

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

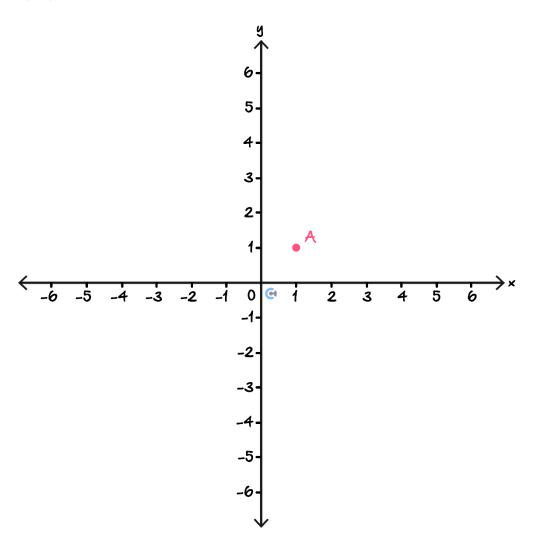
VCE Mathematical Methods ¾ Transformations [1.3]

Homework

Homework Outline:

Compulsory Questions	Pg 2 — Pg 19
Supplementary Questions	Pg 20 — Pg 34

Section A: Compulsory Questions



<u>Sub-Section [1.3.1]</u>: Applying Transformations to Points

Question 1				
nsider the following transformations of the plane.				
S, a dilation by a factor of 2 from the x -axis.				
T, a translation of 2 units in the positive direction of the x -axis, and 3 units in the negative direction of the y -axis.				
W, a reflection in the y -axis, followed by a dilation by a factor of 2 from the y -axis.				
Find $S(x,y) = (x',y')$.				
Find $T(x,y)$.				
Find $W(x, y)$.				

d. The point A(1, 1) is drawn on the axis below.

Label the following points on the axis above.

- **i.** B which is the image of A after having S and then W applied to it.
- ii. C which is the image of A after having W and then S applied to it.
- iii. D which is the image of A after having T and then W applied to it.
- iv. E which is the image of A after having W and then T applied to it.

Consider the following transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (3x + 6, -4y + 4).

T can be described using the following sequence of transformations,

- \blacktriangleright A dilation by a factor of α from the x-axis, followed by,
- \blacktriangleright A dilation by a factor of b from the y-axis, followed by,
- \blacktriangleright A reflection in the x -axis, followed by,
- \blacktriangleright A translation of c unit in the positive direction of the x-axis, followed by,
- \blacktriangleright A translation of d unit in the positive direction of the y-axis.
- **a.** Find a, b, c and d.

b.	Describe T as a sequence of two translations, followed by two dilations, and a reflection.

Find the pre-image of $(3, -8)$ under T .

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ described by the following sequence of transformations.

- \rightarrow A reflection in the line y = x, followed by,
- \blacktriangleright A translation of 6 units in the negative direction of the x-axis, followed by,
- A dilation by a factor of $\frac{1}{3}$ from the y-axis, followed by,
- \blacktriangleright A dilation by a factor of 5 from the x-axis, followed by,
- A translation of 7 units in the positive direction of the y-axis, followed by,
- \rightarrow A reflection in the *x*-axis.
- **a.** Let (x', y') be the image of (x, y) under T.

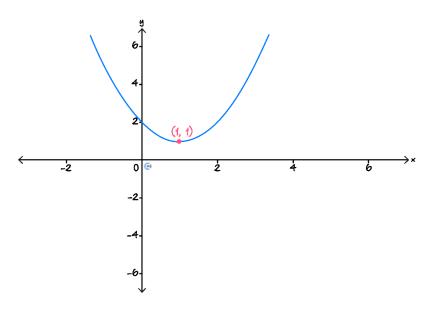
Express x and y in terms of x' and y'.

CONTOUREDUCATION

VCE Methods ¾ Questions? Message +61 440 138 726

b. The transformation T can also be described using the following sequence of transformations.			
A dilation by a factor of from the x-axis, followed by,			
A dilation by a factor of from the y-axis, followed by,			
A reflection in the axis, followed by,			
ightharpoonup A reflection in the line $y = x$, followed by,			
A translation of units in the positive direction of the x-axis, followed by,			
➤ A translation of units in the positive direction of the <i>y</i> -axis			
Fill in the blanks.			
Space for Personal Notes			

6



<u>Sub-Section [1.3.2]</u>: Transforming Graphs of Functions.

Question 4

a. The graph of f(x) is shown below.

