

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Functions & Relations Exam Skills [1.2]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20
Supplementary Questions	Pg 21 — Pg 42

Section A: Compulsory Questions

<u>Sub-Section</u>: [1.2.1] - Finding a new domain to fix composite functions

Question 1

Consider the following functions defined over their maximal domains,

$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x}$

a. Show that g(f(x)) does not exist.

f(x) has a global minimum at (0,-1). ran $f=[-1,\infty)$ and dom $g=[0,\infty)$.

Therefore, g(f(x)) does not exist since ran $f \nsubseteq \text{dom } g$.

b. Find the maximal domain of f such that g(f(x)) exists.

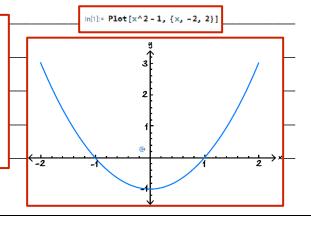
We require that ran $f \ge 0$. Therefore we solve

$$x^{2} - 1 \ge 0$$

$$x^{2} \ge 1$$

$$x \le -1 \text{ or } x \ge 1$$

Therefore, domain $f = \mathbb{R} \setminus (-1, 1)$.



Consider the functions,

$$f:[0,\infty)\to\mathbb{R}, f(x)=-3\sqrt{x} \text{ and } g:(-\infty,-3)\to\mathbb{R}, g(x)=\log_e(x^2-9)$$

a. Show that g(f(x)) does not exist.

ran $f=(-\infty,0]$ and dom $g=(-\infty,-3)$ Therefore, g(f(x)) does not exist since ran $f\nsubseteq$ dom g

b. Find the maximal domain of f such that g(f(x)) exists.

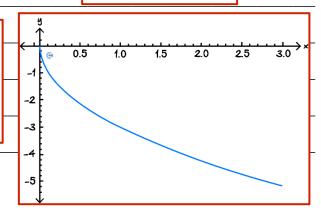
in[22]:= Plot[-3 \sqrt{x} , {x, 0, 3}]

We require that ran
$$f={\rm dom}~g=(-\infty,-3).$$
 Therefore we solve
$$-3\sqrt{x}=-3$$

$$\sqrt{x}=1$$

$$x=1$$

By considering the graph of f we conclude that domain $f = (1, \infty)$.



Consider the following functions defined over their maximal domains,

$$f(x) = \frac{1}{x-1}$$
 and $g(x) = \sqrt{x^2 - 1}$

a. Show that g(f(x)) does not exist.

f is a hyperbola with no vertical shift.

dom $g \ge 0 \implies x^2 - 1 \ge 0 \implies x \le -1 \text{ or } x \ge 1.$

Therefore, ran $f = \mathbb{R} \setminus \{0\}$ and dom $g = (-\infty, -1] \cup [1, \infty)$.

Therefore, g(f(x)) does not exist since ran $f \nsubseteq \text{dom } g$.

b. Find the maximal domain of f such that g(f(x)) exists.

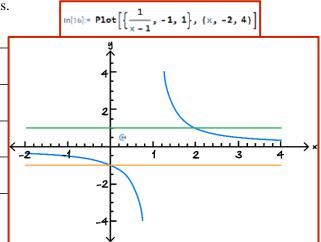
We require that ran $f = \text{dom } g = (-\infty, -1] \cup [1, \infty)$. Therefore we solve

$$\frac{1}{x-1} = -1$$
$$1 = 1 - x$$
$$x = 0$$

and

$$\frac{1}{x-1} = 1$$
$$1 = x - 1$$
$$x = 2$$

By considering the graph of f we conclude that domain $f = [0,1) \cup (1,2]$.



<u>Sub-Section</u>: [1.2.2] - Finding the range of complex composite functions

Question 4

Find the range of $f(x) = \log_3(x^2 - 1)$, where f is defined on its maximal domain.

ran
$$\log_3(x) = \mathbb{R}$$
 for $x > 0$
Now $x^2 - 1$ has range $[-1, \infty)$.
Therefore we must have ran $f(x) = \mathbb{R}$ since $(0, \infty) \subseteq [-1, \infty)$

Question 5

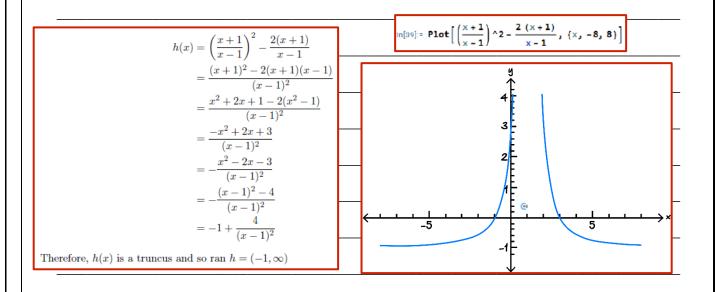
Find the range of $f(x) = \log_2(x^2 + 16)$.

```
x^2+16 has a minimum value of 16 when x=0. \log_2(16)=4 As x\to\infty f(x)\to\infty Therefore, ran f(x)=[4,\infty)
```


The functions f and g are defined over their maximal domains. Let,

$$f(x) = \frac{x+1}{x-1}$$
 and $g(x) = x^2 - 2x$

Find the range of h(x) = g(f(x)).



