

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4
Functions & Relations Exam Skills [1.2]

Workbook

Outline:

Recap of [1.1] Functions and Relations Pg 02-18

- Maximal Domains
- Domain of Sum, Difference, and Product of Functions
- Basics of Composition
- Validity of Composite Functions
- Domain of Composite Functions
- Range of Composite Functions
- Basics of Inverses
- Swapping x and y
- Symmetry Around y = x
- Validity of Inverse Function
- Intersection Between Inverses
- Composition of Inverses

Functions and Relations Exam Skills

Pg 19-28

- Find a New Domain to Fix Composite Functions
- Find the Range of Complex Composite Functions
- Find the Gradient of Inverse Functions

Exam 1 Questions Pg 29-33

<u>Tech Active Exam Skills</u> Pg 34-36

Exam 2 Questions Pg 37-42

Section A: Recap of [1.1] Functions and Relations

Sub-Section: Maximal Domains

Starting with a domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>	
$\sqrt{\mathbf{z}}$	₹ ≥ 0	
$\log(z)$	3 > 0	
$\frac{1}{z}$	2 + 0	

Steps

- 1. Find the restriction of the inside.
- **2.** Sketch the graph if needed.
- 3. Solve for domain.

Sub-Section: Domain of Sum, Difference, and Product of Functions

What about a domain of the sum of two functions?

Sums, Differences, and Products of Functions

Rules:

$$(f+g)(x) = \frac{f(x+g(x))}{f(x)}$$

$$(f-g)(x) = \frac{f(x) - g(x)}{f(x)g(x)}$$

$$(f \times g)(x) = \frac{f(x) \times g(x)}{f(x) \times g(x)}$$

ldea:

Domain of sum or product of two functions = _____ of the two domains

- > Steps:
 - 1. Find the domain of each function.
 - 2. Find the intersection (draw a number line if needed).

Question 1 Walkthrough.

Find the maximal domain of the following function:

$$g(x) = \sqrt{x - 2} + \log_3(12 - 2x)$$

Question 2

Find the maximal domain of each of the following functions.

$$\log_3(x^2 - 4) + \frac{3}{x^2 - 1}$$

Question 3 Extension.

State the maximal domain of the following function.

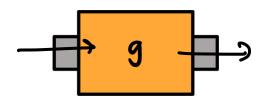
$$y = \sqrt{5 - x} - \log_3\left(\frac{2}{x + 3}\right)$$

Sub-Section: Basics of Composition

What was the "composition" of functions?

Composite Functions



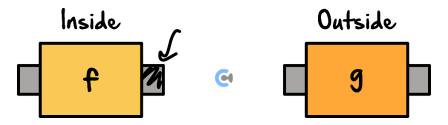


- Definition: A ______ of functions.
- Representation of the Above:

Sub-Section: Validity of Composite Functions

Did composite functions work all the time?

Validity of Composite Functions



 \blacktriangleright Output of f(x):

Raye Inside (Label Above,

Input of g(x):

- Lun d Outslib (Label Above)
- Composite Function is only valid if:

Raye of la	u \$ ⊆	Don	out !
			•

Acronym:

RIDO.

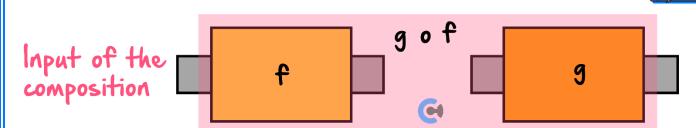
Question 4

Consider the functions $f(x) = \sqrt{x+2}$ and $g(x) = x^2 - 4$ defined over their maximal domain.

Explain why the composition f(g(x)) is not valid.

Sub-Section: Domain of Composite Functions

How did we find the domain of a composite function?



 $Domain\ of\ Composite = Domain\ of\ Inside$

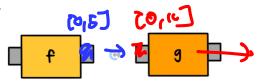
Ouestion 5

Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + 2$ defined over their maximal domain.

