

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Functions & Relations [1.1]

Workbook

Outline:

Pg 24-40

Domain of Functions

Pg 02-10

- Maximal Domains
- Domain of Sum, Difference, and Product of Functions

Composite Functions

Pg 11-23

- Basics of Composition
- Validity of Composite Functions
- Domain of Composite Functions
- Range of Composite Functions

Inverse Functions

Basics of Inverses

- \triangleright Swapping x and y
- Symmetry Around y = x
- Validity of Inverse Function
- Intersection Between Inverses
- Composition of Inverses

Section A: Domain of Functions

Sub-Section: Maximal Domains

Functions and Relations

- Our topics today:
 - 1. Domain
 - 2. Composite Functions
 - 3. Inverse Functions
- None of these can be understood without being able to find a domain of a function.
- Today's class will get progressively harder so be sure to ask questions when you have.

Starting with domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
$\sqrt{\mathbf{z}}$	÷ >Q
$\log(z)$	~ > 0
$\frac{1}{z}$	∌ € O

Steps

- 1. Find the restriction of the inside.
- 2. Sketch the graph if needed.
- **3.** Solve for domain.

Let's have a look at a question together!

Question 1 Walkthrough.

Find the maximal domain of each of the following functions.

a.
$$f(x) = 3\sqrt{4x+3} - 2$$

b.
$$h(x) = \log_2(-x^2 + 16)$$

$$x^2 = 16$$

Active Recall: Steps to Find Maximal Domain

- 1. Find the restriction of the _______
- 2. Sketch the **graph** if needed.
- 3. Solve for dometry

Your turn!

Question 2

Find the maximal domain of the following functions.

a.
$$f(x) = -\sqrt{-2x-4} + 1$$

b.
$$\frac{1}{x^2-9}$$

$$\chi^{2}-9 \neq 0$$

c.
$$h(x) = -\log_2(x^2 + 4x - 5)$$

Question 3 Extension.

State the maximal domain of the following function.

$$y = \frac{1}{\sqrt{x^2 + 3x + 2}}$$

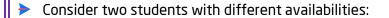
$$x^2+3x+2 > 0$$

x ((-w, -2) ((-1,cu)

Sub-Section: Domain of Sum, Difference, and Product of Functions

What about a domain of the sum of two functions?

Analogy: Students



<u>Student</u>	<u>Function</u>	<u>Availability</u>
laj	f	10 A. M. −2 P. M.
Rithwik	g	11 A. M. –5 P. M.

When can these two meet?

[1:2] stf

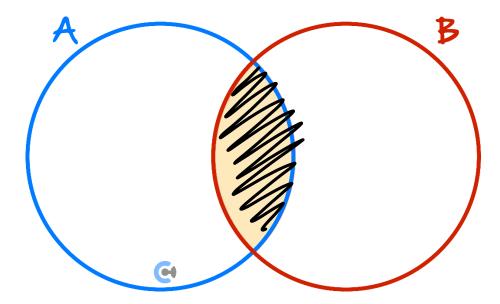
Luterech

Meeting	f+g	
---------	-----	--

This is the same as finding the domain of the sum of two functions!

Exploration: Domain of Sum, Differen

If the domain of f is A and the domain of g is B, what would be the domain of f + g?



- For f + g to be defined, do both f and g be defined?
- [Yes]/ [No]
- \blacktriangleright How can both f and g defined? (Hint: Look at the diagram above.)

$$Dom f + g = Dom f \cap Dom g$$

 \blacktriangleright Will this work for f - g?

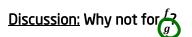
[Yes]/ [No]

Will this work for $f \times g$?

[Yes] [No]

Will this work for $\frac{f}{a}$?

[Yes]/ [No]



Sums, Differences, and Products of Functions

Rules:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \times g)(x) = f(x) \times g(x)$$

ldea:

Domain of sum or product of two functions =
Intersection of the two domains

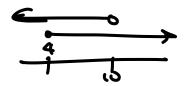
- > Steps:
 - 1. Find the domain of each function
 - 2. Find the intersection (draw number line if needed)

Let's look at some questions together!

Question 4 Walkthrough.

Find the maximal domain of the following function:

$$g(x) = \sqrt{x-4} + \log_3(10-x)$$



TIP: Read the inequalities out loud to avoid making mistakes!

Recall!

Active Recall: To find the maximal domain we

?

- Find the ______ of each function
- Find the ______ of the function domains

Your turn!

