CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

ICC Mathematical Mothedo

VCE Mathematical Methods ¾ Functions & Relations Exam Skills [1.2]

Workbook

Outline:

Recap of [1.1] Functions and Relations Pg 02-18

- Maximal Domains
- Domain of Sum, Difference, and Product of Functions
- Basics of Composition
- Validity of Composite Functions
- Domain of Composite Functions
- Range of Composite Functions
- Basics of Inverses
- \triangleright Swapping x and y
- Symmetry Around y = x
- Validity of Inverse Function
- Intersection Between Inverses
- Composition of Inverses

Functions and Relations Exam Skills Pg 19-28

- Find a New Domain to Fix Composite Functions
- Find the Range of Complex Composite Functions
- Find the Gradient of Inverse Functions

Exam 1 Questions Pg 29-33

Tech Active Exam Skills Pg 34-36

Exam 2 Questions Pg 39-44

Section A: Recap of [1.1] Functions and Relations

Sub-Section: Maximal Domains

Starting with a domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
$\sqrt{\mathbf{z}}$	
$\log(z)$	
$\frac{1}{z}$	

Steps

- 1. Find the restriction of the inside.
- **2.** Sketch the graph if needed.
- 3. Solve for domain.

Sub-Section: Domain of Sum, Difference, and Product of Functions

What about a domain of the sum of two functions?

Sums, Differences, and Products of Functions

Rules:

$$(f+g)(x) = \underline{\hspace{1cm}}$$

$$(f-g)(x) = \underline{\hspace{1cm}}$$

$$(f \times g)(x) = \underline{\hspace{1cm}}$$

ldea:

Domain of sum or product of two functions = of the two domains

- > Steps:
 - 1. Find the domain of each function.
 - 2. Find the intersection (draw a number line if needed).

Question 1 Walkthrough.

Find the maximal domain of the following function:

$$g(x) = \sqrt{x - 2} + \log_3(12 - 2x)$$

Question 2

Find the maximal domain of each of the following functions.

$$\log_3(x^2 - 4) + \frac{3}{x^2 - 1}$$

Question 3 Extension.

State the maximal domain of the following function.

$$y = \sqrt{5 - x} - \log_3\left(\frac{2}{x + 3}\right)$$

Sub-Section: Basics of Composition



What was the "composition" of functions?

Composite Functions

- **Definition**: A ______ of functions.
- Representation of the Above:

$$y =$$

Sub-Section: Validity of Composite Functions

Did composite functions work all the time?

Validity of Composite Functions

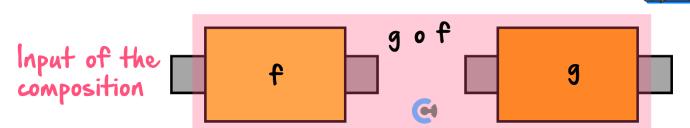
- Output of f(x): ______(Label Above)
- \blacktriangleright Input of g(x): _______(Label Above)
- Composite Function is only valid if:

Acronym:

Question 4

Consider the functions $f(x) = \sqrt{x+2}$ and $g(x) = x^2 - 4$ defined over their maximal domain.

Explain why the composition f(g(x)) is not valid.


Sub-Section: Domain of Composite Functions

How did we find the domain of a composite function?

Domain of Composite Functions

 $Domain\ of\ Composite = Domain\ of\ Inside$

Question 5

Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + 2$ defined over their maximal domain.

State the domain of the composite function g(f(x)).

Sub-Section: Range of Composite Functions

Range of the Composite Functions

Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.

Question 6 Walkthrough

Consider the functions:

$$f: R \to R, f(x) = x^2 - 4$$
$$g: [-9, \infty) \to R, g(x) = \sqrt{x+9}$$

- **a.** For the composite function g(f(x)), state the rule and domain.
- **b.** State the range of g(f(x)).
- c. State the range of g(x).
- **d.** Explain why the range of g is not the same as the range of $g \circ f$.

Your turn!

Question 7

Consider the functions:

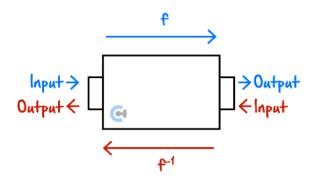
$$f: [1, \infty) \to R, f(x) = x^2 + 6$$

 $g: R \to R, g(x) = x + 2$

a. For the composite function g(f(x)), state the rule and domain.

b. State the range of g(f(x)).

