

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Functions & Relations [1.1]

Workbook

Outline:

Domain of Functions

Pg 02-10

- Maximal Domains
- Domain of Sum, Difference, and Product of Functions

Composite Functions

Pg 11-23

- Basics of Composition
- Validity of Composite Functions
- Domain of Composite Functions
- Range of Composite Functions

Inverse Functions

Pg 24-40

- Basics of Inverses
- \triangleright Swapping x and y
- \triangleright Symmetry Around y = x
- Validity of Inverse Function
- Intersection Between Inverses
- Composition of Inverses

Section A: Domain of Functions

Sub-Section: Maximal Domains

Functions and Relations

3

- Our topics today:
 - 1. Domain
 - 2. Composite Functions
 - 3. Inverse Functions
- None of these can be understood without being able to find a domain of a function.
- Today's class will get progressively harder so be sure to ask questions when you have.

Starting with domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
$\sqrt{\mathbf{z}}$	
$\log(z)$	
$\frac{1}{z}$	

Steps

- 1. Find the restriction of the inside.
- 2. Sketch the graph if needed.
- **3.** Solve for domain.

A

Let's have a look at a question together!

Question 1 Walkthrough.

Find the maximal domain of each of the following functions.

a.
$$f(x) = 3\sqrt{4x+3} - 2$$

b.
$$h(x) = \log_2(-x^2 + 16)$$

Active Recall: Steps to Find Maximal Domain

- 1. Find the restriction of the _____.
- **2.** Sketch the ______ if needed.
- **3.** Solve for ______.

Your turn!

Question 2

Find the maximal domain of the following functions.

a.
$$f(x) = -\sqrt{-2x-4} + 1$$

b.
$$\frac{1}{x^2-9}$$

c. $h(x) = -\log_2(x^2 + 4x - 5)$

Question 3 Extension.

State the maximal domain of the following function.

$$y = \frac{1}{\sqrt{x^2 + 3x + 2}}$$

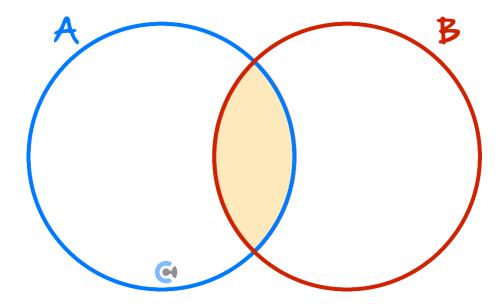
What about a domain of the sum of two functions?

Analogy: Students

<u>Student</u>	<u>Function</u>	<u>Availability</u>
	f	10 A. M. −2 P. M.
	g	11 A. M. –5 P. M.

When can these two meet?

Meeting	f+g	
---------	-----	--



This is the same as finding the domain of the sum of two functions!

Exploration: Domain of Sum, Differen

If the domain of f is A and the domain of g is B, what would be the domain of f + g?

For f + g to be defined, do both f and g be defined?

- [Yes] / [No]
- \blacktriangleright How can both f and g defined? (Hint: Look at the diagram above.)

$$Dom f + g =$$

Will this work for f - g?

[Yes] / [No]

Will this work for $f \times g$?

[Yes] / [No]

Will this work for $\frac{f}{g}$?

[Yes] / [No]

<u>Discussion</u>: Why not for $\frac{f}{g}$?

Sums, Differences, and Products of Functions

Rules:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \times g)(x) = f(x) \times g(x)$$

Idea:

Domain of sum or product of two functions =
Intersection of the two domains

- > Steps:
 - 1. Find the domain of each function
 - 2. Find the intersection (draw number line if needed)

Let's look at some questions together!

Question 4 Walkthrough.

Find the maximal domain of the following function:

$$g(x) = \sqrt{x-4} + \log_3(10-x)$$

TIP: Read the inequalities out loud to avoid making mistakes!

Recall!

Active Recall: To find the maximal domain we

- Find the _____ of each function
- Find the ______ of the function domains

Your turn!

Question 5

Find the maximal domain of each of the following functions.

a.
$$\sqrt{10-x} + \frac{-1}{x-4}$$

b.
$$\log_3(x^2-4) + \frac{3}{x^2-1}$$

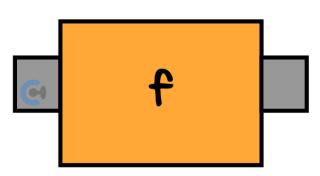
Question 6 Extension.

