

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Functions & Relations Exam Skills [1.2]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 20
Supplementary Questions	Pg 21 — Pg 42

Section A: Compulsory Questions

Sub-Section: [1.2.1] - Finding a new domain to fix composite functions

Question 1				
Consider the following functions defined over their maximal domains,				
$f(x) = x^2 - 1$ and $g(x) = \sqrt{x}$				
a. Show that $g(f(x))$ does not exist.				
b. Find the maximal domain of f such that $g(f(x))$ exists.				
Space for Personal Notes				

_		
On	estion	-2

Consider the functions,

$$f:[0,\infty)\to\mathbb{R}, f(x)=-3\sqrt{x} \text{ and } g:(-\infty,-3)\to\mathbb{R}, g(x)=\log_e(x^2-9)$$

a. Show that g(f(x)) does not exist.

b. Find the maximal domain of f such that g(f(x)) exists.

Question	2
Question	J

Consider the following functions defined over their maximal domains,

$$f(x) = \frac{1}{x-1}$$
 and $g(x) = \sqrt{x^2 - 1}$

a. Show that g(f(x)) does not exist.

b. Find the maximal domain of f such that g(f(x)) exists.

Space for Personal Notes

4

<u>Sub-Section</u>: [1.2.2] - Finding the range of complex composite functions

Question 4	
Find the range of $f(x) = \log_3(x^2 - 1)$, where f is defined on its maximal domain.	
	-
	-
	-
	-
Question 5	
Find the range of $f(x) = \log_2(x^2 + 16)$.	
	-
	-
	-
	-
Space for Personal Notes	

Questio	m 6
Quesu)H O

The functions f and g are defined over their maximal domains. Let,

$$f(x) = \frac{x+1}{x-1}$$
 and $g(x) = x^2 - 2x$

Find the range of h(x) = g(f(x)).

Sub-Section: [1.2.3] - Finding the gradient of inverse functions

Question 7
Consider the one-to-one function f with the following properties:
f(3) = 4, f(2) = 3, f'(3) = 1 and $f'(2) = 6$
Let g be the inverse function of f . Find the gradient of g when $x = 3$.

One	ation	. 0
One	STIOT	าส

Consider the one-to-one function f with the following properties:

$$f(a) = 3, f(1) = a, f'(1) = c$$
 and $f'(a) = d$

Let g be the inverse function of f. Find the gradient of g when x = a.

Question 9
Let g be the inverse function of f . It is known that:
$g'(a) = b$ and $f'(c) = \frac{1}{b}$
where $f'(x)$ and $g'(x)$ are one-to-one functions.
Find $g(a)$.

Space for Personal Notes			

Sub-Section: Exam 1 Questions

Question 10

Find the maximal domain of the following functions:

a. $f(x) = \sqrt{4-x} + \log_e(x^2 + 4x + 3)$.

b. $g(x) = 2x + \sqrt{\frac{1}{-x^2 + x + 12}}$.

Question	11
O u couou	

Let $f:(0,\infty)\to\mathbb{R}$, where $f(x)=\log_2(x)$ and $g:\mathbb{R}\to\mathbb{R}$, where $g(x)=x^2+4$.

a.

i. Find the rule for h, where h(x) = f(g(x)).

ii. State the value of x for which h is minimised.

iii. State the domain and range of h.

b. Let	$k: (-\infty, a] \to \mathbb{R}$, where $k(x) = \log_2(x^2 + 4)$.
	Find the largest value of a such that k^{-1} , the inverse function of k , exists.
	,
;;	Find the rule for k^{-1} .
11.	That the full for k
:::	State the demain and range of h^{-1}
111.	State the domain and range of k^{-1} .
Space	for Personal Notes

Let $f: (-\infty, 1] \to \mathbb{R}, f(x) = \sqrt{1-x}$.

a. State the range of f.