Ouestion 5

Find the maximal domain of each of the following functions.

a.
$$\sqrt{10-x} + \frac{-1}{x-4}$$

b.
$$\log_3(x^2-4) + \frac{3}{x^2-1}$$

Question 6 Extension.

State the maximal domain of the following function.

$$y = \sqrt{4 - x} - \log_3\left(\frac{1}{x + 4}\right)$$

$$4 - x \ge 0$$

$$4 \ge x$$

$$x \in (-\infty, 4]$$

$$x \in (-4, 4]$$

Key Takeaways

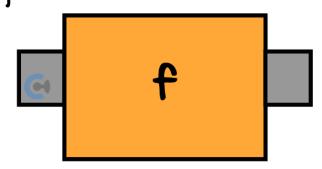
- \square Inside of a log > 0.
- ✓ Inside of a root ≥ 0 .
- \square Denominator $\neq 0$.
- ☑ Domain of sum or product of two functions = Intersection of the two domains.

Section B: Composite Functions

Sub-Section: Basics of Composition

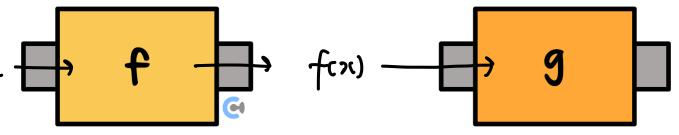
Analogy: Function and Machines

- Functions can be thought of as a simple machine.
 - Takes an _____
 - e Performs some operation on that input.
 - Returns an output



What would happen if we stacked two functions one after another?

Composite Functions



- Definition: A Series of functions.
- Representation of the Above:

$$y = g(f(x)) = g \circ f(x)$$

NOTE: Inside Function = 1^{st} function in the series.

Try this question!

Question 7

Consider two functions f(x) = 2x + 1 and $g(x) = x^2$ performed in order. That is, the **output from f becomes** the input of g.

a). g(f(x));

What would be the output of the combined function if the initial input is x = 4?

a)
$$g(f(x)) = g(2x+1)^2$$

Sub-Section: Validity of Composite Functions

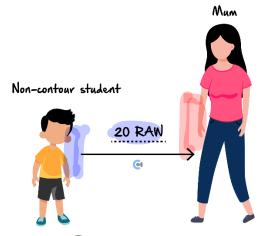
Do composite functions work all the time?

Analogy: Non-Contour Student Getting a 20 Raw.

- Let's consider a Non-Contour student giving their study score to their mum.
- Their mum is only willing to accept [40 Raw, 50 Raw]

Mum: "Anything below is outside my domain!"

What would happen if the Non-Contour student gave their 20 Raw to their mum?

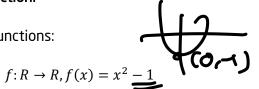


Would this composition work? [Yes] ([No]

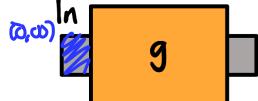
RIP Non-Contour Student

Exploration: Validity of Composition Function.

 \blacktriangleright Consider g(f(x)) for the following functions:



$$g:[0,\infty)\to R, g(x)=\sqrt{x}$$



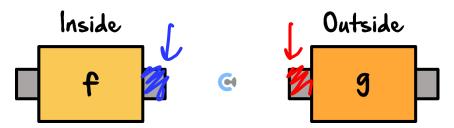
- What range of values does f(x) produce?
- What range of values can g(x) accept?
- So, can g(x) take in **everything** that is outputted by f(x)?
- Hence, can this composite function exist?

(o,a)

[Yes] [No]

[Yes] [No]

Validity of Composite Functions



- \blacktriangleright Output of f(x):
- Composite Function is only valid if:

Acronym:

RIDO

Let's look at some questions together!

Question 8 Walkthrough.

(x x > 0

Consider the functions $f(x) = x^2 - 4$ and $g(x) = \log_e(x)$ defined over their maximal domain.

a. Does f(g(x)) work?

Raye g & Dom f 6 RIDO.

IR & IR

: f(g(x1) exists

b. Does g(f(x)) work?

Raye f & Dom g [-4,00) & (0,00) CO(-4)

.: glfenil doenu wit

Your turn!

Question 9

Consider the functions $f(x) = x^3$ and $g(x) = 3^x - 1$ defined over their maximal domain.

a. Does f(g(x)) work?

$$f(g(x))$$
 work?

Rape $g \in Dom f$

b. Does g(f(x)) work?

Question 10 Extension.

Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 - a$ defined over their maximal domain.