State the domain of the composite function g(f(x)).

Sub-Section: Range of Composite Functions

Range of the Composite Functions



Range of Composite Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.

Question 6 Walkthrough

Consider the functions:

$$f: R \to R, f(x) = x^2 - 4$$

$$g: [-9, \infty) \to R, g(x) = \sqrt{x+9}$$

a. For the composite function g(f(x)), state the rule and domain.

b. State the range of g(f(x)).

c. State the range of g(x).

d. Explain why the range of g is not the same as the range of $g \circ f$.

Your turn!

Question 7

Consider the functions:

$$f: [1, \infty) \to R, f(x) = x^2 + 6$$

 $g: R \to R, g(x) = x + 2$

a. For the composite function g(f(x)), state the rule and domain.

$$g(x^{3}+6) = x^{2}+6+2$$

= $x^{2}+8$

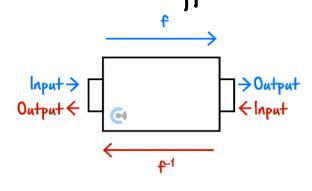
b. State the range of g(f(x)).

Sub-Section: Basics of Inverses

What did "Inverse" mean?

Inverse Relation

Definition: Inverse is a relation which does the

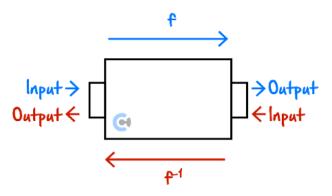


Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

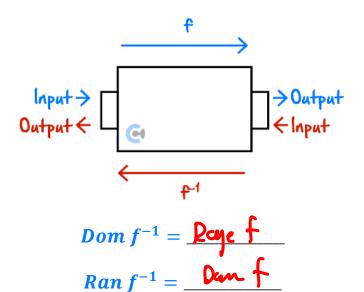
Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



NOTE: f(x) = y.

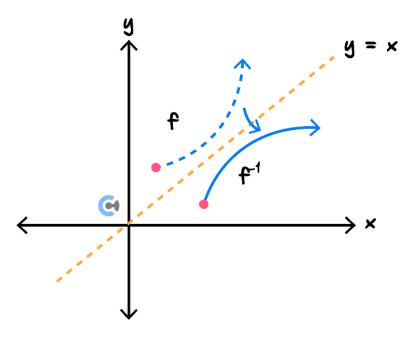
Domain and Range of Inverse Functions



Sub-Section: Symmetry Around y = x

Why does this happen?

Symmetry of Inverse Functions

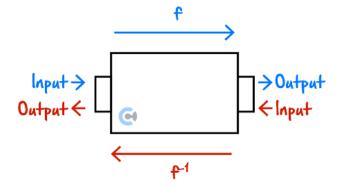


linverse functions are always symmetrical around y = x.

Sub-Section: Validity of Inverse Function

Does an inverse function always exist?

Validity of Inverse Functions



Requirement for Inverse Function:

f needs to be _____

Question 8 Walkthrough.

Consider the function $f: (-\infty, a] \to \mathbb{R}$, $f(x) = 2(x-4)^2 - 8$.

a. Find the largest possible value of a such that the inverse function f^{-1} exists.

b. Find the inverse function and its range.

NOTE: Finding function means to find the rule AND the domain.

TIP: Always try sketching the function to find the domain such that an inverse function can exist!

Your turn!

Question 9

Consider the function $g:(-\infty,b] \to \mathbb{R}, g(x) = -x^2 - 8x - 14$.

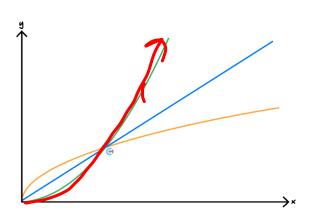
a. Find the largest possible value of b such that the inverse function g^{-1} exists.

b. Find the inverse function and its range.

Sub-Section: Intersection Between Inverses

Where do inverses meet?