State the maximal domain of the following function.

$$y = \sqrt{4 - x} - \log_3\left(\frac{1}{x + 4}\right)$$

Key Takeaways

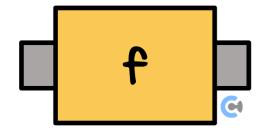
- \checkmark Inside of a log > 0.
- ✓ Inside of a root ≥ 0 .
- ☑ Domain of sum or product of two functions = Intersection of the two domains.

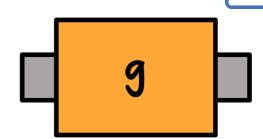

Section B: Composite Functions

Sub-Section: Basics of Composition

Analogy: Function and Machines

- Functions can be thought of as a simple machine.
- Takes an _____.
 - Performs some ______ on that input.
 - Returns an ______.





What would happen if we stacked two functions one after another?

Composite Functions

- **Definition**: A______ of functions.
- Representation of the Above:

NOTE: Inside Function = 1^{st} function in the series.

Try this question!

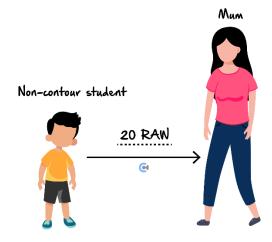
Question 7

Consider two functions f(x) = 2x + 1 and $g(x) = x^2$ performed in order. That is, the **output from f becomes** the input of g.

What would be the output of the combined function if the initial input is x = 4?

Sub-Section: Validity of Composite Functions

Do composite functions work all the time?


Analogy: Non-Contour Student Getting a 20 Raw.

- Let's consider a Non-Contour student giving their study score to their mum.
- Their mum is only willing to accept [40 Raw, 50 Raw]

Mum: "Anything below is outside my domain!"

What would happen if the Non-Contour student gave their 20 Raw to their mum?

Would this composition work? [Yes] / [No]

RIP Non-Contour Student

Exploration: Validity of Composition Function.

 \blacktriangleright Consider g(f(x)) for the following functions:

$$f: R \rightarrow R, f(x) = x^2 - 1$$

$$g:[0,\infty)\to R, g(x)=\sqrt{x}$$

- What range of values does f(x) produce?
- What range of values can g(x) accept?
- \bullet So, can g(x) take in **everything** that is outputted by f(x)?
- Hence, can this composite function exist?

[Yes] / [No]

[Yes] / [No]

- _____ (Label Above) Output of f(x):
- ______(Label Above) Input of g(x):
- Composite Function is only valid if:

Acronym:

Let's look at some questions together!

Question 8 Walkthrough.

Consider the functions $f(x) = x^2 - 4$ and $g(x) = \log_e(x)$ defined over their maximal domain.

a. Does f(g(x)) work?

b. Does g(f(x)) work?

Your turn!

Question 9

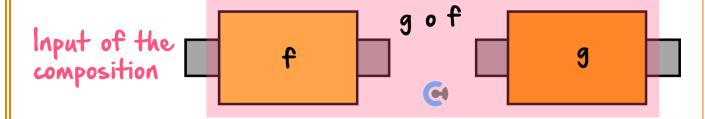
Consider the functions $f(x) = x^3$ and $g(x) = 3^x - 1$ defined over their maximal domain.

a. Does f(g(x)) work?

b. Does g(f(x)) work?

Ouestion	10	Extension.
	10	LACCIBIOIO

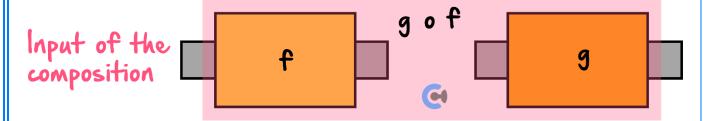
Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 - a$ defined over their maximal domain.


Given that f(g(x)) is defined, state the largest value of a.

Sub-Section: Domain of Composite Functions

How do we find the domain of a composite function?

Exploration: Domain of the Composite Function



- Composite function input based on: [First] / [Second] Function
- Composite function domain based on: [First] / [Second] Function

Domain of Composite = Domain of [Inside] / [Outside]

Domain of Composite Functions

Domain of Composite = Domain of Inside

Try the following question!

Question 11

Consider the functions $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + 4$ defined over their maximal domain.

State the domain of the composite function g(f(x)).