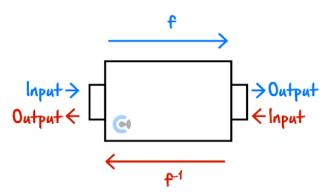
Sub-Section: Basics of Inverses


What did "Inverse" mean?

Inverse Relation

Definition: Inverse is a relation which does the ______.

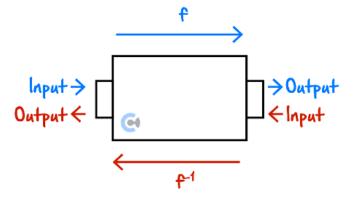
Sub-Section: Swapping x and y


Is there a better way of solving for an inverse relation?

7

Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



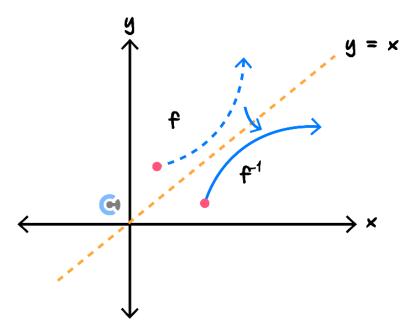
NOTE: f(x) = y.

Domain and Range of Inverse Functions

$$Dom f^{-1} =$$

$$Ran f^{-1} = \underline{\hspace{1cm}}$$

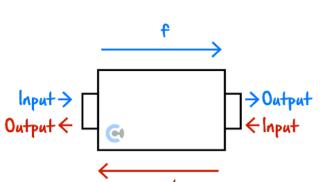
Sub-Section: Symmetry Around y = x



Why does this happen?

Symmetry of Inverse Functions

lnverse functions are always symmetrical around y = x.


Sub-Section: Validity of Inverse Function

Does an inverse function always exist?

Validity of Inverse Functions

Requirement for Inverse Function:

f needs to be _____

CONTOUREDUCATION

Question 8 Walkthrough.

Consider the function $f: (-\infty, a] \to \mathbb{R}, f(x) = 2(x-4)^2 - 8$.

a. Find the largest possible value of a such that the inverse function f^{-1} exists.

b. Find the inverse function and its range.

NOTE: Finding function means to find the rule AND the domain.

TIP: Always try sketching the function to find the domain such that an inverse function can exist!

Your turn!

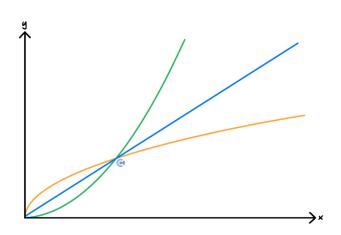
Question 9

Consider the function $g:(-\infty,b] \to \mathbb{R}, g(x) = -x^2 - 8x - 14$.

a. Find the largest possible value of b such that the inverse function g^{-1} exists.

b. Find the inverse function and its range.

Sub-Section: Intersection Between Inverses



Where do inverses meet?

Intersection Between a Function and its Inverse

Equate with _____ instead.

$$f(x) = x \mathsf{OR} f^{-1}(x) = x$$

We cannot do this when the function is ______ function.

Question 10

Find the intersection between $f:[0,\infty)\to R$, $f(x)=x^2$ and its inverse, without finding the inverse.

NOTE: This only works for an increasing function.

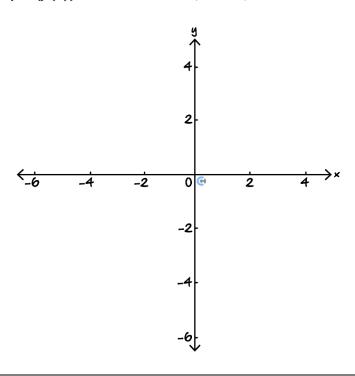
Sub-Section: Composition of Inverses

Composition of Inverse Functions

$$f \circ f^{-1}(x) =$$
___, for all $x \in$ _____

$$f \circ f^{-1}(x) = _$$
, for all $x \in _$ _____

NOTE: Domain = Domain of Inside.