Given that f(g(x)) is defined, state the largest value of a.

A large
$$g \in Danf$$

$$-4 \le -a$$

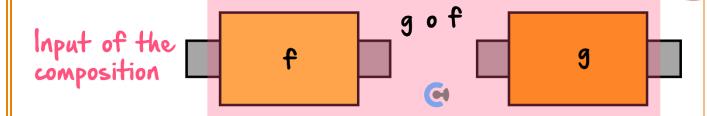
$$(-a, a) \in (-4, a)$$

$$a = 4$$

Sub-Section: Domain of Composite Functions

How do we find the domain of a composite function?

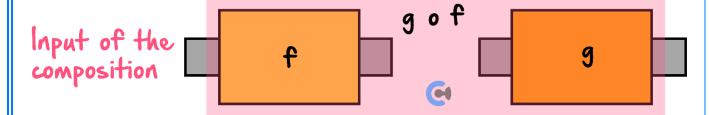
Exploration: Domain of the Composite Function



- Composite function input based on:
- [First] / [Second] Function
- Composite function domain based on:
- [First] / [Second] Function

Domain of Composite = Domain of [Inside] / [Outside]

Domain of Composite Functions



 ${\it Domain\ of\ Composite} = {\it Domain\ of\ Inside}$

V If comp exists (2000)

Try the following question!

Question 11

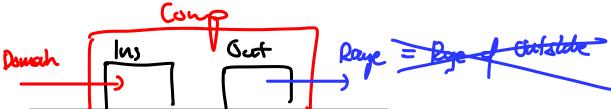
Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + 4$ defined over their maximal domain.

State the domain of the composite function g(f(x)).

Don g(f(xd = Don
$$f$$

= $(-4, \infty)$

Discussion: What would the range of the composite function be then?



Sub-Section: Range of Composite Functions

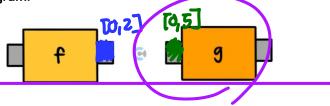
Misconception

"The range of a composite function must be the range of the outside function.

TRUTH: The range of the composite function is a subset of the range of the outside function.

Exploration: Range of Composite Functions

Consider the following diagram:



- Consider that: Range of f: [0, 2], Domain of g: [0, 5]
 - Does the composite function work?

[Yes] / [No]

Obes f(x) give g(x) every possible value g(x) can take?

[Yes] / [No]

lacktriangle Does the function g in the composite function produce the entire range of g?

[Yes] / [No]

Why?

1st func only gives "Some of " what 2nd can take,

• Would the range of the composite function equal to the range of g(x)? [Yes] / [No]

Range Comp <u> Range</u> Outside

Range of the Composite Functions

Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.

Question 12

Consider the functions:

$$f: R \to R, f(x) = x^2 + 4$$

 $g: R \to R, g(x) = x + 6$

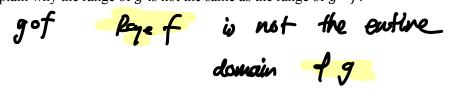
a. For the composite function g(f(x)), state the rule and domain.

$$g(x^{3}+4) = x^{3}+10$$
, $x \in \mathbb{R}$.

b. State the range of g(f(x)).

c. State the range of g(x).

d. Explain why the range of g is not the same as the range of $g \circ f$.



Key Takeaways

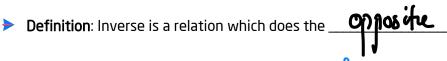
- **☑** Range (output) of Inside ⊆ Domain (Input) of Outside.
- ☑ Domain of Composite = Domain of Inside (1st) Function.
- ✓ Range of Composite ⊆ Range of the Outside.

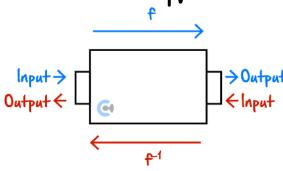
Section C: Inverse Functions

Sub-Section: Basics of Inverses

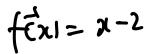
What does "Inverse" mean?

Inverse Relation





<u>Discussion:</u> What would be the inverse of f(x) = x + 2?

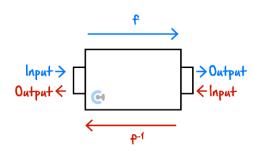


Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



Question 13

Find the inverse of f(x) = 3x - 1 by swapping x and y.

shop is dy for in.

$$x = 3y - 1$$

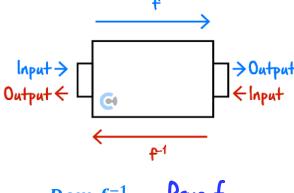
$$y = \frac{1}{3}(x + 1)$$

$$f^{-1}(x) = \frac{1}{3}(x + 1)$$

NOTE:
$$f(x) = y$$
.