Intersection Between a Function and its Inverse



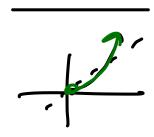
Equate with 45% instead.

$$f(x) = x \mathsf{OR} f^{-1}(x) = x$$

We cannot do this when the function is ______ function.

Question 10

Find the intersection between $f:[0,\infty)\to R$, $f(x)=x^2$ and its inverse, without finding the inverse.



NOTE: This only works for an increasing function.

Sub-Section: Composition of Inverses

Composition of Inverse Functions

$$f \circ (f^{-1})(x) = \underline{x}, \quad \text{for all } x \in \underline{\mathbf{Dun}} f^{-1}$$

$$f^{-1}(f(x)) = 2$$
, for all $x \in 2$

NOTE: Domain = Domain of Inside.

Question 11 (4 marks)

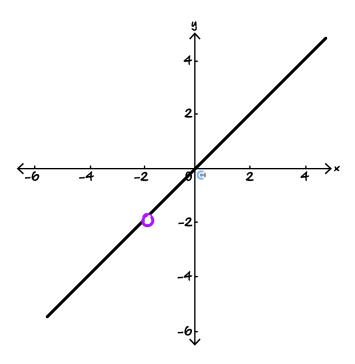
Consider the function $f(x) = \frac{1}{x+2} - 3$.

a. Find the rule and domain for $f^{-1}(f(x))$. (2 marks)

 $= x, \quad Den = Pen f$ = (2/2-2)

CHONTOUREDUCATION

b. Sketch the graph of $y = f^{-1}(f(x))$ on the axes below. (2 marks)



Section B: Functions and Relations Exam Skills

Context: Exam Skills

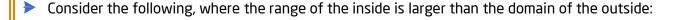
- We will go through specific skills that are common in the exams!
- It will be slightly harder so get ready!

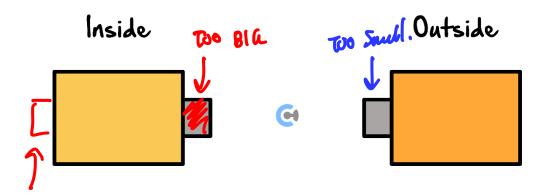
Space for Personal Notes		

Sub-Section: Find a New Domain to Fix Composite Functions

How can we go about fixing a broken composite function?

Exploration: Fixing Broken Function





Is it easier to decrease the range of the inside function, or increase the domain of the outside function? (Label Above)

[decrease range of inside function] / [increase domain of outside function]

How can this be done? (Label Above)

Fixing Broken Composite Functions

- Aim: Restrict the domain of the inside function so that the range of the inside function fits inside the domain of the outside.
- Steps:
 - 1. Write down the RIDO statement with the domain of the outside (as it is fixed).
 - 2. Sketch the inside function to see what domain is needed.

Let's look at some questions together!

Question 12 Walkthrough.

Consider $f(x) = \sqrt{x}$ and g(x) = 2x - 2 both defined over their maximal domains.

a. Is f(g(x)) defined?

b. Find the largest domain of g such that f(g(x)) is defined.

1) Page
$$g \subseteq Dam f$$
: "Rewrite the aim!

$$Page g \subseteq [0,\infty)$$
2.
$$2x-2$$

$$x int: 2x-2=0$$

$$x=1$$

$$Page g \subseteq Dam f$$
: "Rewrite the aim!

TIP: Always start with the RIDO statement!

Active Recall

- To restrict the domain of inside function so that the range of inside function fits inside the domain of outside.
 - 1. Write down _____ statement with the domain of the outside (as it is fixed).
 - 2. **______the inside function** to see what domain is needed.

Your Turn!

Question 13

Consider $f(x) = \frac{1}{x}$ and $g(x) = \log_e(x)$, both defined over their maximal domains.

a. Is g(f(x)) defined?

b. Find the largest domain of f such that g(f(x)) is defined.