- **b.** Define the inverse function, f^{-1} , of f. Use functional notation.
 - _____

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Find all points of intersection of f and f^{-1} .
Sp	ace for Personal Notes

Sub-Section: Exam 2 Questions

Question 13

The function f defined by $f: A \to \mathbb{R}$, $f(x) = (x - 3)^2 + 2$ will have an inverse function if its domain f is:

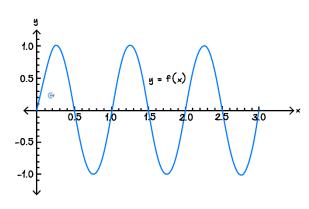
- \mathbf{A} . \mathbb{R}
- **B.** $\mathbb{R}^+ \cup \{0\}$
- **C.** $x \ge 2$
- **D.** $x \le 3$

Question 14

The function $f(x) = \frac{\sqrt{x^2-9}}{2x}$ has a maximal domain and range.

- **A.** Domain = $\mathbb{R}\setminus(-3,3)$ and Range = $[0,\infty)$.
- **B.** Domain = $R\setminus (-3,3)$ and Range = $(-\frac{1}{2},\frac{1}{2})$
- C. Domain = $[-3,0] \cup [3,\infty)$ and Range = $[1,\infty)$.
- **D.** Domain = $[-\infty, 0) \cup [3, \infty)$ and Range = $[1, \infty)$.

Let f be a one-to-one differentiable function, and the following values are known,

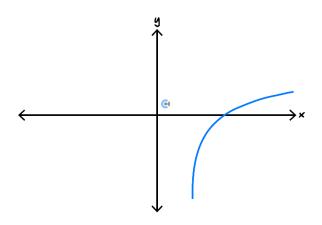

$$f(2) = 5, f(3) = 9, f'(2) = 3$$
 and $f'(3) = 8$


Let $g(x) = f^{-1}(x)$, the value of g'(5) is:

- **A.** $\frac{1}{8}$
- **B.** $\frac{1}{9}$
- C. $\frac{1}{3}$
- **D.** $\frac{1}{5}$

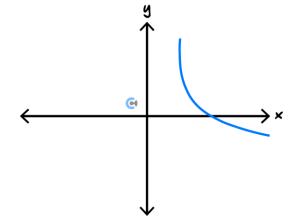
Question 16

Consider the functions f and g graphed below.

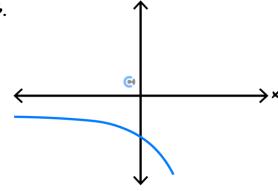


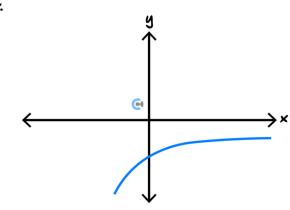
How many *x*-intercepts do the function h(x) = f(x)g(x) have for $x \in [0, 3]$?

- **A.** 4
- **B.** 5
- **C.** 6
- **D.** 7

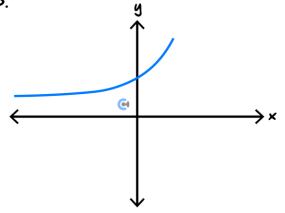


Part of the graph of y = f(x) is shown below.




The inverse function f^{-1} is best represented by:

A.



В.

D.

Question	1	8

Consider the following functions defined on their maximal domains.

$$f(x) = \sqrt{3 - x}$$

$$g(x) = \log_e\left(\frac{1}{x}\right)$$

a. Find the maximal domain and range of $\frac{1}{f(x)} - g(x)$.

b. Show that f(g(x)) does not exist.

c. Show that g(f(x)) does not exist.

VCE Methods ¾ Questions? Message +61 440 138 726

1.	Restrict the domains of f and g to be as large as possible so that both $f(g(x))$ and $g(f(x))$ are defined.
P	ace for Personal Notes

		_
Onestion	1	9

Consider the function:

$$f: (-\infty, a] \to \mathbb{R}, f(x) = -\frac{1}{2}x^2 + 6x + \frac{3}{2}$$

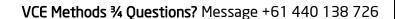
a. Find the smallest value of a such that the inverse function f^{-1} exists.

b. Define the inverse function, f^{-1} .

c. Find all points of intersection between f and f^{-1} .