Sub-Section: [1.2.3] - Finding the gradient of inverse functions

Question 7

Consider the one-to-one function f with the following properties:

$$f(3) = 4$$
, $f(2) = 3$, $f'(3) = 1$ and $f'(2) = 6$

Let g be the inverse function of f. Find the gradient of g when x = 3.

We have that $g(3) = f^{-1}(3) = 2$ and that f'(2) = 6. Therefore

$$g'(3) = \frac{1}{6}$$

Remember the formula:

$$g'(x) = \frac{1}{f'(f^{-1}(x))}$$
, where $g(x) = f^{-1}(x)$.

Question 8

Consider the one-to-one function f with the following properties:

$$f(a) = 3$$
, $f(1) = a$, $f'(1) = c$ and $f'(a) = d$

Let g be the inverse function of f. Find the gradient of g when x = a.

We have that g(a) = 1 and that f'(1) = c. Therefore

$$g'(a) = \frac{1}{c}$$

Remember the formula:

$$g'(x) = \frac{1}{f'(f^{-1}(x))}, \quad \text{where } g(x) = f^{-1}(x).$$

Let g be the inverse function of f. It is known that:

$$g'(a) = b$$
 and $f'(c) = \frac{1}{b}$

where f'(x) and g'(x) are one-to-one functions.

Find g(a).

We have that

$$g'(a) = \frac{1}{f'(f^{-1}(a))} = \frac{1}{1/b} = b$$

Therefore,

$$f^{-1}(a) = c$$

and so g(a) = c.

Sub-Section: Exam 1 Questions

Question 10

Find the maximal domain of the following functions:

a. $f(x) = \sqrt{4-x} + \log_e(x^2 + 4x + 3)$.

For $\sqrt{4-x}$ we require $4-x \ge 0 \implies x \le 4$ For the log We require that $x^2+4x+3>0$.

$$x^{2} + 4x + 3 = 0$$
$$(x+3)(x+1) = 0$$
$$x = -3, -1$$

Positive quadratic shape so $x^2 + 4x + 3 > 0 \implies x < -3$ or x > -1. Therefore, dom $f = (-\infty, -3) \cup (-1, 4]$

b. $g(x) = 2x + \sqrt{\frac{1}{-x^2 + x + 12}}$.

We require that $-x^2 + x + 12 > 0$.

$$-x^{2} + x + 12 = 0$$
$$(4 - x)(x + 3) = 0$$

Negative quadratic shape so $-x^2 + x + 12 > 0 \implies x \in (-3, 4)$ Therefore dom g = (-3, 4)

Let $f:(0,\infty)\to\mathbb{R}$, where $f(x)=\log_2(x)$ and $g:\mathbb{R}\to\mathbb{R}$, where $g(x)=x^2+4$.

a.

i. Find the rule for h, where h(x) = f(g(x)).

$$h(x) = \log_2(g(x)) = \log_2(x^2 + 4).$$

ii. State the value of x for which h is minimised.

$$\log_2(x)$$
 is an increasing function.
 $x^2 + 4$ is minimised when $x = 0$.
Therefore $x = 0$.

iii. State the domain and range of h.

dom
$$h = \text{dom } g = \mathbb{R} \text{ since } g(x) > 0 \text{ for all } x \in \mathbb{R}.$$

 $h \text{ is minimal when } x = 0 \implies h(0) = \log_2(4) = 2.$
Therefore ran $h = [2, \infty)$

- **b.** Let $k: (-\infty, a] \to \mathbb{R}$, where $k(x) = \log_2(x^2 + 4)$.
 - i. Find the largest value of a such that k^{-1} , the inverse function of k, exists.

We require k to be one-to-one. Therefore a = 0.

ii. Find the rule for k^{-1} .

Let $x = \log_2(y^2 + 4)$ and re-arrange to find y.

$$2^{x} = y^{2} + 4$$
$$y^{2} = 2^{x} - 4$$
$$y = \pm \sqrt{2^{x} - 4}$$

Now ran $k^{-1} = \text{dom } k = (-\infty, 0]$ so

$$k^{-1}(x) = -\sqrt{2^x - 4}$$

iii. State the domain and range of k^{-1} .

 $\begin{array}{l} \operatorname{dom} \, k^{-1} = \operatorname{ran} \, k = [2, \infty) \\ \operatorname{ran} \, k^{-1} = \operatorname{dom} \, k = (-\infty, 0] \end{array}$

Let $f: (-\infty, 1] \to \mathbb{R}$, $f(x) = \sqrt{1-x}$.

a. State the range of f.

ran $f = [0, \infty)$

b. Define the inverse function, f^{-1} , of f. Use functional notation.

Let $x = \sqrt{1-y}$ and re-arrange to find y

$$x^2 = 1 - y$$
$$y = 1 - x^2$$

Now dom $f^{-1} = \operatorname{ran} f = [0, \infty)$. Therefore,

$$f^{-1}:[0,\infty)\to\mathbb{R},\,f^{-1}(x)=1-x^2.$$

c. Find all points of intersection of f and f^{-1} .