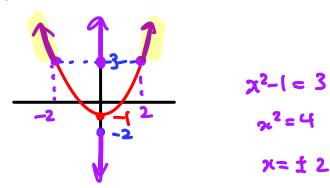
Question 14 Extension.

Consider $f(x) = x^2 - 1$ and $g(x) = \sqrt{(x+2)(x-3)}$, both defined over their maximal domains.

a. Is g(f(x)) defined?

b. Find the largest domain of f such that g(f(x)) is defined.

2)

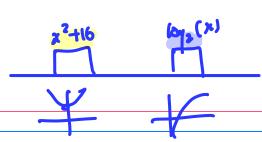


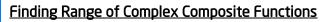
Key Takeaways

- ☑ The range of the inside function must be a subset of the domain of the outside function.
- ☑ We restrict the domain of the inside function so its range fits in the domain of the outside function.

Sub-Section: Find the range of complex composite functions

<u>Discussion</u>: How do we find a range of a complicated function? Eg: $log_2(x^2 + 16)$





- > Aim: Find the range of complicated functions.
- Steps:
 - 1. Break the function into _______of two simple functions.
 - 2. Follow the bar digm to find the range.

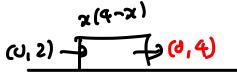
Question 15 Walkthrough.

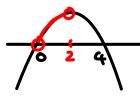
Find the range of $f(x) = \log_2(x^2 + 16)$ where $x \ge -1$.

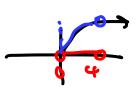
$$(4.00)$$
 (16.00) (16.00) (16.00) (16.00) (16.00) (16.00) (16.00)

Question 16

Find the range of $f(x) = \sqrt{x(4-x)}$ where 0 < x < 2.







Question 17 Extension

Find the range of $f(x) = \sqrt{\frac{3}{x^2 - 5x + 6}}$ where 0 < x < 2.

x3-2×46	3	T
		\square

Key Takeaways

☑ To find the range of a complicated function we can break the function into a composition of two simpler functions.

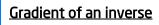
Sub-Section: Find the Gradient of Inverse Functions

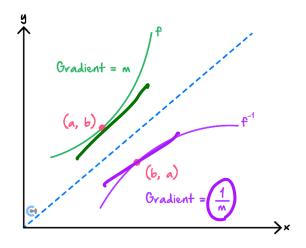
This is a fun application of inverse with calculus!

REMINDER: Gradient of a Point



<u>Discussion:</u> What would happen to the gradient when we inverse the function? (Inverse: Swap x and y.)





If Gradient of f at (a, f(a)) = m

Gradient of f^{-1} at $(f(\alpha), \alpha) = 0$

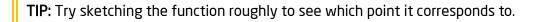
NOTE: The x-value of the inverse is the y-value of the original function.

Question 18 Walkthrough.

Consider the one-to-one function f with the following properties:

$$f(3) = 5$$
 and $f'(3) = 2$. Find the gradient of f^{-1} (1 $x = 5$)

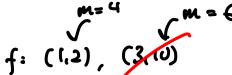
$$f: (3,5) \quad m=2.$$



Question 19

Consider the one-to-one function f with the following properties:

$$f(1) = 2$$
, $f(3) = 10$, $f'(1) = 4$ and $f'(3) = 6$. Find the gradient of f^{-1} at $x = 2$.



Question 20 Extension.

Consider the one-to-one function f with the following properties:

f(a) = 5, f(4) = a, f'(4) = c and f'(a) = d. Find the gradient of f^{-1} at x = a.

Key Takeaways

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at $(f(a), a) = \frac{1}{m}$.

NOTE: There are so many ways to link inverse functions to other topics we will see throughout the year!

Section C: Exam 1 Questions (19 Marks)

INSTRUCTION: 19 Marks. 19 Minutes Writing.