VCE Methods 3/4 Questions? Message +61 440 138 726

d.	Find the rule and domain for $f(f^{-1}(x))$.	
		-
		-
		-
Sp	ace for Personal Notes	



Section B: Supplementary Questions

Sub-Section: [1.2.1] - Finding a new domain to fix composite functions

Question 20				
Coı	nsider the functions the following functions defined over their maximal domains,			
	$f(x) = \log_e(x)$ and $g(x) = e^x - 1$			
a.	Show that $f(g(x))$ does not exist.			
b.	Find the maximal domain of g such that $f(g(x))$ exists.			

Question	21
Onestion	

Consider the following functions defined over their maximal domains,

$$f(x) = (x^2 - 2)^2$$
 and $g(x) = \sqrt{x - 1}$

Find the maximal domain of f such that g(f(x)) exists.

On	estion	2.2
νu	Couon	44

Consider the following functions defined over their maximal domains,

$$f(x) = \frac{1}{1+x}$$
 and $g(x) = \sqrt{16 - (x-1)^2}$

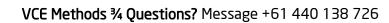
Find the maximal domain of f such that g(f(x)) exists.

Qu	estion	23

Consider the following functions,

$$f:[0,2)\to \mathbb{R}, f(x)=\log_2(4-x^2) \text{ and } g:(-\infty,2)\to \mathbb{R}, g(x)=3(x-1)^2-1.$$

Find the largest interval of x values for which f(g(x)) and g(f(x)) both exist.



<u>Sub-Section</u>: [1.2.2] - Finding the range of complex composite functions

Question 24	
Find the range of $f(x) = e^{x^2+1}$.	
Question 25	
Find the range of $f:[0,\infty) \to \mathbb{R}$, $f(x) = \log_3(3^x + 8)$.	
Space for Personal Notes	

Question 26						
Find the range of $f(x) = \sqrt{\frac{x}{x+1}}$ where f is defined on its maximal domain.						

Space for Personal Notes

Question 27					
Consider the following functions defined on all real numbers,					
$f(x) = \sin(x)$ and $g(x) = \log_3(4x^2 - 4x + 2)$					
Find the range of $g(f(x))$.					

Sub-Section: [1.2.3] - Finding the gradient of inverse functions

Question 28				
Consider the function $f:[0,\infty)\to\mathbb{R}, f(x)=x^2$.				
The gradient of f at $x = a$ is $2a$.				
Let g be the inverse function of f . Find the gradient of g when $x = 2$.				
Question 29				
Consider the one-to-one function f with the following properties.				
f(2) = 5, f(5) = 7, f'(2) = 3 and $f'(5) = 1$				
Let g be the inverse function of f . Find the gradient of g when $x = 5$.				

Consider the function f(x), the gradient of f at x = a is 2f(a) + 2a, and f(0) = 1.

From this information, we can tell that the gradient of f^{-1} at x = b is c. Find b and c.

Question 31

Consider the differentiable, one-to-one, function $f:(0,1) \to \mathbb{R}$. It is known that:

- 1. $f'(x) = -[f(x)]^2$, for all $x \in (0, 1)$.
- **2.** ran $f = (1, \infty)$.

If g is the inverse function of f, find the domain and range of g'(x).

Hint: g'(a) denotes the gradient of g at x = a.

Sub-Section: Exam 1 Questions

Question 32

Let $f:[0,\infty)\to\mathbb{R}$, $f(x)=\sqrt{x+4}$.

- **a.** State the range of f.
- **b.** Let $g: (-\infty, c] \to \mathbb{R}$, $g(x) = x^2 + 6x + 7$, where c < 0.