NOTE: f is a decreasing function so	we	cannot	just	equate	f(x)	=:	x.
We must solve $f(x) = f^{-1}(x)$							
		/-		9			

$$\sqrt{1-x} = 1 - x^2$$

$$1 - x = ((1-x)(1+x))^2$$

$$1 - x = (1-x)^2(1+x)^2$$

 $(1-x)(1-(1-x)(1+x)^2) = 0$

Therefore x = 1 or

$$1 - (1 - x)(x^{2} + 2x + 1) = 0$$

$$1 = x^{2} + 2x + 1 - x^{3} - 2x^{2} - x$$

$$1 = -x^{3} - x^{2} + x + 1$$

$$x^{3} + x^{2} - x = 0$$

$$x(x^{2} + x - 1) = 0$$

Therefore x = 0 or

$$\begin{split} x^2 + x - 1 &= 0 \\ \left(x + \frac{1}{2} \right)^2 &= \frac{5}{4} \\ x + \frac{1}{2} &= \pm \frac{\sqrt{5}}{2} \\ x &= \frac{1}{2} (-1 - \sqrt{5}), \frac{1}{2} (-1 + \sqrt{5}) \end{split}$$

Now by considering the domains of f and f^{-1} the points of intersection are

$$(0,1) \quad \text{and} \quad \left(\frac{1}{2}(\sqrt{5}-1),\frac{1}{2}(\sqrt{5}-1)\right) \quad \text{and} \quad (1,0).$$

NOTE: Just solving $\sqrt{1-x}=x \implies x=\frac{1}{2}(\sqrt{5}-1)$ only, so we miss two other points of intersection.

Sub-Section: Exam 2 Questions

Question 13

The function f defined by $f: A \to \mathbb{R}$, $f(x) = (x - 3)^2 + 2$ will have an inverse function if its domain f is:

- \mathbf{A} . \mathbb{R}
- **B.** $\mathbb{R}^+ \cup \{0\}$
- **C.** $x \ge 2$
- **D.** $x \le 3$

Question 14

The function $f(x) = \frac{\sqrt{x^2-9}}{2x}$ has a maximal domain and range.

- **A.** Domain = $\mathbb{R}\setminus(-3,3)$ and Range = $[0,\infty)$.
- **B.** Domain = $R\setminus (-3,3)$ and Range = $(-\frac{1}{2},\frac{1}{2})$
- C. Domain = $[-3,0] \cup [3,\infty)$ and Range = $[1,\infty)$.
- **D.** Domain = $[-\infty, 0) \cup [3, \infty)$ and Range = $[1, \infty)$.

Let f be a one-to-one differentiable function, and the following values are known,

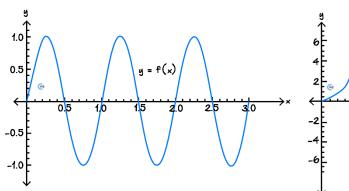
$$f(2) = 5, f(3) = 9, f'(2) = 3$$
 and $f'(3) = 8$

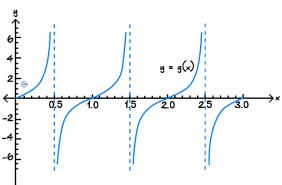
Let $g(x) = f^{-1}(x)$, the value of g'(5) is:

- **A.** $\frac{1}{8}$
- **B.** $\frac{1}{9}$
- C. -
- **D.** $\frac{1}{5}$

Question 16

Consider the functions f and g graphed below.

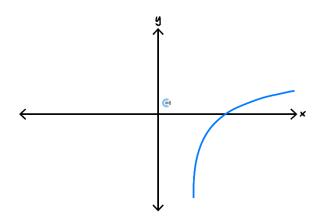




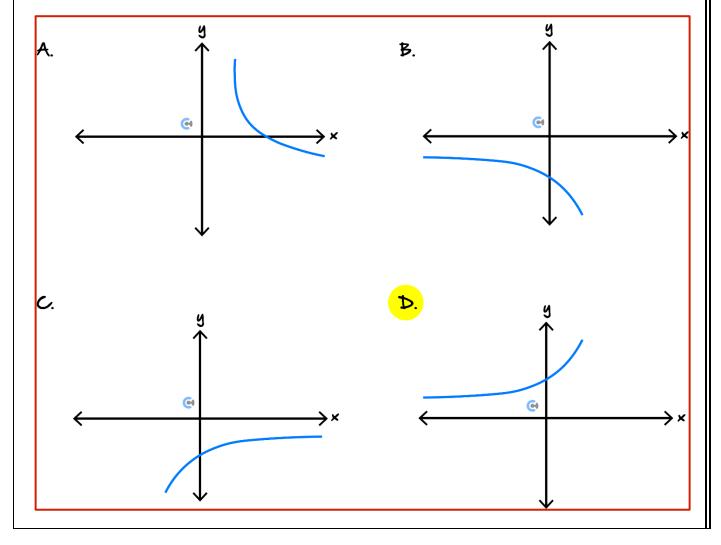
How many *x*-intercepts do the function h(x) = f(x)g(x) have for $x \in [0, 3]$?

- **A.** 4
- **B.** 5
- **C.** 6
- **D.** 7

Part of the graph of y = f(x) is shown below.



The inverse function f^{-1} is best represented by:



Consider the following functions defined on their maximal domains.

$$f(x) = \sqrt{3 - x}$$

$$g(x) = \log_e\left(\frac{1}{x}\right)$$

a. Find the maximal domain and range of $\frac{1}{f(x)} - g(x)$.