On the same axes, sketch the graph of $g(x) = -f\left(\frac{x}{2}\right)$.

b. Let $f(x) = \log_{e}(x)$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x + 1, y + 3) maps the graph of f(x) onto the graph of g(x). Find the rule for g(x).

c. Find the rule for the image of the graph of $y = \sin(x)$ under the transformation,

$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = \left(\frac{x}{2}, -y\right)$.

a.	Let $f(x) = 2x^2 + 4$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (4x + 2, -y)$ maps the graph of $f(x)$ onto the graph of $g(x)$. Find the rule for $g(x)$.

b. Find the rule for the image of the graph of $y = -\sqrt{x+1} + 3x$ under the transformation,

$$S: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (-x + 5, y + 1).$$

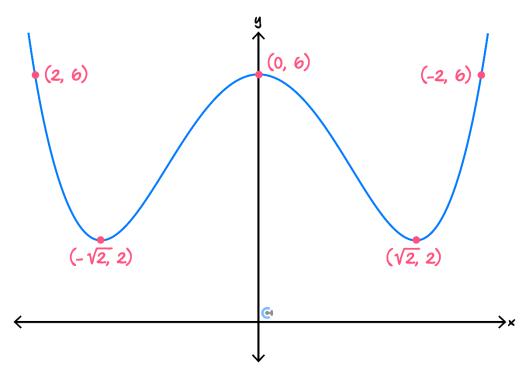
-		
_	 	
_	 	

c. Let $f(x) = x^2 + 5$, and let g(x) = 3(f(x + 2) - 6).

i. Find and simplify g(x).

ii. Solve g(x) = 0.

Question 6



a. Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that the following sequence of transformations can describe.

- \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
- A reflection in the *y*-axis, followed by,
- ➤ A translation of 2 units up and 4 units left.

Find the rule for the image of the graph of $y = e^{2x+3}$ under T.

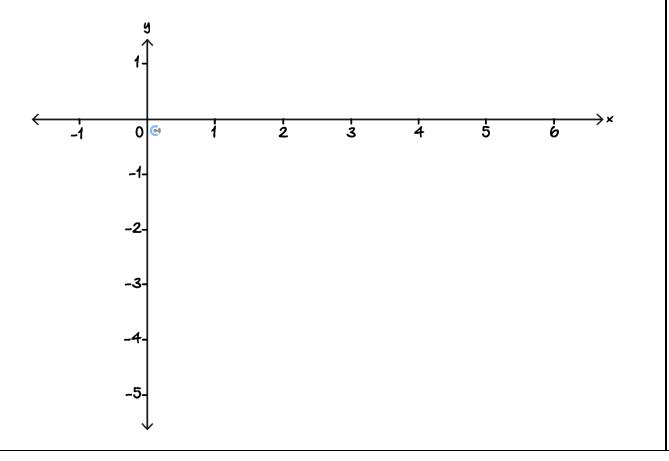
b. The graph of f(x) is shown below.

The function g(x) has a rule, g(x) = -f(x) + a.

For what values of a does the equation g(x) = f(x) have 4 solutions?

c. The transformation S(x, y) = (-5x + 3, 3y - 2) maps the graph of f(x) onto the graph of g(x).

If the rule for $g(x) = \sqrt{x}$, find the rule for f(x).



d. (Tech-Active.)

Let
$$f: [0, \infty) \to \mathbb{R}$$
, $f(x) = e^x + e^{-x}$.

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (y - 3, -2x)$ maps the graph of f(x) onto the graph of g(x).

Sketch the graph of g(x) on the axis below, labelling endpoints and axis intercepts with their coordinates, correct to 3 decimal places.

<u>Sub-Section [1.3.3]</u>: Find Transformations From Transformed Function

Question 7

a. Let $f(x) = x^2$ and $g(x) = 2x^2 + 1$.

Describe a transformation that maps the graph of f onto the graph of g.

b. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax+b,cy+d)$ maps the graph of $y=e^x$ to the graph of $y=2e^{x-4}+3$.

Find the values of a, b, c and d.

c. A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $f(x) = x^2$ onto the graph of $g(x) = 2(x+1)^2 + 3$.

T can be described by the following sequence of transformations,

- A dilation by a factor of _____ from the x-axis, followed by,
- \blacktriangleright A translation of _____ unit(s) in the positive direction of the x-axis, followed by,
- A translation of _____ units in the positive direction of the y-axis.

Fill in the blanks.

a. Let
$$f(x) = \frac{1}{2x+2}$$
.

The transformations:

$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (x+a,by)$,
and
 $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (c(x+d),y)$.

Both map the graph of $y = \frac{1}{x}$ onto the graph of f.

Find the values of a, b, c and d.

b. The function $s:[0,365] \to \mathbb{R}$, $s(t) = \frac{200}{t+1}$ models the number of minutes per day James smiles t days after the start of the school year.