 $\underline{\mbox{Discussion:}}$ What would the range of the composite function be then?

Sub-Section: Range of Composite Functions

Misconception

"The range of a composite function must be the range of the outside function.

TRUTH: The range of the composite function is a subset of the range of the outside function.

Exploration: Range of Composite Functions

Consider the following diagram:

- Consider that: Range of f: [0, 2], Domain of g: [0, 5]
 - Does the composite function work?

[Yes] / [No]

• Does f(x) give g(x) every possible value g(x) can take?

[Yes] / [No]

 \bullet Does the function g in the composite function produce the entire range of g?

[Yes] / [No]

Why?

• Would the range of the composite function equal to the range of g(x)? [Yes] / [No]

Range Comp _____ Range Outside

Range of the Composite Functions

Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.

Your turn!

Question 12

Consider the functions:

$$f: R \to R, f(x) = x^2 + 4$$

 $g: R \to R, g(x) = x + 6$

- **a.** For the composite function g(f(x)), state the rule and domain.
- **b.** State the range of g(f(x)).
- c. State the range of g(x).
- **d.** Explain why the range of g is not the same as the range of $g \circ f$.

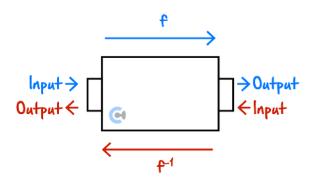
<u>Discussion:</u> To make $Range\ Comp = Range\ Outside$, what must be the range of inside equal to?

Key Takeaways

- $f(g(x)) = f \circ g(x).$
- \square Domain of Composite = Domain of Inside (1st) Function.
- \square Range of Composite \subseteq Range of the Outside.

Section C: Inverse Functions

Sub-Section: Basics of Inverses

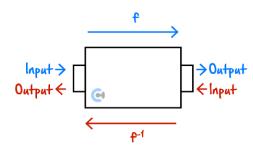

What does "Inverse" mean?

Inverse Relation

Definition: Inverse is a relation which does the ______

<u>Discussion:</u> What would be the inverse of f(x) = x + 2?

Sub-Section: Swapping x and y


Is there a better way of solving for an inverse relation?

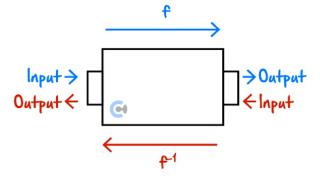
Solving for an Inverse Relation

 \blacktriangleright Swap x and y.

Question 13

Find the inverse of f(x) = 3x - 1 by swapping x and y.

NOTE: f(x) = y.


<u>Discussion:</u> Hence, what would happen to the domain and range of the function when we find its inverse?

Domain and Range of Inverse Functions

$$Dom f^{-1} =$$

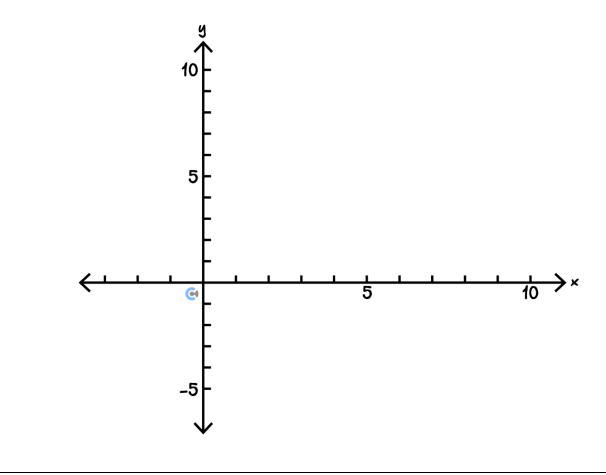
$$Ran f^{-1} =$$

Question 14 Walkthrough.

Consider the function $f(x) = \sqrt{x+2} - 1$ defined for its maximal domain.

a. Find the rule for the inverse function.

b. State the domain and range of the inverse function.


Question 15

Consider the function $f: [0, 4] \rightarrow R, f(x) = 2x + 1$.

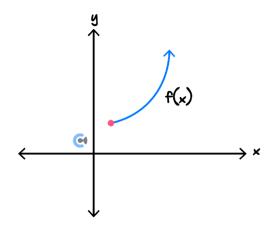
a. Find the rule for the inverse function.

b. State the domain and range of the inverse function.