Domain = (0,3) and Range = \mathbb{R}

b. Show that f(g(x)) does not exist.

dom $f=(-\infty,3]$ and ran $g=\mathbb{R}$ g(f(x)) is not defined because ran $f\nsubseteq \mathrm{dom}\ g$

c. Show that g(f(x)) does not exist.

dom $g=(0,\infty)$ and ran $f=[0,\infty)$ g(f(x)) is not defined because ran $f\nsubseteq \mathrm{dom}\ g$

d.	Restrict the domains of <i>f</i>	and g to be as 1	arge as possible so that	t both $f(g(x))$ and g	g(f(x)) are defined.
	Trestrict the domination of j	una g to ot us i	ange as possione so that		

If dom $f = (-\infty, 3)$ then g(f(x)) is defined.

Then we must restrict dom g so that ran $g = (-\infty, 3) \implies \text{dom } g = (e^{-3}, \infty)$. Conclude that dom $f = (-\infty, 3)$ and dom $g = (e^{-3}, \infty)$

Consider the function:

$$f: (-\infty, a] \to \mathbb{R}, f(x) = -\frac{1}{2}x^2 + 6x + \frac{3}{2}$$

a. Find the smallest value of α such that the inverse function f^{-1} exists.

$$f(x) = \frac{39}{2} - \frac{1}{2}(x-6)^2$$
.
Therefore, $a = 6$.

b. Define the inverse function, f^{-1} .

$$x = \frac{39}{2} - \frac{1}{2}(y - 6)^2 \implies y = 6 \pm \sqrt{39 - 2x}$$

$$ran \ f^{-1} = dom \ f = (-\infty, 6] \ and \ dom \ f^{-1} = ran \ f = \left(-\infty, \frac{39}{2}\right]. \ Therefore,$$

$$f^{-1}: \left(-\infty, \frac{39}{2}\right] \to \mathbb{R}, \ f^{-1}(x) = 6 - \sqrt{39 - 2x}$$

c. Find all points of intersection between f and f^{-1} .

Solve $f(x) = x \implies x = 5 \pm 2\sqrt{7}$, only one solution valid for domains of both f and f^{-1} .

Point of intersection $(5 - 2\sqrt{7}, 5 - 2\sqrt{7})$

d. Find the rule and domain for $f(f^{-1}(x))$.

$$f(f^{-1}(x)) = x \text{ for } x \le \frac{39}{2}.$$

Section B: Supplementary Questions

Sub-Section: [1.2.1] - Finding a new domain to fix composite functions
--

Question 20

Consider the functions the following functions defined over their maximal domains,

$$f(x) = \log_e(x)$$
 and $g(x) = e^x - 1$

a. Show that f(g(x)) does not exist.

ran $g=(-1,\infty)$ and dom $g=(0,\infty)$ Therefore, f(g(x)) does not exist since ran $g\nsubseteq$ dom f.

b. Find the maximal domain of g such that f(g(x)) exists.

We require that for all x in the maximal domain of g, g(x) > 0. Hence

$$e^x - 1 > 0 \implies e^x > 1 \implies x > 0$$

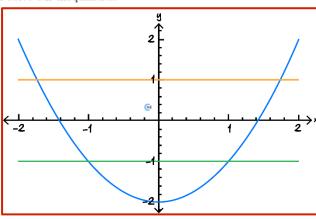
Therefore, dom $g = (0, \infty)$

Consider the following functions defined over their maximal domains,

$$f(x) = (x^2 - 2)^2$$
 and $g(x) = \sqrt{x - 1}$

Find the maximal domain of f such that g(f(x)) exists.

Observe that the domain of g(x) is $[1,\infty)$. Thus for g(f(x)) to exist, we require $f(x)=(x^2-2)^2\geq 1\implies x^2-2\geq 1$ or $x^2-2\leq -1$. We can solve for $x^2-2=1\implies x=\pm\sqrt{3}$ and $x^2-2=-1\implies x=\pm 1$, and then sketch $y=x^2-2$ to solve our inequalities.



From this graph we see that $x^2 - 2 \le -1$ if $x \in [-1, 1]$. Similarly we see that $x^2 - 2 \ge 1$ if $x \in (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$

Hence the maximal domain of f for g(f(x)) to exist $x \in (-\infty, -\sqrt{3}] \cup [-1, 1] \cup [\sqrt{3}, \infty)$

Consider the following functions defined over their maximal domains,

$$f(x) = \frac{1}{1+x}$$
 and $g(x) = \sqrt{16 - (x-1)^2}$

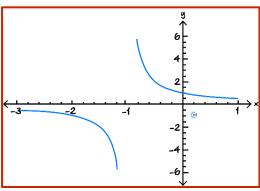
Find the maximal domain of f such that g(f(x)) exists.

We require that ran $f \subseteq \text{dom } g$.

Observe that if $x \in \text{dom } g$, then $(x-1)^2 \le 16$, which leaves us with $x \in [-3,5]$. Hence $f(x) = \frac{1}{1+x} \in [-3,5]$. We proceed by solving f(x) = -3,5 and sketching our graph to get our inequality.

$$\frac{1}{1+x} = -3 \implies -3x = 4 \implies x = -\frac{4}{3}$$

$$\frac{1}{1+x} = 5 \implies 5x = -4 \implies x = -\frac{4}{5}$$



From these three pieces of information, we see that the maximal domain of f such that g(f(x)) exists is $x \in \left(-\infty, -\frac{4}{3}\right] \cup \left[-\frac{4}{5}, \infty\right)$.