A new function $s_1(t)$ models the number of minutes Sam smiles. It is known that $s_1(0) = s(0)$, but s_1 decreases at half the rate of s at any point in time.

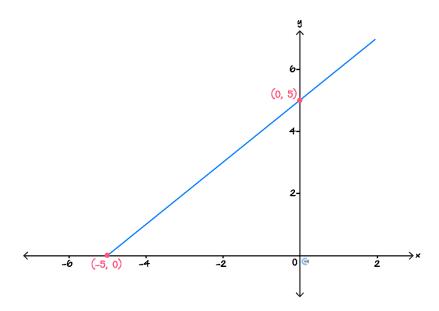
State a sequence of two transformations that maps s to this new model s_1 .

c. Let $f(x) = \tan(x)$ and $g(x) = -2\tan(3x + 6) + 8$.

Fill in the blank lines to make the following sequences of transformations map the graph of f(x) onto the graph of g(x).

- A dilation by a factor of ______ from the y-axis, followed by,
- A translation of _____units in the positive direction of the x-axis, followed by,
- ➤ A translation of _____ units in the positive direction of the y-axis, followed by,
- \blacktriangleright A dilation by a factor of _____ from the x-axis, followed by,
- \blacktriangleright A reflection in the x -axis.

Question 9



a. Describe a sequence of three transformations that map the graph of $f(x) = \sqrt{4x - x^2}$ onto the graph of $g(x) = \sqrt{1 - x^2}$.

b. Let $f: (-\infty, -1] \to \mathbb{R}, f(x) = x^2 + 2x$.

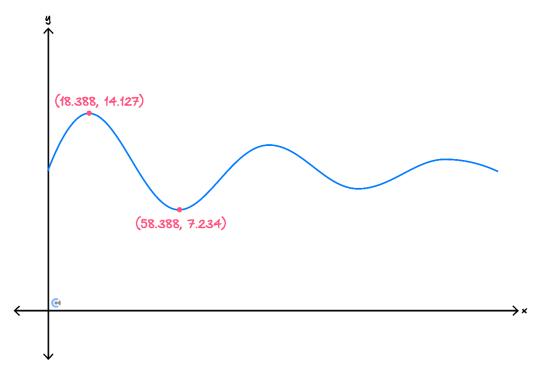
A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax + b, y + c)$ maps the graph of f(x) onto the graph of g(x).

The graph of $y = \sqrt{g(x)}$ is shown below.

Find the values of a, b and c.

c. Describe 3 different transformations of the plane that map the graph of $y = x^3$ onto the graph of $y = 3(x - 1)^3 + 5.$

d. (Tech-Active)


Let $f(x) = \cos(\pi(x^2 + 16x))$.

State a transformation that maps the graph of y = f(x) onto the graph of $y = 2\cos(\pi x^2)$.

Question 10 Tech-Active.

Part of the graph of $f: [0, \infty) \to \mathbb{R}$, $f(x) = 4e^{-0.01x} \sin\left(\frac{\pi x}{40}\right) + 10$ is shown below.

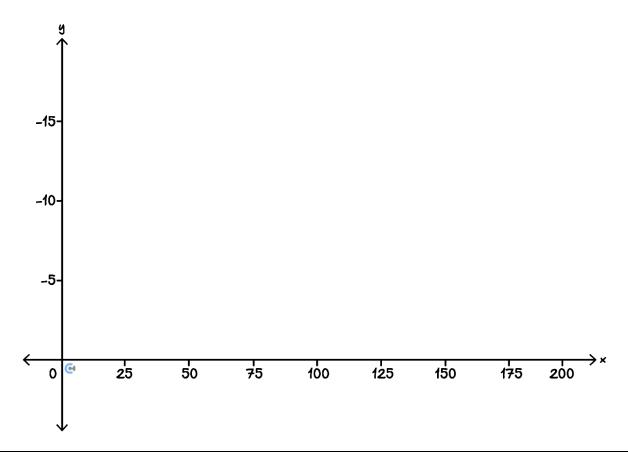
Let g(x) = 2 f(5 - x) - 4.

a. Complete a possible sequence of transformations to map f to g.

1. A dilation by a factor of 2 from the x-axis.

4. A reflection in the *y*-axis.

b.	b. Find the value of x which,			
	i.	i. Minimises g correct to 3 decimal places.		
	ii.	Maximises g correct to 3 decimal places.		
c.	Sta	te the range of g correct to 2 decimal places.		


