

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Functions & Relations [1.1]

**Test Solutions** 

17.5 Marks. 1 Minute Reading. 21 Minutes Writing.

#### **Results:**

| Test Questions | / 17.5 |
|----------------|--------|
| Extension      | /5     |





# Section A: Test Questions (17.5 Marks)

INSTRUCTION: 17.5 Marks. 21 Minutes Writing.



| Question | 1 | (2.5) | marks) | ) |
|----------|---|-------|--------|---|
|          |   |       |        |   |

Tick whether the following statements are true or false.

|    |                                                                                                          | True | False    |
|----|----------------------------------------------------------------------------------------------------------|------|----------|
| a. | Inside of the log can be all non negative numbers.                                                       |      | <b>✓</b> |
| b. | To calculate the maximal domain of sum of two functions, you find the union of the two domain.           |      | <b>✓</b> |
| c. | Composite function is only defined if the range of the inside is a subset of the domain of the outside.  | <    |          |
| d. | Composite function's range is always the range of the outside function.                                  |      | <b>✓</b> |
| e. | The composition of inverse functions is always equal to $y = x$ with a domain equal to domain of inside. | ✓    |          |

| Space for Personal Note | S |
|-------------------------|---|
|-------------------------|---|



Question 2 (2 marks)

Consider the following functions both defined on their maximal domains.

$$f(x) = -\sqrt{x + 15}$$

$$g(x) = \log_2(-x+4)$$

Find the maximal domain of f(x) + g(x).

Solution: We require that both f(x) and g(x) are defined. f(x) is defined for  $x \ge -15$  and g(x) is defined for  $4-x>0 \implies x<4$ . Therefore maximal domain is  $-15 \le x < 4$ .

Question 3 (5 marks)

Consider the following functions both defined on their maximal domains.

$$f(x) = \sqrt{4 - x^2}$$

$$g(x) = x^2 + 3$$

**a.** State whether f(g(x)) or g(f(x)) is defined. (1 mark)

Only g(f(x)) is defined.

# **C**ONTOUREDUCATION

**b.** Find the rule and domain of the composite function which is defined from **part. a**. (2 marks)

 $g(f(x)) = (\sqrt{4-x^2})^2 + 3 = 7 - x^2$ . dom g(f(x)) = dom f(x). Therefore,  $g(f(x)) = 7 - x^2$  with domain = [-2, 2].

**c.** Find the range of the composite function which is defined from **part. a**. (2 marks)

ran g(f(x)) = [3, 7].

#### **Question 4** (8 marks)

Consider the following function:

$$f: (-\infty, a] \to R, f(x) = x^2 - 4x - 6$$

**a.** Solve for the largest value of a such that, the inverse function  $f^{-1}$  exists. (1 mark)

 $f(x) = (x-2)^2 - 10$ . Therefore f has a local minimum at (2,10). So a=2.



**b.** Define the function  $f^{-1}(x)$ . (3 marks)

Solution: Let  $y=(x-2)^2-10$ . Swap x and y.  $x=(y-2)^2-10$   $y-2=\pm\sqrt{x+10}$   $y=2\pm\sqrt{x+10}$ 

Now  $ran f^{-1} = Dom f = (-\infty, 2]$   $\therefore f^{-1}: (-\infty, 2] \to \mathbb{R},$  $f^{-1}(x) = 2 - \sqrt{x + 10}$ 

**c.** Find the point of intersection between f(x) and  $f^{-1}(x)$ . (2 marks)

Solution: Solve f(x) = x  $x^2 - 4x - 6 = x$   $x^2 - 5x - 6 = 0$  (x - 6)(x + 1) = 0 x = -1, 6 By considering domains the only point of intersection is (-1, -1).

**d.** Define the function  $f^{-1}(f(x))$ . (2 marks)

 $f^{-1}(f(x)) = x$  for  $x \in (-\infty, 2]$ .

**Space for Personal Notes** 



## Section B: Extension Test Questions (5 Marks)

**INSTRUCTION: 5 Marks. 3 Minutes Writing.** 



Question 5 (5 marks)

Consider the following functions defined on their maximal domains.

$$f(x) = x^2 - 4$$

$$g(x) = \frac{1}{\sqrt{x-5}}$$

**a.** Restrict the domain of f so that the composite function  $g \circ f$  is defined. (2 marks)

**Solution:** For the composition to be defined we require ran f > 5. Therefore  $x^2 - 4 > 5 \implies x^2 > 9$ . Restrict the domain of f to  $x \in (-\infty, -3) \cup (3, \infty)$ .

**b.** Hence, define the function  $g \circ f$ . (1 mark)

$$g \circ f : (-\infty, -3) \cup (3, \infty) \to \mathbb{R}, \ (g \circ f)(x) = \frac{1}{\sqrt{x^2 - 9}}$$

Let  $h(x) = x^4 - 2kx^2 + 21$  where k > 0.

**c.** Find the range of values of k for which the function  $g \circ h$  exists. (2 mark)

**Solution:** We require that  $x^4 - 2kx^2 + 16 > 0$ . Let  $a = x^2$ , then consider

$$a^2 - 2ka + 16 > 0$$

Consider the discriminant to find the values of k for which this always holds.

$$\Delta = 4k^2 - 64 < 0$$

$$k^2 < 16$$

Therefore 0 < k < 4.

**Space for Personal Notes** 



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Mathematical Methods 34

# Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                             | <u>Text-Based Support</u>                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via bit.ly/contour-methods-consult-2025 (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message <u>+61 440 138 726</u> with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