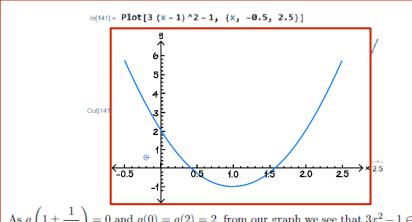
الالا

Consider the following functions,

$$f:[0,2)\to\mathbb{R}, f(x)=\log_2(4-x^2) \text{ and } g:(-\infty,2)\to\mathbb{R}, g(x)=3(x-1)^2-1.$$

Find the largest interval of x values for which f(g(x)) and g(f(x)) both exist.

We need $f(x) = \log_2(4 - x^2) < 2 \rightarrow 4 - x^2 < 4 \rightarrow x^2 > 0$ As $x \in dom f, x \in (0,2)$



As $g\left(1\pm\frac{1}{\sqrt{3}}\right)=0$ and g(0)=g(2)=2, from our graph we see that $3x^2-1\in[0,2)$ when

$$x \in \left(0, 1 - \frac{1}{\sqrt{3}}\right] \cup \left[1 + \frac{1}{\sqrt{3}}, 2\right).$$

Combining this restriction with our restriction for ran $f \subseteq \text{dom } g$, we get that,

$$x \in \left[1 + \frac{1}{\sqrt{3}}, 2\right).$$

<u>Sub-Section</u>: [1.2.2] - Finding the range of complex composite functions

Question 24

Í

Find the range of $f(x) = e^{x^2+1}$.

The range of $g(x) = x^2 + 1$ is $[1, \infty)$. The range of $h: [1, \infty) \to \mathbb{R}, h(x) = e^x$ is $[e, \infty)$. As f(x) = h(g(x)), the range of f is $[e, \infty)$.

Question 25

Find the range of $f:[0,\infty)\to\mathbb{R}, f(x)=\log_3(3^x+8)$.

The range of $g:[0,\infty)\to\mathbb{R}, g(x)=3^x+8$ is $[9,\infty)$. The range of $h:[9,\infty)\to\mathbb{R}, h(x)=\log_3(x)$ is $[2,\infty)$. As f(x)=h(g(x)), the range of f is $[2,\infty)$.

Find the range of $f(x) = \sqrt{\frac{x}{x+1}}$ where f is defined on its maximal domain.

The range of
$$g(x) = \frac{x}{x+1} = 1 - \frac{1}{x+1}$$
 is $\mathbb{R} \setminus \{1\}$.

Thus the range of f is the range of \sqrt{x} on the intersection of it's maximal domain, $[0, \infty)$ and the range of g. Specifically,

$$\mathbb{R}\backslash\{1\}\cap[0,\infty)=[0,\infty)\backslash\{1\}$$

The range of \sqrt{x} on this domain is $[0,\infty)\setminus\{1\}$, hence the range of f is, $[0,\infty)\setminus\{1\}$.

Consider the following functions defined on all real numbers,

$$f(x) = \sin(x)$$
 and $g(x) = \log_3(4x^2 - 4x + 2)$

Find the range of g(f(x)).

We observe that the range of f(x) is [-1,1]. Hence the range of g(f(x)) is the range of g restricted to [-1,1].

Now observing g(x), we note that it is the composition of $\log_3(x)$ and $4x^2 - 4x + 2 = (2x - 1)^2 + 1$.

The range of $h(x) = (2x - 1)^2 + 1$ on the interval [-1, 1] can be found by evaluating h(-1), h(1) and the y-value of the turning point of h, which is 1.

As $h(-1) = (-3)^2 + 1 = 10$, and $h(-1) = 1^2 + 1 = 2$, we see that the range of h on the interval [-1, 1] is [1, 10].

Since $\log_3(x)$ is an increasing function, the range of $\log_3(x)$ on the interval [1, 10] is $[0, \log_3(10)]$.

Hence the range of g(f(x)) is $[0, \log_3(10)]$

Sub-Section: [1.2.3] - Finding the gradient of inverse functions

Question 28

Consider the function $f:[0,\infty)\to\mathbb{R}$, $f(x)=x^2$.

The gradient of f at x = a is 2a.

Let g be the inverse function of f. Find the gradient of g when x = 2.

We observe that $g(x) = \sqrt{x}$, hence g(2) is $\sqrt{2}$. When $x = \sqrt{2}$, the gradient of f is $2\sqrt{2}$.

Hence the gradient of g(x) when x = 2 is $\frac{1}{2\sqrt{2}}$.

Question 29

Consider the one-to-one function f with the following properties.

$$f(2) = 5, f(5) = 7, f'(2) = 3$$
 and $f'(5) = 1$

Let g be the inverse function of f. Find the gradient of g when x = 5.

We have that g(5) = 2 and that f'(5) = 1. Therefore

$$g'(5) = \frac{1}{1} = 1$$

Consider the function f(x), the gradient of f at x = a is 2f(a) + 2a, and f(0) = 1.

From this information, we can tell that the gradient of f^{-1} at x = b is c. Find b and c.