Question 11 (4 marks)

Consider the function $f(x) = \frac{1}{x+2} - 3$.

a. Find the rule and domain for $f^{-1}(f(x))$. (2 marks)

ONTOUREDUCATION

b. Sketch the graph of $y = f^{-1}(f(x))$ on the axes below. (2 marks)

Section B: Functions and Relations Exam Skills

Context: Exam Skills

- We will go through specific skills that are common in the exams!
- It will be slightly harder so get ready!

Space for Personal Notes		


Sub-Section: Find a New Domain to Fix Composite Functions

How can we go about fixing a broken composite function?

Exploration: Fixing Broken Function

Is it easier to decrease the range of the inside function, or increase the domain of the outside function? (Label Above)

[decrease range of inside function] / [increase domain of outside function]

How can this be done? (Label Above)

Fixing Broken Composite Functions

- Aim: Restrict the domain of the inside function so that the range of the inside function fits inside the domain of the outside.
- Steps:
 - 1. Write down the RIDO statement with the domain of the outside (as it is fixed).
 - 2. Sketch the inside function to see what domain is needed.

R

Question 12 Walkthrough.

Consider $f(x) = \sqrt{x}$ and g(x) = 2x - 2, both defined over their maximal domains.

a. Is f(g(x)) defined?

b. Find the largest domain of g such that f(g(x)) is defined.

TIP: Always start with the RIDO statement!

Active Recall

- ✓ To restrict the domain of inside function so that the range of inside function fits inside the domain of outside.
 - 1. Write down _____ statement with the domain of the outside (as it is fixed).
 - 2. _____ the inside function to see what domain is needed.

Your Turn!

Question 13

Consider $f(x) = \frac{1}{x}$ and $g(x) = \log_e(x)$, both defined over their maximal domains.

a. Is g(f(x)) defined?

b. Find the largest domain of f such that g(f(x)) is defined.

Question 14 Extension.

Consider $f(x) = x^2 - 1$ and $g(x) = \sqrt{(x+2)(x-3)}$, both defined over their maximal domains.

a. Is g(f(x)) defined?

b. Find the largest domain of f such that g(f(x)) is defined.

Key Takeaways

- $\ensuremath{ \ensuremath{ \begin{tabular} \ensuremath{ \bed{table}} \ensuremath{ \begin{tabular} \ens$
- $\ensuremath{\mathbf{W}}$ We restrict the domain of the inside function so its range fits in the domain of the outside function.

Sub-Section: Find the range of complex composite functions

<u>Discussion:</u> How do we find a range of a complicated function? Eg: $log_2(x^2 + 16)$

Finding Range of Complex Composite Functions

- > Aim: Find the range of complicated functions.
- Steps:
 - 1. Break the function into _______of two simple functions.
 - 2. Follow the ______ to find the range.

Question 15 Walkthrough.

Find the range of $f(x) = \log_2(x^2 + 16)$ where $x \ge -1$.

Question 16

Find the range of $f(x) = \sqrt{x(4-x)}$ where 0 < x < 3.

Question 17 Extension

Find the range of $f(x) = \sqrt{\frac{3}{x^2 - 5x + 6}}$ where 0 < x < 2.

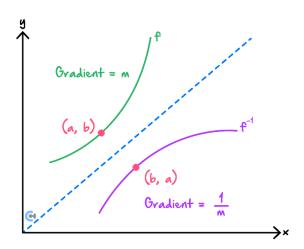
Key Takeaways

✓ To find the range of a complicated function we can break the function into a composition of two simpler functions.

Sub-Section: Find the Gradient of Inverse Functions

This is a fun application of inverse with calculus!

REMINDER: Gradient of a Point


Gradient at a point =
$$\frac{dy}{dx}$$

<u>Discussion:</u> What would happen to the gradient when we inverse the function? (Inverse: Swap x and y.)

Gradient of an inverse

If Gradient of f at (a, f(a)) = m

Gradient of f^{-1} at _____

NOTE: The x-value of the inverse is the y-value of the original function.

Question 18 Walkthrough.

Consider the one-to-one function f with the following properties:

$$f(3) = 5$$
 and $f'(3) = 2$. Find the gradient of f^{-1} at $x = 5$.