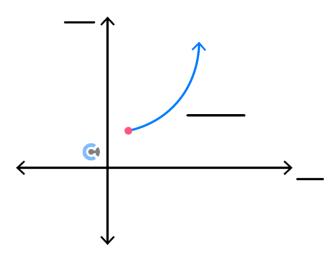
c. Sketch the f(x) and $f^{-1}(x)$ on the axis below.

<u>Discussion:</u> In the previous question, which line were the two inverses symmetrical along?

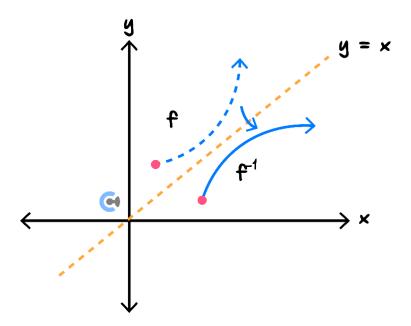
Sub-Section: Symmetry Around y = x



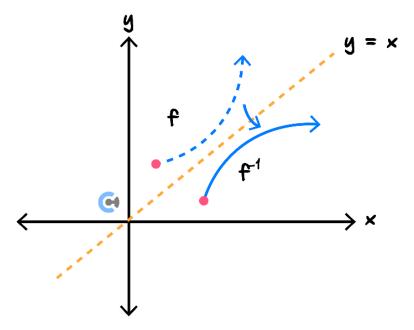
Why does this happen?


Exploration: Symmetry Around y = x

Consider the following function:



What happens if you swap the x- and y-axis on the label on our graph?

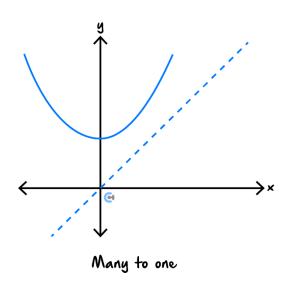

CONTOUREDUCATION

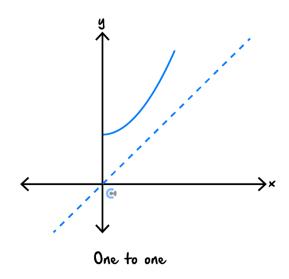
- ▶ Wait... do we want the *x*-axis to be the vertical one? [Yes/No]
- \blacktriangleright How should we reflect the graph so that the x- and y-axis become horizontal and vertical again?

Symmetry of Inverse Functions

Inverse functions are always symmetrical around y = x.

Sub-Section: Validity of Inverse Function


Does an inverse function always exists?

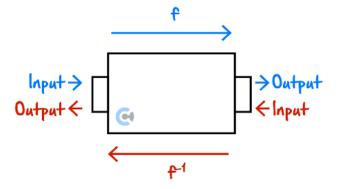

3

Exploration: Validity of Inverse Functions

[[-0,1]][[

Consider the many to one and one to one functions.

- Reflect them around y = x and sketch the inverse! (Label Above)
- Which inverse is a function? (Passes through a vertical line test?)


[neither] / [left] / [right] / [both]

• For an inverse function to exist, what must the original function be? [many to one] / [one to one]

Validity of Inverse Functions

> Requirement for Inverse Function:

f needs to be _____

Question 16 Walkthrough.

Consider the function $f: (-\infty, a] \to \mathbb{R}, f(x) = 3(x-2)^2 - 4$.

a. Find the largest possible value of a such that the inverse function f^{-1} exists.

b. Find the inverse function.

NOTE: Finding function means to find the rule AND the domain.

TIP: Always try sketching the function to find the domain such that an inverse function can exist!

NOTE: You will need to complete the square when finding the inverse of quadratic functions!

Your turn!

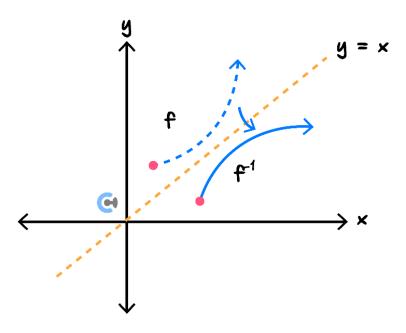
Question 17

Consider the function $g:(-\infty,b] \to \mathbb{R}, g(x) = -2x^2 - 8x + 1$.

a. Find the largest possible value of b such that the inverse function g^{-1} exists.