Question 21 (6 marks)

The rule for a function f is given by $f(x) = \sqrt{2x+4} - 1$, where f is defined on its maximal domain.

a. State the domain of f. (1 mark)

b. Find the domain and rule of the inverse function f^{-1} . (2 marks)

$- lot y = f^{-1}(x)$	f-(x)= 2 (x+1)2 -2
x= [24+4-1	Dom = Page f
7141 = J2444 (2141)2 = 2444	= [4,00)
$(\chi+1)^2-4=2\gamma$	

c. State the range of f^{-1} . (1 mark)

ONTOUREDUCATION

d. Find the point of the intersection between f and f^{-1} . (2 marks)

	Date (= (-2,00)
[1] J2x+4 -1 = K	Pon f-1= [-1,00)
$\sqrt{2x+4} = x+1$	H -13 & C-1(ch)
$2x+4=2i^2+2x+1$	
3 = x ²	
x= ± [3	(13, 13)

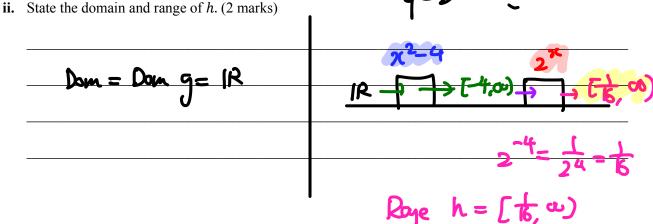
Question 22 (8 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 2^x$ and $g: \mathbb{R} \to \mathbb{R}$ where, $g(x) = x^2 - 4$.

a.

i. Find the rule for h, where h(x) = f(g(x)). (1 mark)

$$f(x^2-4) = 2^{x^2-4}$$



- **b.** Let $k: (-\infty, a] \to \mathbb{R}$, where $k(x) = 2^{x^2-4}$, It is known that k has a turning point at x = 0.
 - i. Find the largest value of a such that k^{-1} , the inverse function of k exists. (1 mark)

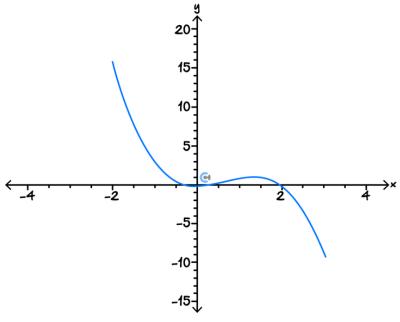
ii. Find the rule for k^{-1} . (2 marks)

let y=k-(1x) (Sump x dy)	
	f-1/21 = -) log2(11+4
$\chi = 2$	c _1
	as raye k-1
(11 = 4 3 - 4	= Dom K
	≈ (- ∞,6]
6/2(11+4=42	

iii. State the domain of k^{-1} . (2 marks)

Question 23 (5 marks)

Consider the graph of f(x) and the function, below.

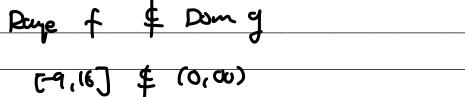


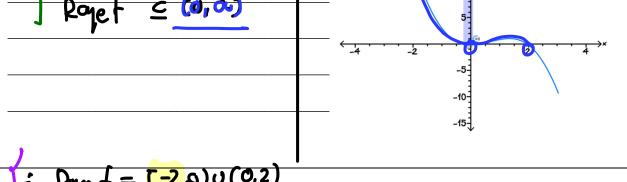
$$f:[-2,3] \to \mathbb{R}, f(x) = 2x^2 - x^3 \in \mathbb{R}^2(2-x)$$

$$g:(0,\infty)\to\mathbb{R}, g(x)=\log_e(x)$$

a. Find the range of f. (2 marks)

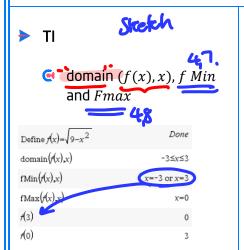
b. Explain why g(f(x)) does not exist. (1 mark)

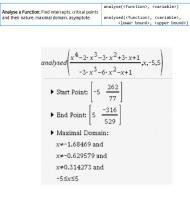




Section D: Tech Active Exam Skills

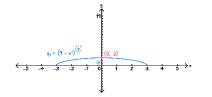
Calculator Commands: Finding the domain and range





Casio Classpad

Graph the function and use G-Solve to find min and max values for the range.