TIP: Try sketching the function roughly to see which point it corresponds to.

Question 19

Consider the one-to-one function f with the following properties:

$$f(1) = 2$$
, $f(3) = 10$, $f'(1) = 4$ and $f'(3) = 6$. Find the gradient of f^{-1} at $x = 2$.

Question 20 Extension.

Consider the one-to-one function f with the following properties:

f(a) = 5, f(4) = a, f'(4) = c and f'(a) = d. Find the gradient of f^{-1} at x = a.

Key Takeaways

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at $(f(a), a) = \frac{1}{m}$.

NOTE: There are so many ways to link inverse functions to other topics we will see throughout the year!

Section C: Exam 1 Questions (19 Marks)

INSTRUCTION: 19 Marks. 19 Minutes Writing.

Question 21 (6 marks)					
The rule for a function f is given by $f(x) = \sqrt{2x+4} - 1$, where f is defined on its maximal domain.					
a. State the domain of f . (1 mark)					
1. The state of th					
b. Find the domain and rule of the inverse function f^{-1} . (2 marks)					
c. State the range of f^{-1} . (1 mark)					

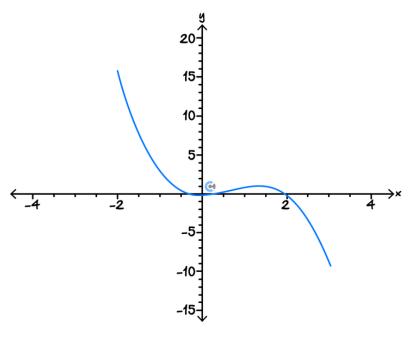
d. Find the point of the intersection between f and f^{-1} . (2 marks)

Question 22 (8 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 2^x$ and $g: \mathbb{R} \to \mathbb{R}$ where, $g(x) = x^2 - 4$.

a.

i. Find the rule for h, where h(x) = f(g(x)). (1 mark)



i.	Find the largest value of a such that k^{-1} , the inverse function of k exists. (1 mark)
ii.	Find the rule for k^{-1} . (2 marks)
	This die fale for it. I (2 marks)
•••	State the demain of $k=1$ (2 months)
111.	State the domain of k^{-1} . (2 marks)
ace	for Personal Notes

Question 23 (5 marks)

Consider the graph of f(x) and the function, below.

$$f:[-2,3] \to \mathbb{R}, f(x) = 2x^2 - x^3$$

$$g:(0,\infty)\to\mathbb{R}, g(x)=\log_e(x)$$

a. Find the range of f. (2 marks)

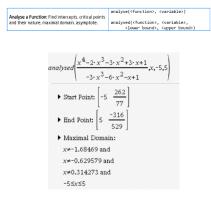
b. Explain why g(f(x)) does not exist. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Restrict the domain of f to be as large as possible and such that $h(x) = g(f(x))$ is defined. (2 marks)
Sp	pace for Personal Notes

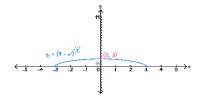
Section D: Tech Active Exam Skills

Calculator Commands: Finding the domain and range



▶ TI

domain (f(x), x), f Min and Fmax


Done
-3≤x≤3
x=-3 or x=3
χ=0
0
3

► TI-UDF

Casio Classpad

Graph the function and use G-Solve to find min and max values for the range.

Mathematica

In[127]:=
$$f[x_{]} := \sqrt{9 - x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]:= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]:= $0 \le y \le 3$

Mathematica UDF :

 \bullet Finfo [f [x], {x, x min, x max}, y]

Returns useful information about a function, including derivative, domain, range, period,

horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and sided asymptotes, oblique asymptotes, and vertical asymptotes.

