

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Transformations [1.3]

Test Solutions

Results:

Test	/ 13.5
Extension	/6

Section A: Test Questions (13.5 Marks)

INSTRUCTION: 13.5 Marks. 17 Minutes Writing.

Question 1 (2.5 marks)

Tick whether the following statements are **true** or **false**.

		True	False
a.	The image of a transformation is the point before the transformation is applied.		✓
b.	When a point undergoes a dilation by a factor 3 from the <i>y</i> -axis, we can describe it as $x' = \frac{1}{3}x$.		✓
c.	The transformation $x' = -2(x - 2)$, indicates a translation of 2 units left, a dilation by a factor 2 from the y-axis and a reflection in the y-axis.	✓	
d.	$y' = 2y + 1$ and $y' = 2\left(y + \frac{1}{2}\right)$ result in the same transformed function.	✓	
e.	The transformation that maps $y = x^2$ to $y = 8x^2$ can be interpreted using either a dilation from the <i>x</i> -axis or the <i>y</i> -axis.	✓	

Space fo	r Personal	Notes
JPULU .U		

Question 2 (2 marks)

The series of transformations given by "a dilation by a factor of 5 from the x-axis, reflection in the x-axis, and a translation of 2 units up" yields the same result as the series of transformations given by "a translation by a units down, a reflection in the x-axis, and a dilation by a factor of b from the x-axis." Find the values of a and b.

 $A = \frac{2}{5}$ and b=5

Question 3 (3 marks)

For the function $f:[0,\infty)\to R$, $f(x)=\sqrt{x+3}$, the function f is dilated by a factor of $\frac{3}{2}$ from the x-axis, translated 3 units in the negative x-direction, and then reflected in the y-axis to produce the function g.

Find the rule for g(x) and state its domain.

x' = -(x-3)	Original Domain:[0,00)
x = -x' + 3	J
L South of the second of the s	[0,00)
y=Jx+3	
$y = \sqrt{-x'+3+3}$	[-3,∞)
3 - 3	\
$y = \frac{1}{2} \int -x^2 dx$	(-00, 3]

Question	4	(3	marks)	١
O ucouon	_	v	munic	,

Consider the following functions:

$$f(x) = \log_e(x+4)$$

$$g(x) = 2\log_e(3x - 1) + 1$$

Find the series of transformations that map f(x) to g(x).

Dilation by factor 2 from x Dilation by factor 1/3 from y Translation 1 up Translation 5/3 right.

Question 5 (3 marks)

The graph of a linear function y = f(x) has an x-intercept at (2,0) and a y-intercept at (0,-6). Find the x and y-intercepts of the graph of y = 2f(3x).

Solution: The graph of y = f(x) has undergone a transformation of

- A dilation by factor 2 from the x-axis
- A dilation by factor ¹/₃ from the y-axis.

Therefore new x-intercept is $\left(\frac{2}{3},0\right)$ and new y-intercept is (0,-12).

Space for Personal Notes

Section B: Extension Test Questions (6 Marks)

INSTRUCTION: 6 Marks. 6 Minutes Writing.

Question 6 (3 marks)

It is known that f(x) has a tangent y = 2x + 3 at x = 3. f(x) has been transformed into g(x), where g(x) = 3f(2x - 1) + 2.

Find the tangent of g(x) at x = 2.

$$f[x_] := 2x + 3$$

$$3 * f[2 x - 1] + 2 // Expand$$

확징

$$5 + 12 x$$

Space for Personal Notes

Question 7 (3 marks)

Find a sequence of transformations that map the function $f(x) = x^2 - 6x + 13$ to the function $g(x) = 18(x-1)^2 + 10$.

Solution: $f(x) = (x-3)^2 + 4$. Let y = f(x) and y' = g(x) then

$$y - 4 = \frac{y' - 10}{18} \implies y' = 18y - 62$$

and

$$x-3=x'-1 \implies x'=x-2$$

Therefore,

- ullet A dilation by factor 18 from the x-axis
- A translation 2 units to the left
- A translation 62 units down.

A different possible sequence is

- A dilation by factor 2 from the x-axis
- A dilation by factor ¹/₃ from the y-axis
- A translation 2 units up.

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