Mathematica

In[127]:=
$$f[x_{-}] := \sqrt{9 - x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]:= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]:= $0 \le y \le 3$

Mathematica UDF :

 \bullet Finfo [f [x], {x, x min, x max}, y]

Returns useful information about a function, including derivative, domain, range, period,

horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and sided asymptotes, oblique asymptotes, and vertical asymptotes.

FInfo
$$\left[\frac{x^2-1}{x\left(x^2-3\right)}, \{x, -\text{Infinity, Infinity}\}, y\right]$$

The function is $\frac{x^2-1}{x\left(x^2-3\right)}$

The derivative is $-\frac{x^4+3}{x^2\left(x^2-3\right)^2}$

Domain: $x<-\sqrt{3} \lor -\sqrt{3} < x < \theta \lor \theta < x < \sqrt{3} \lor x > \sqrt{3}$

Range: yeR

Period: θ

Horizontal Intercepts: $\{-1,1\}$

Vertical Intercepts: None

Stationary points: $\{\{\cancel{\mathscr{C}}_{-\theta.871...}, \cancel{\mathscr{C}}_{-\theta.123...}\}, \{\cancel{\mathscr{C}}_{\theta.871...}, \cancel{\mathscr{C}}_{\theta.123...}\}\}$

Left sided asymtote: $y=\theta$

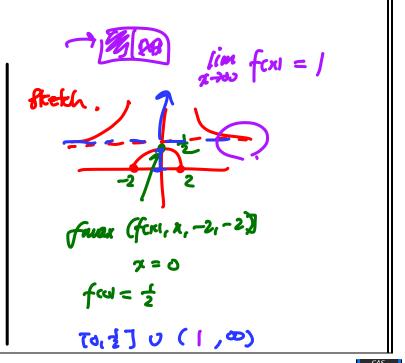
Right sided asymtote: $y=\theta$

Oblique asymtote: $\{\theta\}$

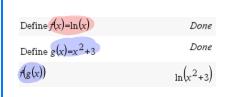
Vertical asymtote: $\left\{x\!=\!0\;\text{, }x\!=\!-\sqrt{3}\;\text{, }x\!=\!\sqrt{3}\;\right\}$

Question 24 Tech-Active.

Find the domain and range of $f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 4}}$.



<u>Calculator Commands:</u> Finding the composite function



> CASIO:

define
$$f(x) = \ln(x)$$
 done define $g(x) = x^2+3$ done
$$f(g(x))$$

$$\ln(x^2+3)$$

Mathematica

In[141]:=
$$f[x_{-}] := Log[x]$$

In[142]:= $g[x_{-}] := x^2 + 3$
In[143]:= $f[g[x]]$
Out[143]= $Log[3 + x^2]$

Question 25 Tech-Active.

Let $f(x) = \sqrt{x-1}$ and g(x) = 3x + 2 be defined on their maximal domains.

Consider the function h(x) = f(g(x)).

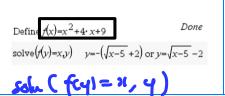
a. Find the rule for h(x).

b. Find the domain of h(x).

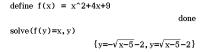
c. Find the range of h(x).

<u>Calculator Commands:</u> Finding the inverse function

▶ TI



CASIO:



Mathematica

In[154]:=
$$f[x_{-}] := x^2 + 4x + 9$$

In[155]:= Solve[f[y] := x, y]
Out[155]:= $\{\{y \rightarrow -2 - \sqrt{-5 + x}\}, \{y \rightarrow -2 + \sqrt{-5 + x}\}\}$

fixley

NOTE: It doesn't tell us which branch is correct.