Find the largest possible value of c such that the range of g is a subset of the domain of f.

c. For the value of c found in **part b.**, state the range of f(g(x)).

d. Let $h: \mathbb{R} \to \mathbb{R}$, $h(x) = x^2 + 5$.

State the range of f(h(x)).

Question 33

Let $f: (-2, \infty) \to \mathbb{R}$, $f(x) = 3 - \frac{4}{(x+2)^2}$.

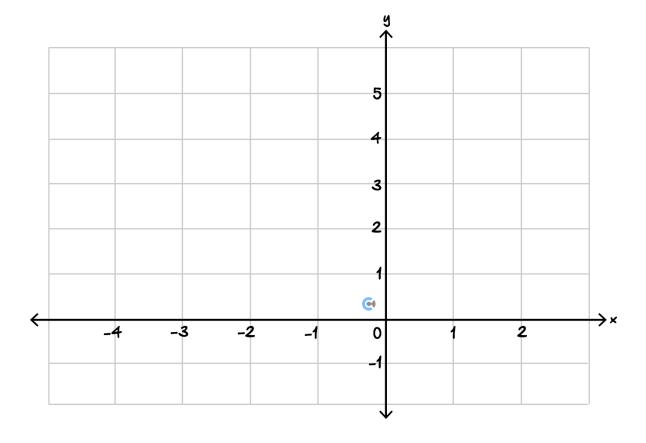
State the rule and domain of f^{-1} .

a. Let $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$, $f(x) = \frac{1}{x-3}$. Find the rule for f^{-1} .

- **b.** State the domain of f^{-1} .
- **c.** Let g(x) = f(x c) + d for $c, d \in \mathbb{R}$.

Find the values of c and d, given that $g = f^{-1}$.

d. Given that $f'(1) = -\frac{1}{4}$ and f'(4) = -1, find the value of g'(1).


VCE Methods 34 Questions? Message +61 440 138 726

Question 35			
Find the maximal domain of f , where $f(x) = \frac{1}{\sqrt{x^2 - 6x + 5}}$.			

Space for Personal Notes		

a. Sketch the graph of $f(x) = 3 + \frac{1}{x+1}$ on the axes below, labelling all asymptotes with their equations and axial intercepts with their coordinates.

b. Find the values of x for which $f(x) \in (2, 4)$.

Sub-Section: Exam 2 Questions

Question 37

Which one of the following is the inverse function of $g:(-\infty,2]\to\mathbb{R}, g(x)=4(x-2)^2+3$?

A.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 2 + \frac{\sqrt{x-3}}{2}$$

B.
$$f: [3, \infty) \to \mathbb{R}, f(x) = 2 - \frac{\sqrt{x-3}}{2}$$

C.
$$f: [3, \infty) \to \mathbb{R}, f(x) = 4 + \frac{\sqrt{x-3}}{4}$$

D.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 4 - \frac{\sqrt{x-3}}{4}$$

Question 38

The maximal domain of the function f is $\left(-\infty, 1 - \sqrt{5}\right] \cup \left[1 + \sqrt{5}, \infty\right)$.

A possible rule of *f* is:

A.
$$f(x) = \sqrt{5 - (x - 1)^2}$$

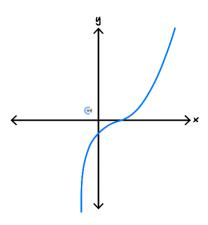
B.
$$f(x) = \log_e(5 - (x - 1)^2)$$

C.
$$f(x) = \frac{1}{\sqrt{5} - (x - 1)^2}$$

D.
$$f(x) = \frac{1}{\log_e(5-(x-1)^2)}$$

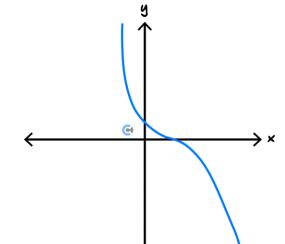
Let f be a one-to-one differentiable function and the following values are known,

$$f(-1) = 3, f(3) = 7, f'(-1) = 5$$
 and $f'(3) = 2$

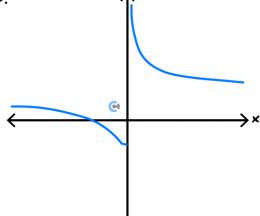

Let $g(x) = f^{-1}(x)$, the value of g'(3) is:

- **A.** 5
- **B.** 2
- C. $\frac{1}{5}$
- **D.** $\frac{1}{2}$

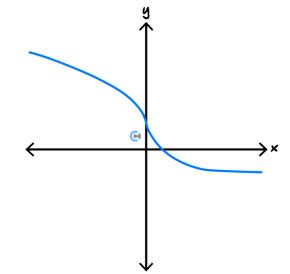
Space	for	Personal	Notes
-------	-----	----------	--------------

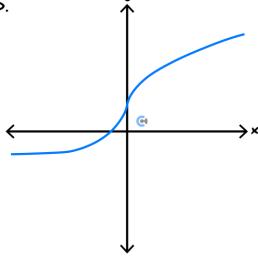


Part of the graph of the function f is shown below. The same scale has been used on both axes.



The corresponding part of the graph of the inverse function f^{-1} is best represented by:


A.


B.

C.

7

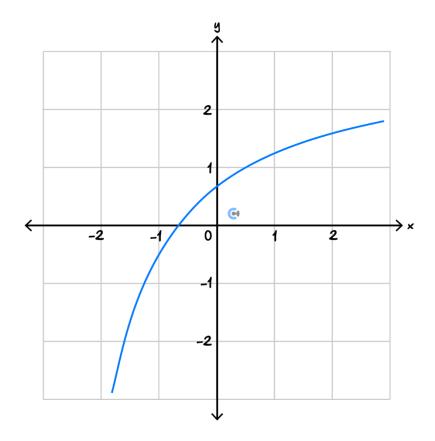
Consider the following functions,

$$f: \left(-\frac{\sqrt{3}}{2}, \infty\right) \to \mathbb{R}, f(x) = \log_e\left(x + \frac{\sqrt{3}}{2}\right)$$

$$g:(-\infty,3)\to\mathbb{R}, g(x)=\cos(x)$$

The largest interval of x values for which f(g(x)) and g(f(x)) both exist is:

- $\mathbf{A.} \ \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right]$
- **B.** $\left(-\frac{\sqrt{3}}{2}, \frac{5\pi}{6}\right)$
- $\mathbf{C.} \ \left(-\frac{5\pi}{6}, \frac{5\pi}{6}\right)$
- **D.** $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$


a. Express $\frac{3x+2}{x+3}$ in the form of $a + \frac{b}{x+2}$, where a and b are non-zero integers.

b. Let $f : \mathbb{R} \setminus \{-3\} \to \mathbb{R}, f(x) = \frac{3x+2}{x+3}$.

i. Find the rule and domain of f^{-1} and the inverse function of f.

ii. Part of the graph of f is shown in the diagram below.

Sketch the graph of $y = f^{-1}$, labelling all points of intersection with their coordinates.

Let	Let $g(x) = -\sqrt{16 - x^2}$.		
i.	Show that both $f(g(x))$ and $g(f(x))$ do not exist.		
ii.	Find the largest interval on which both $f(g(x))$ and $g(f(x))$ are defined on.		

Question	43
Vucsuon	10

Let $f(x) = 2^{-x}$ and $g(x) = 4x^2 - 4x + 3$.

a.

i. State the rule of f(g(x)).

ii. State the range of f(g(x)).

b.	Let $h: [a, \infty) \to \mathbb{R}$, $h(x) = g(f(x))$. Find the smallest value of a such that h is a one-to-one function.

VCE Methods ¾ Questions? Message +61 440 138 726

c.	For the value of a found in part b. , state the rule and domain for h^{-1} .
d.	How many solutions does the equation $f(g(x)) + g(f(x)) = 0$ have?
Sp	pace for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