<u>Discussion:</u> Hence, what would happen to the domain and range of the function when we find its inverse?

Domain and Range of Inverse Functions



$$Dom f^{-1} = \underbrace{Paye f}_{Ran f^{-1}} = \underbrace{Dan f}_{I}$$

Question 14 Walkthrough.

Consider the function $f(x) = \sqrt{x+2} - 1$ defined for its maximal domain.

a. Find the rule for the inverse function.

b. State the domain and range of the inverse function.

Question 15

Consider the function $f: [0,4] \rightarrow R, f(x) = 2x + 1$.

a. Find the rule for the inverse function.

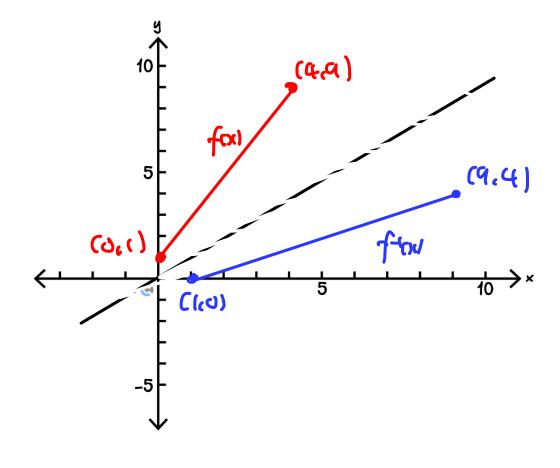
shop
$$x d y$$
 for inver-
$$1 = 2y + 1$$

$$\frac{x-1}{2} = y$$

$$\therefore f^{-1}(x) = \frac{x-1}{2}$$

b. State the domain and range of the inverse function.

c. Sketch the f(x) and $f^{-1}(x)$ on the axis below.



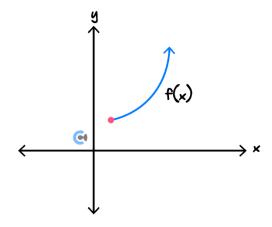
<u>Discussion:</u> In the previous question, which line were the two inverses symmetrical along?

Sub-Section: Symmetry Around y = x

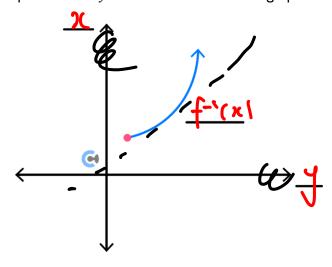
Why does this happen?

Exploration: Symmetry Around y = x

Consider the following function:

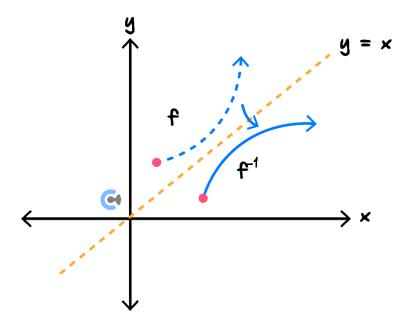


What happens if you swap the x- and y-axis on the label on our graph?

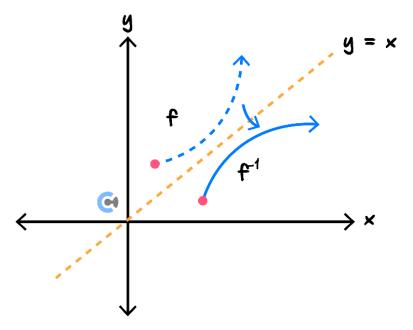


CONTOUREDUCATION

- Wait... do we want the x-axis to be the vertical one? [Yes/No]
- \blacktriangleright How should we reflect the graph so that the x- and y-axis become horizontal and vertical again?



Symmetry of Inverse Functions



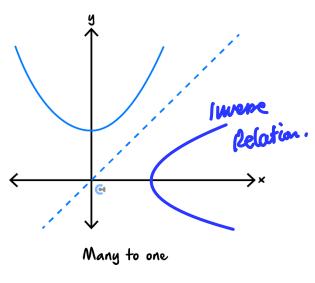
Inverse functions are always symmetrical around y = x.