If f(a) = b and $f'(a) = \frac{1}{c}$, we know that the gradient of f^{-1} at x = b is c.

The only a for which we know f(a) and f'(a) is a = 0.

Hence
$$b = f(0) = 1$$
, and $c = \frac{1}{f'(0)} = \frac{1}{2(1) + 2(0)} = \frac{1}{2}$.

Question 31

Consider the differentiable, one-to-one, function $f:(0,1) \to \mathbb{R}$. It is known that:

- 1. $f'(x) = -[f(x)]^2$, for all $x \in (0, 1)$.
- 2. ran $f = (1, \infty)$.

If g is the inverse function of f, find the domain and range of g'(x).

Hint: g'(a) denotes the gradient of g at x = a.

The domain of g'(x) is the domain of g which is the range of $f=(1,\infty)$. The range of g'(x) is the reciprocal of the range of f'(x). As $f'(x) = -[f(x)]^2$, the range of f'(x) is $(-\infty, -1)$.

Hence the range of g'(x) is (-1, 0).

Sub-Section: Exam 1 Questions

Question 32

Let $f: [0, \infty) \to \mathbb{R}$, $f(x) = \sqrt{x+4}$.

a. State the range of f.

 $[2,\infty)$

b. Let $g: (-\infty, c] \to \mathbb{R}, g(x) = x^2 + 6x + 7$, where c < 0.

Find the largest possible value of c such that the range of g is a subset of the domain of f.

We require $g(x) = x^2 + 6x + 7 \ge 0$.

We solve g(x) = 0 by completing the square, thus,

$$x^{2} + 6x + 9 - 2 = (x+3)^{2} - 2 = 0 \implies x+3 = \pm\sqrt{2} \implies x = -3 \pm\sqrt{2}$$

As g(x) is a positive parabola, for $g(x) \ge 0$ either, $x \le -3 - \sqrt{2}$ or $x \ge -3 + \sqrt{2}$. Hence $c = -3 - \sqrt{2}$.

c. For the value of c found in **part b.**, state the range of f(g(x)).

For the value of c found in part b, the range of g is $[0, \infty)$. Hence the range of f(g(x)) is simply the range of $f = [2, \infty)$ **d.** Let $h: \mathbb{R} \to \mathbb{R}$, $h(x) = x^2 + 5$.

State the range of f(h(x)).

 $f(h(x)) = \sqrt{x^2 + 5 + 4} = \sqrt{x^2 + 9}$. Hence the range of $f(h(x)) = [3, \infty)$.

Question 33

Let $f: (-2, \infty) \to \mathbb{R}$, $f(x) = 3 - \frac{4}{(x+2)^2}$.

State the rule and domain of f^{-1} .

We solve x = f(y) for y, thus,

$$x = 3 - \frac{4}{(y+2)^2}$$

$$\Rightarrow 3 - x = \frac{4}{(y+2)^2}$$

$$\Rightarrow \frac{4}{3-x} = (y+2)^2$$

$$\Rightarrow \frac{2}{\sqrt{3-x}} = y+2$$

Since dom $f = (-2, \infty)$

$$\implies y = \frac{2}{\sqrt{3-x}} - 2$$

The domain of f^{-1} is simply the range of f which is $(-\infty, 3)$. Hence the function f^{-1} is,

$$f^{-1}: (-\infty, 3) \to \mathbb{R}, f^{-1}(x) = \frac{2}{\sqrt{3-x}} - 2$$

a. Let $f: \mathbb{R}\setminus \{3\} \to \mathbb{R}$, $f(x) = \frac{1}{x-3}$. Find the rule for f^{-1} .

We solve f(y) = x for y. Thus,

$$x = \frac{1}{y-3} \implies \frac{1}{x} = y-3 \implies y = \frac{1}{x} + 3$$

Hence the rule for f^{-1} is, $f^{-1}(x) = \frac{1}{x} + 3$

b. State the domain of f^{-1} .

The domain of f^{-1} is the range of f which is $\mathbb{R}\setminus\{0\}$.

c. Let g(x) = f(x - c) + d for $c, d \in \mathbb{R}$.

Find the values of c and d, given that $g = f^{-1}$.

$$g(x) = \frac{1}{x - c - 3} + d = \frac{1}{x} + 3$$
. Hence $d = 3$ and $c = -3$.

d. Given that $f'(1) = -\frac{1}{4}$ and f'(4) = -1, find the value of g'(1).

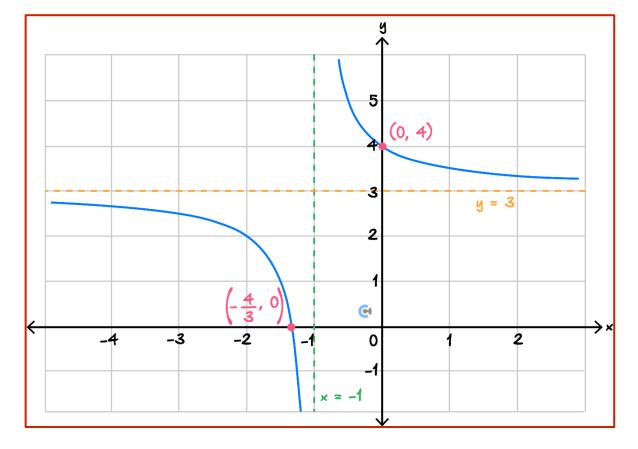
$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(1+3)} = \frac{1}{f'(4)} = -1$$

On	estion	35

Find the maximal domain of f, where $f(x) = \frac{1}{\sqrt{x^2 - 6x + 5}}$.