FInfo
$$\left[\frac{x^2-1}{x\left(x^2-3\right)}, \{x, -\text{Infinity, Infinity}\}, y\right]$$

The function is $\frac{x^2-1}{x\left(x^2-3\right)}$

The derivative is $-\frac{x^4+3}{x^2\left(x^2-3\right)^2}$

Domain: $x<-\sqrt{3} \vee -\sqrt{3} < x < 0 \vee 0 < x < \sqrt{3} \vee x > \sqrt{3}$

Range: yeR

Period: 0

Horizontal Intercepts: $\{-1,1\}$

Vertical Intercepts: None

Stationary points: ()

Inflexion points: $\{\{\cancel{\text{$(\emptyset$-0.871...)}}, \cancel{\text{$(\emptyset$-0.871...)}}\}, \{\cancel{\text{$(\emptyset$-0.871...)}}\}, \{\cancel{\text{$(\emptyset$-0.871...)}}\}\}$

Left sided asymtote: $y=0$

Oblique asymtote: $\{0\}$

Vertical asymtote: $\left\{x\!=\!0\;\text{, }x\!=\!-\sqrt{3}\;\text{, }x\!=\!\sqrt{3}\;\right\}$

Question 24 Tech-Active.

Find the domain and range of $f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 4}}$.

<u>Calculator Commands:</u> Finding the composite function

TI

Define $f(x) = \ln(x)$	Done
Define $g(x)=x^2+3$	Done
f(g(x))	$\ln(x^2+3)$

> CASIO:

define $f(x) = \ln(x)$	
1.01	done
define $g(x) = x^2+3$	done
f(g(x))	done
	$\ln(x^2+3)$

Mathematica

In[141]:=
$$f[x_{-}] := Log[x]$$

In[142]:= $g[x_{-}] := x^2 + 3$
In[143]:= $f[g[x]]$
Out[143]= $Log[3 + x^2]$

Question 25 Tech-Active.

Let $f(x) = \sqrt{x-1}$ and g(x) = 3x + 2 be defined on their maximal domains.

Consider the function h(x) = f(g(x)).

a. Find the rule for h(x).

b. Find the domain of h(x).

c. Find the range of h(x).

<u>Calculator Commands:</u> Finding the inverse function

▶ TI

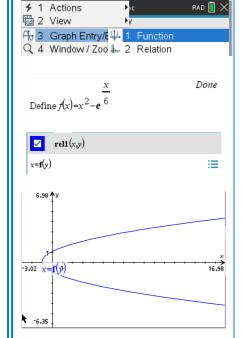
Define
$$f(x)=x^2+4\cdot x+9$$
 Done
solve $(f(y)=x,y)$ $y=-(\sqrt{x-5}+2)$ or $y=\sqrt{x-5}-2$

CASIO:

Mathematica

$$\begin{split} & & \ln[154] = f[x_{-}] := x^2 + 4x + 9 \\ & & \ln[155] = Solve[f[y] := x, y] \\ & \text{Out}[155] = \left\{ \left\{ y \to -2 - \sqrt{-5 + x} \right\}, \left\{ y \to -2 + \sqrt{-5 + x} \right\} \right\} \end{split}$$

NOTE: It doesn't tell us which branch is correct.

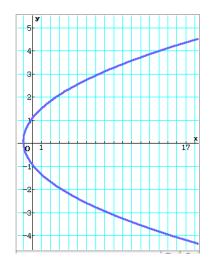

Question 26 Tech-Active.

Find the inverse function of $f: (-\infty, 3] \to R$, $f(x) = x^2 - 6x + 5$.

ONTOUREDUCATION

<u>Calculator Commands:</u> Sketching the inverse function

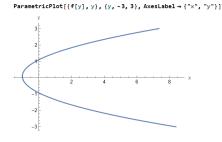
- Define the function f(x).
- Sketch the relationship x = f(y).
- This will allow us to sketch the inverse function when the equation x = f(y) is too hard to be solved
- This plot will show all branches of the inverse. We must select the correct one ourselves!
- ΤI
 - Graph Page → Menu → Graph Entry/Edit $\rightarrow 2$
 - Menu 3 2

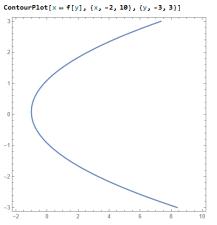


CASIO:

- Graph page

define
$$f(x) = x^2-\exp(x/6)$$
 done

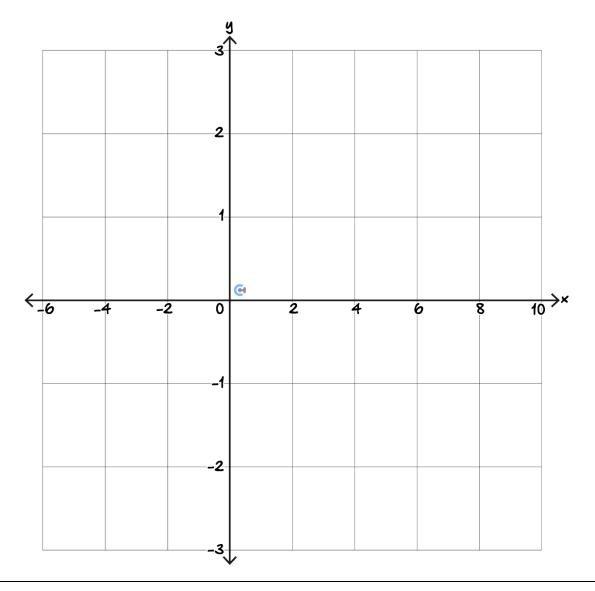

File Edit Type • y=Type **†**Χ... **†** Υ... Sheet1 Sheet2 ParamType ▼ x1=f(y) | x=Type



Mathematica

- Use ParametricPlot $[\{f[y], y\}, \{y, ymin, ymax\}]$
- OR can use ContourPlot[x == f[y], $\{x, xmin, xmax\},\$ $\{y, ymin, ymax\}$

f[x_] := x^2 - Exp[x/6] Solve[f[y] = x, y] ... Solve: This system cann Solve $\left[-e^{y/6} + y^2 = x, y\right]$



Question 27 Tech-Active.

Sketch the inverse function of $f(x) = 5 \exp\left(-\frac{1}{16}(x-1)^2\right) + \frac{x^3}{3}$

Space for Personal Notes

Section E: Exam 2 Questions (21 Marks)

INSTRUCTION: 21 Marks. 5 Minutes Reading. 26 Minutes Writing.

Question 28 (1 mark)

Consider the functions $f(x) = \frac{1}{(x-2)}$ and $g(x) = \sqrt{x+3}$, defined on their maximal domians. The domain of f(x)g(x) is:

- **A.** [-3, ∞)
- **B.** $[-3,2) \cup (2,\infty)$
- C. $(-\infty,2) \cup (2,\infty)$
- **D.** $[-3, ∞) \cup \{2\}$

Question 29 (1 mark)

The function f defined by, $f: A \to \mathbb{R}$, $f(x) = (x-2)^2 + 3$ will have an inverse function if its domain A is:

- \mathbf{A} . \mathbb{R}
- **B.** $\mathbb{R}^+ \cup \{0\}$
- **C.** $x \ge 2$
- **D.** $x \le 3$

Question 30 (1 mark)

The function $f(x) = \sqrt{\frac{x^2-4}{x^2-9}}$ has maximal domain:

- **A.** $\mathbb{R} \setminus (-2,2)$
- **B.** $(-\infty, -3) \cup [-2,2] \cup (3,\infty)$
- C. $(-\infty, -3) \cup (3, \infty)$
- **D.** (-2,2)

Question 31 (1 mark)

The function $f: [-3,3] \to \mathbb{R}$, $f(x) = \log_4(x^2 + 16)$ has range:

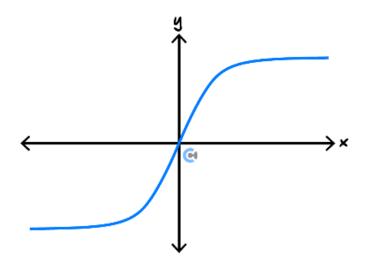
- **A.** $[2, \log_4(25)]$
- **B.** $[0, \log_4(25)]$
- C. $[-\log_4(25), \log_4(25)]$
- **D.** [0,2]

Question 32 (1 mark)

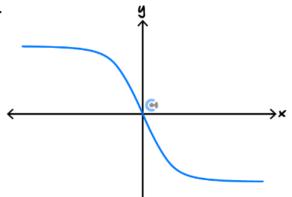
Let f be a one-to-one differentiable function, and the following values are known:

$$f(2) = 5$$
, $f(3) = 7$, $f'(2) = 4$ and $f'(3) = 6$

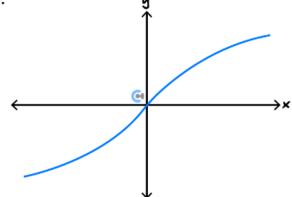
Let $g(x) = f^{-1}(x)$, the values of g'(5) is :