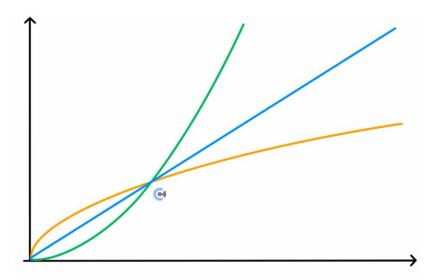
b. Find the inverse function.

Sub-Section: Intersection Between Inverses



Where do inverses meet?

Active Recall: Symmetry Around y = x


<u>Discussion:</u> Where could a function and its inverse meet?

Intersection Between a Function and its Inverse

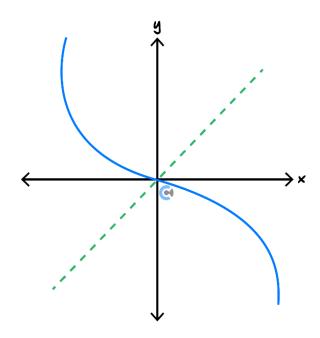
Equate with _____ instead.

$$f(x) = x \text{ OR } f^{-1}(x) = x$$

Question 18

Find the intersection(s) between $f:[0,\infty)\to R$, $f(x)=x^3$ and its inverse, without finding the inverse.

NOTE: This only works for an increasing function, however in VCAA, this is always the case.


Does this always work?

<u>Extension</u>: Intersections Not on y = x (Not Tested on Exams, but Maybe on SACs!)

Consider the following:

- What does the inverse function look like? (Sketch Above)
- Are these intersections on y = x? [Yes] / [No]

ALSO NOTE: For SACs is that there **could** be intersections that are **not** on y = x.

Sub-Section: Composition of Inverses

<u>Analogy</u>: Inverse function is your annoying sibling.

- Who has siblings? Is it just me or do your siblings want to do the opposite of what you want to do?
- Example:
 - James: Wants to turn the AC up by 5 degrees.
 - Danis (James' brother): Turns the AC ______

A

This is basically an inverse function relationship!

<u>Discussion:</u> So, now what would happen if we have a function and its inverse happening one after another? (Composite function of inverse)

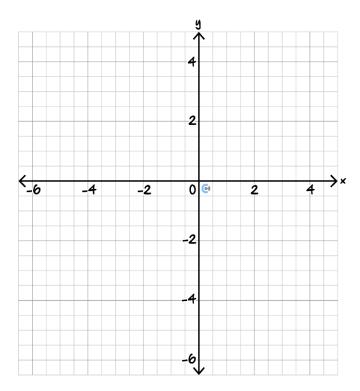
Composition of Inverse Functions

$$f \circ f^{-1}(x) = \underline{\hspace{1cm}}, \quad for all \ x \in \underline{\hspace{1cm}}$$

$$f^{-1} \circ f(x) =$$
___, for all $x \in$ _____

NOTE: Domain = Domain of Inside

Try this question!


Question 19 (4 marks)

Consider the function $f(x) = \frac{1}{x-1} - 3$.

a. Find the rule and domain for $f^{-1}(f(x))$. (2 marks)

b. Sketch the graph of $y = f^{-1}(f(x))$ on the axes below. (2 marks)

Key Takeaways

- \checkmark f needs to be 1: 1 for f^{-1} to exist.
- ✓ Domain and Range Swaps.
- \mathbf{V} Symmetrical around y = x.
- \checkmark For intersections: f(x) = x or $f^{-1}(x) = x$.
- lacktriangledown Composite function of inverses is always equal to x.

Contour Check

Learning Objective: [1.1.1] - Find Maximal Domain and Range

Key Takeaways Inside of a log must be _______. Inside of a root must be ______. Denominator ______. Domain of sum or product of two functions is equal to ______ of the two domains.

<u>Learning Objective</u>: [1.1.2] - Find the Rule, Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

Key Takeaways

- ☐ For composite function to exist, ______ ⊆ _____.
- □ Domain of Composite is equal to the Domain of ______ Function.
- □ Range of Composite is a _____ of the Range of the Outside.

Functions		
Key Takeaways		
\square f needs to bef or f^{-1} to exist.		
Domain of the inverse function equals to and vice versa.		
Symmetrical around		
For intersections of inverses, we can equate the function to		
Learning Objective: [1.1.4] - Find the Composite Function of Inverse Function		
Key Takeaways		
□ Composite function of inverses is always equal to		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726