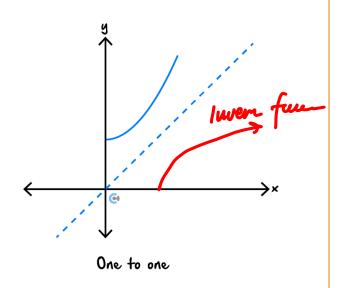
Sub-Section: Validity of Inverse Function

Does an inverse function always exists?

Exploration: Validity of Inverse Functions

Consider the many to one and one to one functions.



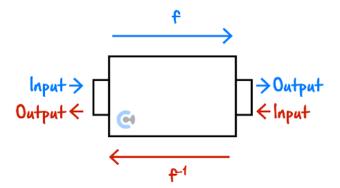


- Reflect them around y = x and sketch the inverse! (Label Above)
- Which inverse is a function? (Passes through a vertical line test?)

[neither] / [left] / [right] / [both]

For an inverse function to exist, what must the original function be? [many to one] ([one to one]

Validity of Inverse Functions



Requirement for Inverse Function:

Question 16 Walkthrough.

Consider the function $f: [-\alpha, a] \to \mathbb{R}$, $f(x) = 3(x-2)^2 - 4$.

a. Find the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of a such that the recognition of the largest possible value of the largest possi



$$a=2$$

b. Find the inverse function

Swep
$$x$$
 y for inv.

$$x = 3(y-2)^{2} - 4$$

$$x = 3(y-2)^{2} -$$

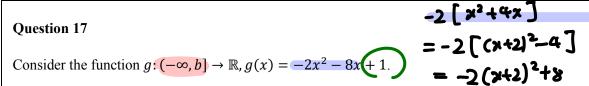
$$f^{-1}(x) = 2 - \sqrt{\frac{x+4}{3}}$$

Dom
$$f^{-1}$$
 = Reye f = $(-4,\infty)$

TIP: Always try sketching the function to find the domain such that an inverse function can exist!

NOTE: You will need to complete the square when finding the inverse of quadratic functions!

Your turn!



a. Find the largest possible value of b such that the inverse function g^{-1} exists.

$$q(x) = -2(x+2)^2 + q$$

b. Find the inverse function

Swap x & y for inverse
$$z = -2(4+2)^{2} + 9$$

$$\frac{z-9}{-2} = (4+2)^{2}$$

$$\pm \sqrt{\frac{\chi-q}{-2}} = q+2$$

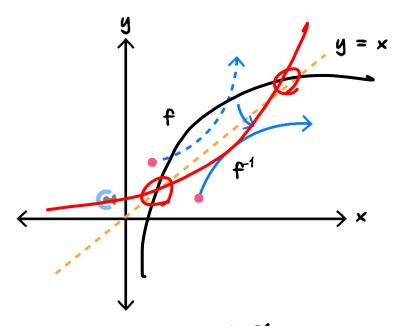
$$-2 \pm \sqrt{\frac{2-q}{-2}} = 4$$

as flage
$$f' = Dom f$$

= $(-\infty, -2)$
:. $f'(x) = -2 - \int \frac{2i-9}{-2}$
Don $f' = Raye f = (-\infty, 9)$

Sub-Section: Intersection Between Inverses

Active Recall: Symmetry Around y = x

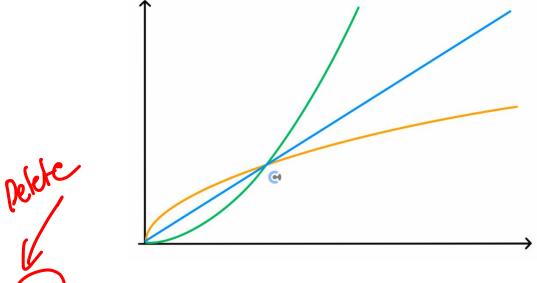


Inverse functions are always symmetrical around 4=x

200

<u>Discussion:</u> Where could a function and its inverse meet?

Intersection Between a Function and its Inverse



Always equate with <u>Y=1C</u> instead.

$$f(x) = x \text{ OR } f^{-1}(x) = x$$

Question 18

Find the intersection between $f:[0,\infty)\to R$, $f(x)=x^3$ and its inverse, without finding the inverse.

$$x^3 = x$$
 $x^3 - x = 0$
 $x(x^2 - 1) = 0$

$$x=0,\pm 1$$

$$x \neq -1$$

$$x \in T_0,\infty$$

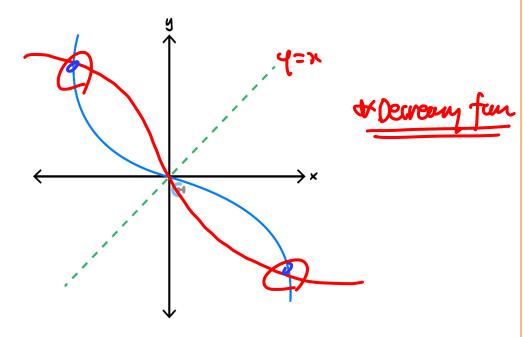
(0,0), (11)

NOTE: This only works for an increasing function, however in VCAA, this is always the case.