- **A.** $\frac{1}{6}$
- **B.** $\frac{1}{7}$
- C. $\frac{1}{4}$
- **D.** $\frac{1}{5}$

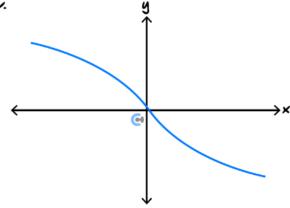
Space for Personal Notes

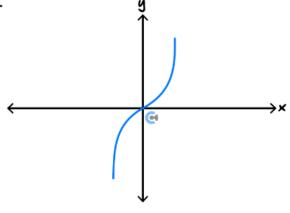

Question 33 (1 mark)

Part of the graph of y = f(x) is shown below.



The inverse function f^{-1} is best represented by:


A.


₿.

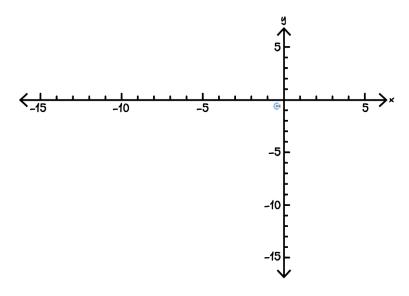
C.

D

Question 34 (14 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 4 - 2^x$.

- **a.** Let $g(x) = 1 2^x$ and h(x) = x 2.
 - i. Find the rule g(h(x)). (1 mark)


ii. Find the real number a such that $f(x) = a \times g(h(x))$. (1 mark)

b. Define f^{-1} , the inverse function of f. (2 marks)

- **c.** It is given that f has a gradient of a when x = 2. Find the gradient of f^{-1} , in terms of a, where x = 0. (1 mark)

d. Sketch the graphs y = f(x) and $y = f^{-1}(x)$ on the axes below. Label all axes intercepts and give the equations of any asymptotes. (3 marks)

e. Solve the equation $4 - 2^x = x$ for x correct to two decimal places. (1 mark)

f. Find the coordinates of all points of intersection of f and f^{-1} . Give your answers correct to two decimal places. (2 marks)

g. Consider the function $d: [-4, \infty) \to \mathbb{R}, d(x) = \sqrt{x+4}$.

i. Find the largest domain of f such that d(f(x)) is defined. (1 mark)

ii. State the rule of d(f(x)). (1 mark)

iii. Let c(x) = d(f(x)). Find the rule and domain for $c^{-1}(c(x))$. (1 mark)

Space for Personal Notes

Contour Check

Learning Objective: [1.1.1] - Find Maximal Domain and Range

Key Takeaways					
Inside of a log must be					
Inside of a root must be					
Denominator					
Domain of sum or product of two functions is equal todomains.	of the two				

<u>Learning Objective</u>: [1.1.2] - Find the Rule, Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

Key Takeaways

- ☐ For composite function to exist, _____ ⊆ _____.
- ☐ The domain of composite is equal to the domain of ______ function.
- Range of composite is a ______ of the range of the outside.

<u>Learning Objective</u>: [1.1.3] - Find the Rule, Domain, and Range of Inverse Functions

Key Takeaways						
\Box f needs to bef or f^{-1} to exist.						
Domain of the inverse function equals to and vice versa.						
Symmetrical around						
For intersections of inverses, we can equate the function to						
<u>Learning Objective</u> : [1.1.4] - Find the Composite Function of Inverse Function						
Key Takeaways						
The composite function of inverses is always equal to						
<u>Learning Objective</u> : [1.2.1] - Find a new domain to fix composite functions						
Key Takeaways						
☐ The range of thefunction must be a subset of theof the outside function.						
☐ We restrict the of the inside function so its fits in the domain of the outside function.						

Learning Obiective:	[1.2.2] -	Find the range	of complex com	posite functions
---------------------	-----------	----------------	----------------	------------------

Key Takeaways

☐ To find the range of a complicated function, we can break the function into a _____ of two simpler functions.

Learning Objective: [1.2.3] - Find the gradient of inverse functions

Key Takeaways

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at _____

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