A transformation T(x,y) = (x,cy+d) maps the graph of f(x) onto the graph of h(x). The graph of h has the following properties:

- \blacktriangleright The global minimum of h is at (18.388, 7.937).
- \blacktriangleright The global maximum of h is at (58.388, 11.383).

d. Find the values of a and b correct to 1 decimal place.

	-	

e. Sketch the graph of h on the axis below, labelling its global minimum and maximum.

Section B: Supplementary Questions

<u>Sub-Section [1.3.1]</u>: Applying Transformations to Points

Question 11)					
Consider the following transformations of the plane.						
\triangleright S, a dilation by a factor of 2 from the y-axis, followed by a translation of 3 units up.						
T, a translation of 2 units left and 1 unit up.						
\blacktriangleright W, a reflection in the line $y = x$.						
a. Find $S(x,y)$.						
b. Find $T(x, y) = (x', y')$. Express x and y in terms of x' and y' .						
c. Find $W(x,y)$.						

Consider the following transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (-2x + 4,5(y + 3)).

T can be described using the following sequence of transformations:

- \blacktriangleright A dilation by a factor of α from the x-axis, followed by,
- \blacktriangleright A dilation by a factor of b from the y-axis, followed by,
- A reflection in the y-axis, followed by,
- \blacktriangleright A translation c units in the positive direction of the x-axis, followed by,
- \blacktriangleright A translation of d units in the positive direction of the y-axis.
- **a.** Find a, b, c and d.

b.	Describe T	as a sequence of two	o translations,	followed by	two dilations,	and a reflection.
----	------------	----------------------	-----------------	-------------	----------------	-------------------

c. The image of (p, -5) under T is (2, q). Find p and q.

Question 13

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ described by the following sequence of transformations:

- A dilation by a factor of $\frac{1}{5}$ from the x-axis, followed by,
- \blacktriangleright A translation of 2 units in the positive direction of the x-axis, followed by,
- A reflection in the y-axis, followed by,
- \blacktriangleright A translation of 3 units in the positive direction of the x-axis, followed by,
- A translation of 5 units in the negative direction of the y-axis, followed by,
- \blacktriangleright A dilation by a factor of 5 from the x-axis, followed by,
- \blacktriangleright A reflection in the x-axis, followed by,
- A dilation by a factor of 3 from the y-axis.
- **a.** Find (x', y'), the image of (x, y) under T.

b. Express x in terms of x' and y in terms of y'.

c. A transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$ maps T(x,y) = (x',y') to (x,y).

Describe S as a sequence of 2 translations followed by 2 reflections followed by a dilation.

>

>

>

>

>

Question 14

a. Describe a reflection in the line y = x + b using elementary transformations.

>

>

>

A reflection in the line y = ax can be described via the following transformation,

$$T(x,y) = \left(\frac{x(1-a^2)+2ay}{1+a^2}, \frac{y(a^2-1)+2ax}{1+a^2}\right).$$

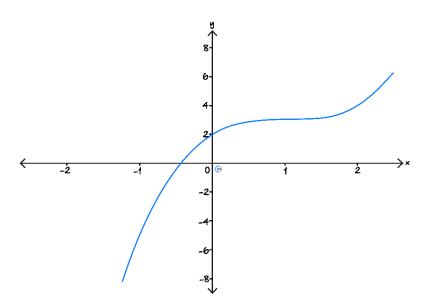
b. Describe a reflection in the line y = ax + b using elementary transformations and T.

>

>

>

:.	Find the image of the point (2, 4) when it is reflected in the line $y = 3x + 5$.					
•	Show using coordinate geometry that T describes a reflection in the line $y = ax$.					
	Hint: Find the line going through a point (x_0, y_0) with a gradient $-\frac{1}{a}$.					
	Then, equate that line to $y = ax$ to get a point (x_1, y_1) .					
	Then, (x_1, y_1) is the midpoint of (x_0, y_0) and $(x'_0, y'_0) = T(x_0, y_0)$.					



<u>Sub-Section [1.3.2]</u>: Transforming Graphs of Functions.

Question 15

a. The graph of f(x) is shown below.

On the same axes, sketch the graph of g(x) = f(-2x).

b. Let $f(x) = e^x$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x-1,y+2) maps the graph of f(x) onto the graph of g(x). Find the rule for g(x).

c. Find the rule for the image of the graph of y = cos(x) under the transformation,

$$S = \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = \left(-3x, \frac{1}{2}y\right).$$

CONTOUREDUCATION

Question 16

a. Let $f(x) = 5\sqrt{x} - 3$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (4x,3-y) maps the graph of f(x) onto the graph of g(x). Find the rule for g(x).

b. Find the rule for the image of the graph of $y = e^{x+2} - \log_e(-2x)$ under the transformation,

 $S: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (-2x - 1, y + 3).$

c. Let f(x) = (x - 1)(x + 2)(x - 3), and let g(x) = 4f(2 - x) + 5. Solve g(x) = 5.