Question 26 Tech-Active.

Find the inverse function of $f: (-\infty, 3] \to R$, $f(x) = x^2 - 6x + 5$.

$$f^{-1}(x) = 3 \pm \sqrt{4+2}$$

= $3 - \sqrt{4+2}$.

Section E: Exam 2 Questions (21 Marks)

INSTRUCTION: 21 Marks. 5 Minutes Reading. 26 Minutes Writing.

Question 27 (1 mark)

Consider the functions $f(x) = \frac{1}{(x-2)}$ and $g(x) = \sqrt{x+3}$, defined on their maximal domians. The domain of f(x)g(x) is:

B.
$$[-3,2) \cup (2,\infty)$$

C.
$$(-\infty, 2) \cup (2, \infty)$$

D.
$$[-3, ∞) \cup \{2\}$$

Question 28 (1 mark)

The function f defined by, $f: A \to \mathbb{R}$, $f(x) = (x-2)^2 + 3$ will have an inverse function if its domain A is:

 \mathbf{A} . \mathbb{R}

B. $\mathbb{R}^+ \cup \{0\}$

C. $x \ge 2$

D. $x \le 3$

Question 29 (1 mark)

The function $f(x) = \sqrt{\frac{x^2-4}{x^2-9}}$ has maximal domain:

A.
$$\mathbb{R} \setminus (-2,2)$$

B. $(-\infty, -3) \cup [-2,2] \cup (3,\infty)$

C. $(-\infty, -3) \cup (3, \infty)$

D. (-2,2)

Question 30 (1 mark)

The function $(:[-3,3]) \rightarrow \mathbb{R}$, $f(x) = \log_4(x^2 + 16)$ has range:

- A. $[2, \log_4(25)]$
- **B.** $[0, \log_4(25)]$
- C. $[-\log_4(25), \log_4(25)]$
- **D.** [0,2]

Question 31 (1 mark)

Let *f* be a one-to-one differentiable function, and the following values are known:

$$f(2) = 5$$
, $f(3) = 7$, $f'(2) = 4$ and $f'(3) = 6$

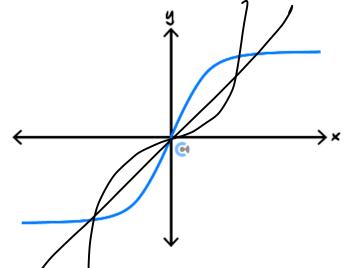
Let $g(x) = f^{-1}(x)$, the values of g'(5) is:

- f: (2.5) (2.7) m = 4 $m = \frac{1}{4}$ $m = \frac{1}{4}$

- **D.** $\frac{1}{5}$

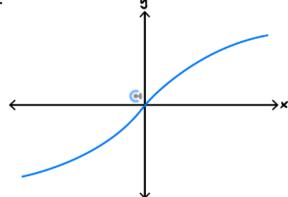
Question 32 (1 mark)

Part of the graph of y = f(x) is shown below.

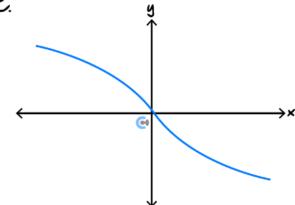


The inverse function f^{-1} is best represented by:

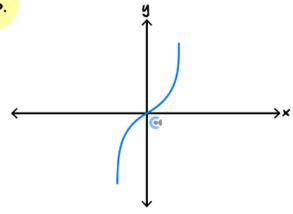
← ★



C.



D.



Question 33 (14 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 4 - 2^x$.