For x to be in the maximal domain of f, we require that $x^2 - 6x + 5 > 0$. We can factorise $x^2 - 6x + 5$ as (x - 5)(x - 1) to see that it is equal to 0 when x = 1, 5. As $x^2 - 6x + 5$ is an upwards parabola, we see that it is greater than 0 when x < 1 or x > 5. Hence the maximal domain of f is $(-\infty, 1) \cup (5, \infty)$

a. Sketch the graph of $f(x) = 3 + \frac{1}{x+1}$ on the axes below, labelling all asymptotes with their equations and axial intercepts with their coordinates.



b. Find the values of x for which $f(x) \in (2, 4)$.

We see that f(x)=4 when x=0 and f(x)=2 when x=-2. From the above graph we can see that $f(x)\in (2,4)$ when $x\in (-\infty,-2)\cup (0,\infty)$.

Sub-Section: Exam 2 Questions

Question 37

Which one of the following is the inverse function of $g:(-\infty,2]\to\mathbb{R}, g(x)=4(x-2)^2+3$?

A.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 2 + \frac{\sqrt{x-3}}{2}$$

B.
$$f: [3, \infty) \to \mathbb{R}, f(x) = 2 - \frac{\sqrt{x-3}}{2}$$

C.
$$f: [3, \infty) \to \mathbb{R}, f(x) = 4 + \frac{\sqrt{x-3}}{4}$$

D.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 4 - \frac{\sqrt{x-3}}{4}$$

Question 38

The maximal domain of the function f is $\left(-\infty, 1 - \sqrt{5}\right] \cup \left[1 + \sqrt{5}, \infty\right)$.

A possible rule of f is:

A.
$$f(x) = \sqrt{5 - (x - 1)^2}$$

B.
$$f(x) = \log_e(5 - (x - 1)^2)$$

C.
$$f(x) = \frac{1}{\sqrt{5} - (x - 1)^2}$$

D.
$$f(x) = \frac{1}{\log_e(5-(x-1)^2)}$$

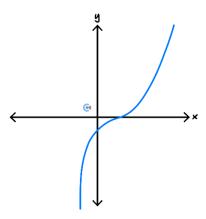
Let f be a one-to-one differentiable function and the following values are known,

$$f(-1) = 3, f(3) = 7, f'(-1) = 5$$
 and $f'(3) = 2$

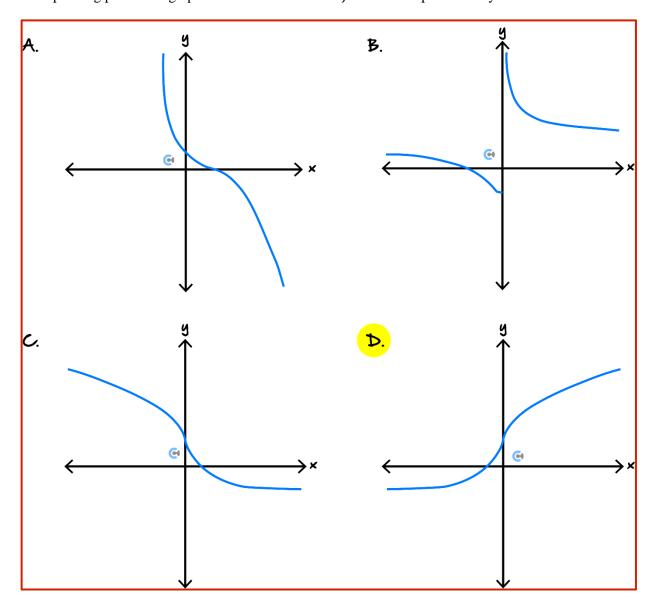
Let $g(x) = f^{-1}(x)$, the value of g'(3) is:

- **A.** 5
- **B.** 2
- C. $\frac{1}{5}$
- **D.** $\frac{1}{2}$

Part of the graph of the function f is shown below. The same scale has been used on both axes.



The corresponding part of the graph of the inverse function f^{-1} is best represented by:



Consider the following functions,

$$f: \left(-\frac{\sqrt{3}}{2}, \infty\right) \to \mathbb{R}, f(x) = \log_e\left(x + \frac{\sqrt{3}}{2}\right)$$

$$g:(-\infty,3)\to\mathbb{R}, g(x)=\cos(x)$$

The largest interval of x values for which f(g(x)) and g(f(x)) both exist is:

- $\mathbf{A.} \ \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right]$
- **B.** $\left(-\frac{\sqrt{3}}{2}, \frac{5\pi}{6}\right)$
- C. $\left(-\frac{5\pi}{6}, \frac{5\pi}{6}\right)$
- **D.** $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$

a. Express $\frac{3x+2}{x+3}$ in the form of $a + \frac{b}{x+2}$, where a and b are non-zero integers.

