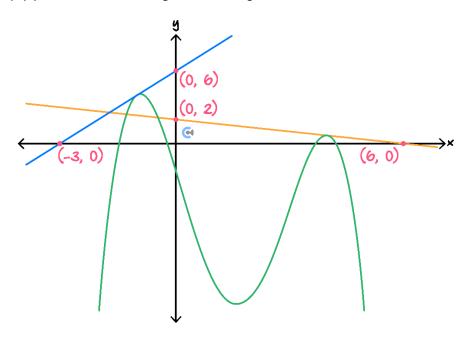
Question 41
Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ described by the following sequence of transformations:
\blacktriangleright A dilation by a factor of 2 from the <i>x</i> -axis, followed by,
\blacktriangleright A translation by a factor of 4 in the negative direction of the x-axis, followed by,
A dilation by a factor of $\frac{1}{3}$ from the y-axis, followed by,
➤ A translation by a factor of 5 in the positive direction of the <i>y</i> -axis.
The image of $A(u, v)$ under T is $(3, 7)$. Find the values of u and v .

Space for Personal Notes		

CONTOUREDUCATION

Question 42

The graph of y = f(x) is drawn below along with two tangents at x = 4 and at x = -1.



Find the equation of the tangent to the graph of g(x) = 1 - 3f(2 - 2x) when x = -1.

Sub-Section [1.4.4]: Find Transformations with Constraints

Question 43
Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the following sequence of transformations:
\blacktriangleright A dilation by a factor of a from the x -axis.
A translation by a factor of b in the positive direction of the y-axis.
T maps the graph of $f(x) = \sqrt{x}$ onto the graph of $g(x) = \sqrt{9x} + 6$.
Find the values of a and b .

Space for Personal Notes	
--------------------------	--

Question	44
Question	77

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, y + c) maps the graph of $y = 2^x$ onto the graph of $y = 8 \times 2^{3x-1} - 5$.

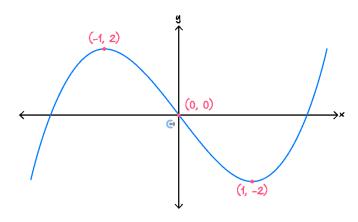
Find the values of a, b and c.

CHONTOUREDUCATION

Question 45

الزار

The graph of $y = x^3 - 3x$ is drawn below.



The transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (a - x, b - y)$$

maps the graph of $y = x^3 - 3x$ onto the graph of $y = (x - 1)^3 - 3x + 5$.

Find the values of a and b.

Consider the functions,

$$f: [-1, \infty) \to \mathbb{R}, f(x) = x^2 + 2x + 2$$

$$g: (-\infty, 1] \to \mathbb{R}, g(x) = 4(2x - 1)^2 + 3$$

Describe a sequence of a dilation followed by two translations and lastly a reflection that maps the graph of f onto the graph of g.

Space for Personal Notes

43

Sub-Section [1.4.5]: Find Transformations of the Inverse Functions

Question 47
Consider the function, $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}, f(x) = \frac{2}{x-1} + 4$.
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x + a, y + b)$ maps the graph of f onto the graph of its inverse function. Find the values of a and b .

Question 48	Ouestion	48
--------------------	----------	----

Consider the one-to-one functions, f(x) and g(x). The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (3-x,2y+7) maps the graph of f onto the graph of g.

Describe a sequence of transformations that maps the graph of f^{-1} onto the graph of g^{-1} .

One	stion	49
Que	SUUII	7/

Let $f: (-\infty, 2] \to \mathbb{R}$, $f(x) = 3x^2 - 12x + 11$ and $g: [-3, \infty) \to \mathbb{R}$, $g(x) = 2\sqrt{x+3} + 4$.

a. Describe a sequence of transformations that maps the graph of f onto the graph of g^{-1} . **b.** Hence, or otherwise, describe a sequence of transformations that maps the graph of g onto the graph of f^{-1} .

Question 50		

Consider the function f which has the property that $f(x-3)-3=f^{-1}(x)$.

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (4x + 1, 2 - y) maps the graph of f onto the graph of g.

Describe a sequence of basic transformations (translations, dilations and reflections in the x and y-axis only) that maps the graph of g onto the graph of g^{-1} .