- **a.** Let $g(x) = 1 2^x$ and h(x) = x 2.
 - i. Find the rule g(h(x)). (1 mark)

$$g[h(u)] = 1-2^{x-2} = 1-\frac{1}{4} = 1$$

ii. Find the real number a such that $f(x) = a \times g(h(x))$. (1 mark)

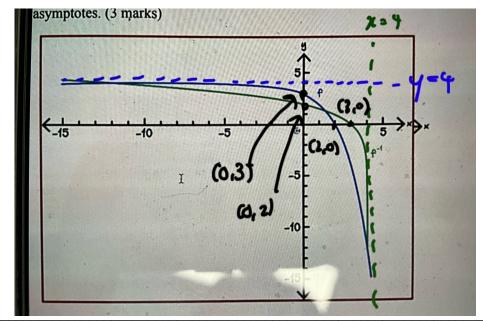
b. Define f^{-1} , the inverse function of f. (2 marks)

c. It is given that f has a gradient of a when x = 2. Find the gradient of f^{-1} , in terms of a, where x = 0. (1 mark)

$$f: (2, f(2)) m=a$$

CONTOUREDUCATION

d. Sketch the graphs y = f(x) and $y = f^{-1}(x)$ on the axes below. Label all axes intercepts and give the equations of any asymptotes. (3 marks)



e. Solve the equation $4 - 2^x = x$ for x correct to two decimal places. (1 mark)

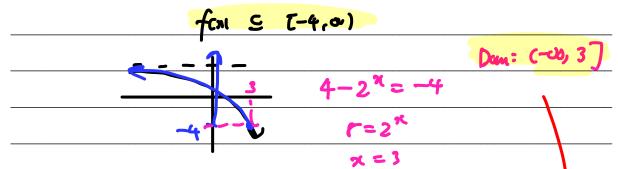
x=1.39

f. Find the coordinates of all points of intersection of f and f^{-1} . Give your answers correct to two decimal places. (2 marks)

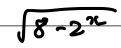
(1.39, 1.39) $f(x) = f^{-1}(x) \qquad \text{deemy for}$ x = -12, 4 $(-12, 4) \qquad f(-12) = 4$ $(4, f(2) \qquad f(\alpha) = -12$

CONTOUREDUCATION

- **g.** Consider the function $d: [-4, \infty) \to \mathbb{R}, d(x) = \sqrt{x+4}$.
 - i. Find the largest domain of f such that d(f(x)) is defined. (1 mark)



ii. State the rule of d(f(x)). (1 mark)



iii. Let c(x) = d(f(x)) Find the rule and domain for $c^{-1}(c(x))$. (1 mark)

= X.

CE,000) =

Contour Check

<u>Learning Objective</u>: [1.1.1] - Find Maximal Domain and Range

Key Takeaways Inside of a log must be ______. Inside of a root must be ______. Denominator _____. Domain of sum or product of two functions is equal to ______ of the two domains.

<u>Learning Objective</u>: [1.1.2] - Find the Rule, Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

Key Takeaways

- For composite function to exist, _____ ⊆ _____.
- ☐ The domain of composite is equal to the domain of ______ function.
- Range of composite is a ______ of the range of the outside.

<u>Learning Objective</u>: [1.1.3] - Find the Rule, Domain, and Range of Inverse Functions

Key Takeaways			
\Box f needs to bef or f^{-1} to exist.			
Domain of the inverse function equals to and vice versa.			
Symmetrical around			
☐ For intersections of inverses, we can equate the function to			
<u>Learning Objective</u> : [1.1.4] - Find the Composite Function of Inverse Function			
Key Takeaways			
☐ The composite function of inverses is always equal to			
<u>Learning Objective</u> : [1.2.1] - Find a new domain to fix composite functions			
Key Takeaways			
☐ The range of thefunction must be a subset of theof the outside function.			
■ We restrict the of the inside function so its fits in the domain of the outside function.			

Learning Objective:	[1.2.2] -	 Find the range 	e of complex o	composite functions
---------------------	-----------	------------------------------------	----------------	---------------------

Key Takeaways

To find the range of a complicated function, we can break the function into a ______ of two simpler functions.

<u>Learning Objective</u>: [1.2.3] - Find the gradient of inverse functions

Key Takeaways

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at _____