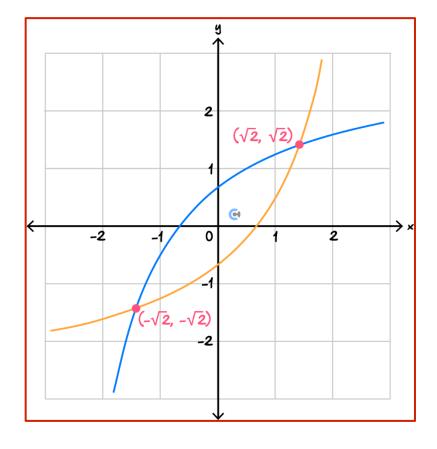
$$\frac{3x+2}{x+3} = \frac{3(x+3)-7}{x+3} = 3 + \frac{-7}{x+2}$$
 Hence $a=3$ and $b=-7$.

- **b.** Let $f : \mathbb{R} \setminus \{-3\} \to \mathbb{R}, f(x) = \frac{3x+2}{x+3}$.
 - i. Find the rule and domain of f^{-1} and the inverse function of f.

We solve
$$f(y) = x$$
 for y to get the rule for f^{-1} .
Hence $f^{-1}(x) = \frac{2-3x}{x-3}$.
The domain of f^{-1} is the range of f which is $\mathbb{R}\setminus\{3\}$

ii. Part of the graph of f is shown in the diagram below.

Sketch the graph of $y = f^{-1}$, labelling all points of intersection with their coordinates.



- c. Let $g(x) = -\sqrt{16 x^2}$.
 - i. Show that both f(g(x)) and g(f(x)) do not exist.

The domain of f is $\mathbb{R}\setminus\{-3\}$.

The range of g is [-4,0].

Thus ran $g \not\subseteq \text{dom } f \text{ hence } f(g(x)) \text{ does not exist.}$

The domain of g is [-4, 4]

The range of f is $\mathbb{R}\setminus\{3\}$.

Thus ran $f \nsubseteq \text{dom } g \text{ hence } g(f(x)) \text{ does not exist.}$

ii. Find the largest interval on which both f(g(x)) and g(f(x)) are defined on.

We solve $f(x) = 4 \implies x = -2$.

We solve $f(x) = -4 \implies x = -10$.

From the graph of f we see that $f(x) \in [-4, 4]$ if $x \in (-\infty, -10] \cup [-2, \infty)$

Thus g(f(x)) is defined for $x \in (-\infty, -10] \cup [-2, \infty)$

We solve $g(x) = -3 \implies x = \pm \sqrt{7}$.

Thus f(g(x)) is defined for $x \in [-4, 4] \setminus \{\pm \sqrt{7}\}.$

Hence f(g(x)) and g(f(x)) are both defined on the intersection of the two sets, specifically $x \in [-2, 4] \setminus \{\sqrt{7}\}.$

This set contains two intervals, the bigger one being, $[-2, \sqrt{7})$.

Let $f(x) = 2^{-x}$ and $g(x) = 4x^2 - 4x + 3$.

a.

i. State the rule of f(g(x)).

 $f(g(x)) = 2^{-4x^2 - 4x + 3}$

ii. State the range of f(g(x)).

The range of $g(x) = (2x - 1)^2 + 2$ is $[2, \infty)$.

As f is a decreasing function, which tends towards 0 as $x \to \infty$, the range of f is,

 $\left(0,\frac{1}{4}\right]$

b. Let $h: [a, \infty) \to \mathbb{R}$, h(x) = g(f(x)). Find the smallest value of a such that h is a one-to-one function.

As $g(x) = (2x-1)^2 + 2$, the largest intervals for which it is a one-to-one function on are, $\left[\frac{1}{2}, \infty\right)$, or, $\left(\infty, \frac{1}{2}\right]$.

As f(x) is a decreasing function, the range of f when restricted to $[a, \infty)$ is $(0, 2^a]$. Since $(0, 2^{-a}] \nsubseteq \left[\frac{1}{2}, \infty\right)$ for all a, we must consider values of a for which

 $(0,2^{-a}]\subseteq \left(\infty,\frac{1}{2}\right].$

The smallest such value of a is a = 1.

CONTOUREDUCATION

c. For the value of a found in **part b.**, state the rule and domain for h^{-1} .

We can solve h(y)=x for y. This implies that g(f(y))=x, thus we will first solve g(z)=x for z, restricting our attention to $z<\frac{1}{2}$ because of our work from part b. This yields,

$$z = \frac{1}{2}(1-\sqrt{x-2})$$

Now we solve f(y)=z, we see that $y=-\log_2\left(\frac{1}{2}(1-\sqrt{x-2})\right)=1-\log_2(1-\sqrt{x-2})$.

Hence the rule for h^{-1} is $h^{-1}(x) = 1 - \log_2(1 - \sqrt{x-2})$.

The domain for h^{-1} is the range of h. As the range of f restricted to $[1, \infty)$ is $\left(0, \frac{1}{2}\right]$,

the range of h is simply the range of g restricted to $\left(0, \frac{1}{2}\right]$.

As g is one-to-one in this interval, the range of g restricted to $\left(0, \frac{1}{2}\right]$ is [2, 3). Hence the domain of h^{-1} is [2, 3).

d. How many solutions does the equation f(g(x)) + g(f(x)) = 0 have?

We sketch the graph of f(g(x)) + g(f(x)). As it is entirely above the x-axis, our equation has 0 solutions.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