- **a.** Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ which can be described by the following sequence of transformations:
 - A translation is 3 units up and 2 units left, followed by,
 - A dilation by a factor of 3 from the x-axis and $\frac{1}{2}$ from the y-axis followed by,
 - \triangleright A reflection in the x-axis.

T maps the graph of f(x) onto the graph of $g(x) = \log_{e}(x)$. Find the rule of f(x).

b. Consider the transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$, which the following sequence of transformations can describe, A dilation by a factor of 2 from the x-axis and 5 from the y-axis, followed by, A translation 1 unit down and 4 units right. Find the rule for the image of the graph of $y = 25x^2 + 5x - 1$ under S. c. A transformation $U: \mathbb{R}^2 \to \mathbb{R}^2$, U(x,y) = (2x + 5, 3 - 2y) maps the graph of y = af(x) + b onto the graph of y = f(cx + d). Find the values of a, b, c and d.

Question	18
Oucsuon	10

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which is described by the following sequence of transformations.

- A translation of 3 units upwards and 5 units left, followed by,
- \blacktriangleright A reflection in the line y = x, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the x-axis and $\frac{1}{4}$ from the y-axis, followed by,
- \blacktriangleright A reflection in the x-axis.

T maps the graph of $f: (-\infty, 2], f(x) = 3x^2 + 12x + 5$ onto the graph of g.

Find the rule of g.

Sub-Section [1.3.3]: Find Transformations From Transformed Function

Question 19

a. Let $f(x) = x^2$ and $g(x) = 3x^2 - 2$.

Describe a transformation that maps the graph of f onto the graph of g.

b. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax+b,cx+d)$ maps the graph of $y = \log_e(x)$ to the graph of $y = 5 - \log_e(2x+3)$.

Find the values of a, b, c and d.

c. A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $f(x) = \sqrt{x}$ onto the graph of $g(x) = 3\sqrt{x-1} + 5$.

T can be described by the following sequence of transformations,

- A dilation by a factor of ______ from the x-axis, followed by
- A translation of ____ unit(s) in the positive direction of the x-axis, followed by
- A translation of _____ units in the positive direction of the y-axis.

Fill in the blanks.

a. Let
$$f(x) = 4(x - 5)^2$$
.

The transformations:

$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (x+b,ay)$,
and
 $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (cx+d,y)$.

Both map the graph of $y = x^2$ onto the graph of f.

Find the values of a, b, c and d.

-		 	

b. Consider a function $f:[0,\infty)\to\mathbb{R}, f(x)=100-4x$.

A different function g has the property, that g decreases at half the rate of f at any point in time and that g(0) = f(0). State a single transformation that maps the graph of f onto the graph of g.

c. Let $g(x) = -\frac{f(4x+12)}{5} - 20$.

Fill in the blank lines to make the following sequences of transformations map the graph of f(x) onto the graph of g(x).

- \blacktriangleright A dilation by a factor of _____ from the x-axis, followed by
- \blacktriangleright A translation of _____units in the positive direction of the x-axis, followed by,
- A translation of _____ units in the positive direction of the y-axis, followed by,
- A dilation by a factor of ______ from the y-axis, followed by
- \rightarrow A reflection in the *x*-axis.

Question 21

a. Describe a sequence of three transformations that map the graph of $f(x) = \sqrt{7 - 6x - x^2}$ onto the graph of $g(x) = \sqrt{4 - x^2}$.

ONTOUREDUCATION

b.	Let $f: [2, \infty) \to \mathbb{R}, f(x) = \sqrt{4x^2 - 16x + 16}$.
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax + b,y)$ maps the graph of $f(x)$ onto the graph of $g: [0,\infty) \to \mathbb{R}$, $g(x) = x$.
	Find the values of a and b .
c.	A function f has its only stationary point at $(2,3)$ and its only x -axis intercept at $(-5,0)$.
	A function g has its only stationary point at $(6, -2)$ and only x -axis intercept at $(-8, 0)$.
	A function g has its only stationary point at $(6, -2)$ and only x -axis intercept at $(-8, 0)$. A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .

Question 22 Tech-Active.

Let
$$f(x) = x^4 + x^3 + x^2 + x + 1$$
 and $g(x) = x^4 + 2x^3 + 4x^2 + 8x + 11$.

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, cx + d) maps the graph of f onto the graph of g.

Find a, b, c, d and show that they are unique.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