Does this always work?

<u>Extension</u>: Intersections Not on y = x (Not Tested on Exams, but Maybe on SACs!)

Consider the following:



- What does the inverse function look like? (Sketch Above)
- Are these intersections on y = x?

[Yes] / No]

ALSO NOTE: For SACs is that there **could** be intersections that are **not** on y = x.

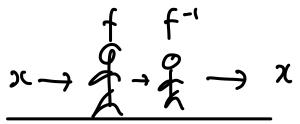
Sub-Section: Composition of Inverses

Analogy: Inverse function is your annoying sibling.

- Who has siblings? Is it just me or do your siblings want to do the opposite of what you want to do?
- Example:
 - James: Wants to turn the AC up by 5 degrees.
 - © Danis (James' brother): Turns the AC <u>dow by 5.</u>

This is basically an inverse function relationship!

<u>Discussion:</u> So, now what would happen if we have a function and its inverse happening one after another? (Composite function of inverse)



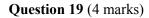
Composition of Inverse Functions

$$f \circ (f^{-1}(x)) = \mathbf{X}, \quad \text{for all } x \in \mathbf{D}_{\mathbf{x}} \circ f^{-1}$$

$$f^{-1} \circ f(x) = 2$$
, for all $x \in \underline{Dar f}$

NOTE: Domain = Domain of Inside

Try this question!



Consider the function $f(x) = \frac{1}{x-1} - 3$.

a. Find the rule and domain for $f^{-1}(f(x))$. (2 marks)

$$f^{-1}(f(x)) = \frac{1}{f(x)(+3)} + 1$$

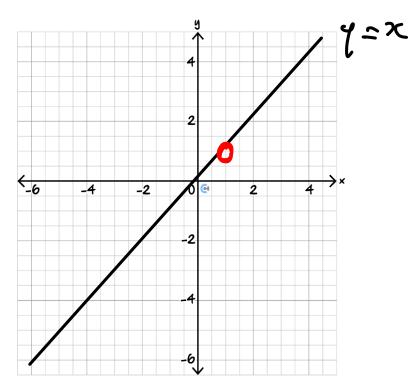
$$= \frac{1}{2x^{-1}-3+3} + 1$$

$$= \frac{1}{2x^{-1}} + 1$$

$$= 21-1 + 1 = 21$$

CONTOUREDUCATION

b. Sketch the graph of $y = f^{-1}(f(x))$ on the axes below. (2 marks)



Key Takeaways

- \checkmark f needs to be 1: 1 for f^{-1} to exist.
- ✓ Domain and Range Swaps.
- $\mathbf{\nabla}$ Symmetrical around y = x.
- \checkmark For intersections: f(x) = x or $f^{-1}(x) = x$.
- lacktriangledown Composite function of inverses is always equal to x.

Contour Check

Learning Objective: [1.1.1] - Find Maximal Domain and Range

Key Takeaways

- Inside of a log must be _____
- ☐ Inside of a root must be _____
- □ Denominator <u>Caud</u> <u>be</u> 2010
- □ Domain of sum or product of two functions is equal to wherection. of the two domains.

Learning Objective: [1.1.2] - Find the Rule, Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

Key Takeaways

- □ For composite function to exist, <u>Pcuye</u> Inside ⊆ <u>Dom</u> Outs □ Domain of Composite is equal to the Domain of <u>Inside</u> Function.
- Range of Composite is a ______ of the Range of the Outside.

<u>Learning Objective</u>: [1.1.3] - Find the Rule, Domain, and Range of Inverse Functions

Key Takeaways

- \Box f needs to be f for f^{-1} to exist.
- Domain of the inverse function equals to **Lage of Origin** and vice versa.
- Symmetrical around <u>4=7</u>.
- \square For intersections of inverses, we can equate the function to y = 2.

<u>Learning Objective</u>: [1.1.4] - Find the Composite Function of Inverse Function

Key Takeaways

Composite function of inverses is always equal to