

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Transformations [1.3]

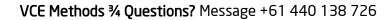
Test

Results:

Test	/ 13.5
Extension	/6

Section A: Test Questions (13.5 Marks)

INSTRUCTION: 13.5 Marks. 17 Minutes Writing.



Question 1 (2.5 marks)

Tick whether the following statements are **true** or **false**.

		True	False
a.	The image of a transformation is the point before the transformation is applied.		
b.	When a point undergoes a dilation by a factor 3 from the <i>y</i> -axis, we can describe it as $x' = \frac{1}{3}x$.		
c.	The transformation $x' = -2(x - 2)$, indicates a translation of 2 units left, a dilation by a factor 2 from the y-axis and a reflection in the y-axis.		
d.	$y' = 2y + 1$ and $y' = 2\left(y + \frac{1}{2}\right)$ result in the same transformed function.		
e.	The transformation that maps $y = x^2$ to $y = 8x^2$ can be interpreted using either a dilation from the <i>x</i> -axis or the <i>y</i> -axis.		

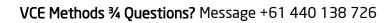
Space	for	Personal	Notes
Space		. c. 50a.	. 10

Question 2 (2 marks) The series of transformations given by "a dilation by a factor of 5 from the x -axis, reflection in the x -axis, and a		
	slation of 2 units up" yields the same result as the series of transformations given by "a translation by a units a , a reflection in the a -axis, and a dilation by a factor of a from the a -axis." Find the values of a and a .	
-		
-		
-		
3 un	the function $f:[0,\infty) \to R$, $f(x) = \sqrt{x+3}$, the function f is dilated by a factor of $\frac{3}{2}$ from the x -axis, translated that its in the negative x -direction, and then reflected in the y -axis to produce the function g . If the rule for $g(x)$ and state its domain.	
-	the rule for $g(x)$ and state its domain.	
-		
-		
-		
-		

Question 4 (3 marks)				
Consider the following functions:				
$f(x) = \log_e(x+4)$				
$g(x) = 2\log_e(3x - 1) + 1$				
Find the series of transformations that map $f(x)$ to $g(x)$.				
Question 5 (3 marks)				
The graph of a linear function $y = f(x)$ has an x -intercept at $(2,0)$ and a y -intercept at $(0,-6)$. Find the x and y -intercepts of the graph of $y = 2f(3x)$.				
				
				
Space for Personal Notes				

Section B: Extension Test Questions (6 Marks)

INSTRUCTION: 6 Marks. 6 Minutes Writing.



Question 6 (3 marks)

It is known that f(x) has a tangent y = 2x + 3 at x = 3. f(x) has been transformed into g(x), where g(x) = 3f(2x - 1) + 2.

Find the tangent of g(x) at x = 2.

Space for Personal Notes

Question 7 (3 marks)			
Find a sequence of transformations that map the function $f(x) = x^2 - 6x + 13$ to the function $g(x) = 18(x-1)^2 + 10$.			

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