<u>Sub-Section [1.4.6]</u>: Find Opposite Transformations

Question 52 The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $y = x^3$. Find the rule of f .	Describe a sequence	of transformations that maps the graph of $y = 3e^{2x+1}$	- 4 onto the graph of $v = e^x$.
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $y = x^3$.		or annotormations and maps and graphs of y	ronco di grupii or y
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $y = x^3$.			
he transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
he transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
he transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.	-		
the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
he transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph $= x^3$.			
$= x^3$.			
ind the rule of f .	Question 52		
	he transformation, 7	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	the transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	The transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	the transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	the transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	the transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	The transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	The transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	The transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph
	The transformation, $x^3 = x^3$.	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the	graph of $y = f(x)$ onto the graph

Question 53
The following sequence of transformations maps the graph of f onto the graph of $y = \sqrt{x}$, for $x \in (2, \infty)$:
\blacktriangleright A dilation by a factor of 3 from the <i>x</i> -axis, followed by,
A translation of 2 units left and 4 units up, followed by,
A reflection in both the x-axis and the y-axis.
State the rule and domain of f .
Space for Personal Notes

Ω	~~ 4 • ~	E 1
V u	estion	24

ibe a transformation $(k)^3 + h$ onto itsel	f.		

Space	for	Personal	Notes

Sub-Section: Exam 1 Questions

Question 55

The following sequence of transformations maps the graph of y = f(x) onto the graph of $y = \frac{1}{2}\cos\left(\frac{\pi}{3} - 2x\right)$:

- A translation of $\frac{\pi}{6}$ units in the positive direction of the x-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ in from the y-axis, followed by,
- \triangleright A dilation by a factor of 2 from the x-axis.

Find the rule of f.

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2 - \frac{1}{2} x^3$, and let $g: \mathbb{R} \to \mathbb{R}$, g(x) = 6 - 2x.

a

i. Find $(g \circ f)(x)$.

ii. Find $(f \circ g)(x)$ and express it in the form $k + m(x - h)^3$, where m, k and h are integers.

b. The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+b,ay+c), where a, b and c are integers, maps the graph of $y = (f \circ g)(x)$ onto the graph of $y = (g \circ f)(x)$. Find the values of a, b and c.

Question 57

Let $f: [1, \infty) \to \mathbb{R}$, $f(x) = 4(x - 1)^2 - 3$ and let $g: [2, \infty) \to \mathbb{R}$, $g(x) = 1 - \sqrt{x - 2}$.

- **a.** Let g^{-1} be the inverse function of g.
 - i. State the domain and range of g^{-1} .

ii. Find the rule of g^{-1} .

b. The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, y + c) maps the graph of f onto the graph of g^{-1} . Find the values of a, b and c.

Question 58

Let $f : \mathbb{R} \setminus \{a\} \to \mathbb{R}$, $f(x) = \frac{1}{x-a} + b$.

a. Find the rule and domain for the graph of f^{-1} in terms of a and b.

- **b.** The following sequence of transformations maps the graph of f to the graph of f^{-1} :
 - \blacktriangleright A translation of 4 units in the positive direction of the x-axis, followed by,
 - A translation of 4 units in the negative direction of the y-axis.

Find the value of a in terms of b.

c. Let $g(x) = \frac{1}{x-c} + d$. A transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x + h, y + k)$$

maps the graph of g onto the graph of g^{-1} .

What restrictions are there on the values of h and k?

Sub-Section: Exam 2 Questions

Question 59

The graph of the function f passes through the point (2, -3).

If h(x) = 3f(x - 2), then the graph of the function h must pass through the point:

- **A.** (0,-1)
- **B.** (4, -9)
- C. (0, -9)
- **D.** (4, -1)

Question 60

The graph of the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x - 1$, is reflected in the y-axis and then translated 2 units to the left and then 3 units up.

Which one of the following is the rule of the transformed graph?

- **A.** $y = 2^{2-x} + 2$
- **B.** $y = 2^{2+x} + 2$
- C. $y = \left(\frac{1}{2}\right)^{-2-x} + 2$
- **D.** $y = \frac{1}{4} \left(\frac{1}{2}\right)^x + 2$

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 4 - \log_e\left(\frac{x-1}{2}\right)$ onto the graph of $y = \log_e(x)$, has the rule:

A.
$$T(x,y) = \left(\frac{x-1}{2}, 4-y\right)$$

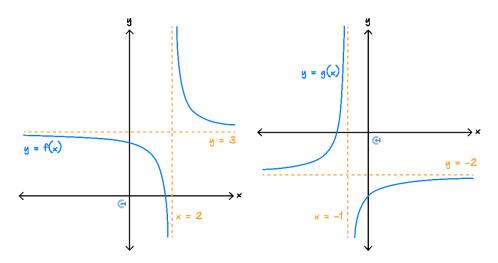
B.
$$T(x,y) = (2x+1, -y-4)$$

C.
$$T(x,y) = (2x + 1, 4 - y)$$

D.
$$T(x,y) = \left(\frac{x-1}{2}, -y-4\right)$$

Question 62

Consider the graph of f and g below, which have the same scale,



If T transforms the graph of f onto the graph of g, then:

A.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (1 - x, y - 5)$$

B.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x - 3, y - 5)$$

C.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x - 3, 5 - y)$$

D.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (1 - x, 2 - y)$$

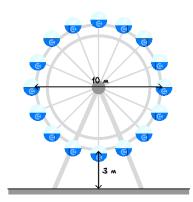
The graph of the function g is obtained from the graph of the function $f: [-2,3] \to \mathbb{R}$, $f(x) = 2x^2 - 4x + 5$, by a dilation of factor 2 from the y-axis, followed by a dilation of factor $\frac{1}{3}$, from the x-axis, followed by a reflection in the y-axis, and finally, followed by a translation of 1 unit in the negative direction of the y-axis.

The domain and range of g are respectively:

- **A.** [-6,4] and $\left[\frac{8}{3},6\right]$
- **B.** $\left[-1, \frac{2}{3}\right]$ and [21, 41]
- C. [-6,4] and $\left[\frac{2}{3}, \frac{17}{3}\right]$
- **D.** [-6,4] and [0,6]

Question 64

The Contour Ferris Wheel pictured below takes 30 minutes to complete a trip.



Thus, the height of the bottom of a carriage t minutes after the start of a trip is given by,

$$h(t) = 8 - 5\cos\left(\frac{\pi t}{15}\right)$$

a. Describe a sequence of transformations that maps the graph of sin(t) onto the graph of h.

b. The horizontal displacement, d from the bottom of the carriage to the centre of the roller coaster t minutes after the start of a trip is,

$$d(t) = 5\sin\left(\frac{\pi t}{15}\right)$$

The transformation, T(t,y) = (t + a, y + b) maps the graph of h onto the graph of d.

i. Find *b*.

ii. Find a possible value of a.

CONTOUREDUCATION

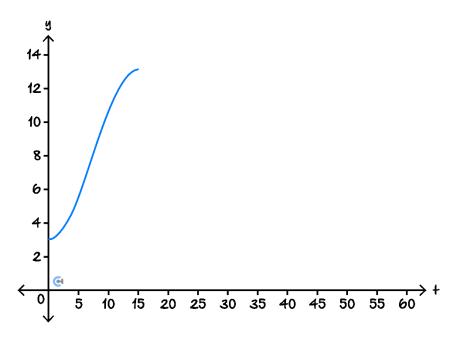
c. 15 minutes into a trip on the Ferris Wheel, Caitlin crashes her car into the Ferris Wheel. This causes the Ferris Wheel to stop for 5 minutes before starting again at half speed.

The height of the Ferris wheel in this trip, $h_1:[0,r]\to\mathbb{R}$ is given by the following function:

$$h_1(t) = \begin{cases} h(t) & 0 \le t < 15 \\ k & 15 \le t < 20 \\ h(pt+q) & 20 \le t \le r \end{cases}$$

Find a set of possible values of p, q, k and r.

d. Part of the graph of h_1 is drawn on the axis below. Draw the rest of the graph of h_1 labelling endpoints with their co-ordinates.



Consider the function, $f: (-1,1) \to \mathbb{R}$, $f(x) = (2x - 1)^2 (x + 1)$.

- **a.** State the range of f.
- **b.** The following sequence of transformations, T, maps the graph of f onto the graph of g:
 - \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
 - A translation of 2 units down and 5 units left, followed by,
 - A reflection in the y-axis.
 - **i.** State the rule of g.

- ii. State the domain of g.
- iii. State the range of g.

c. The tangent to the graph of f at the point $A\left(-\frac{1}{4}, \frac{27}{16}\right)$ is given by the equation,

$$y = \frac{9}{8} - \frac{9x}{4}.$$

i. Find B, the image of A under T.

::	Find the se	motion of	the tangent	to the are	anh of a of	noint D
11.	rina me eq	luation or	the tangent	to me gra	ipii oi y ai	pomi b.

d.	A transformation	$S: \mathbb{R}^2 \to \mathbb{R}^2, S(x, y) =$	(-x a - v)) mans the granh	of f	onto itself

i. State the value of a.

ii. Hence, or otherwise, describe a sequence of transformations in terms of *S* and *T* as required, that maps the graph of *g* to itself, but does not map *A* to itself.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

