

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Functions & Relations [1.1]

Test

17.5 Marks. 1 Minute Reading. 21 Minutes Writing.

Results:

Test Questions	/ 17.5
Extension	/5

Section A: Test Questions (17.5 Marks)

INSTRUCTION: 17.5 Marks. 21 Minutes Writing.

Question	1	(25)	marke)
Onestion		(2.5	marks

Tick whether the following statements are true or false.

		True	False
a.	Inside of the log can be all non negative numbers.		
b.	To calculate the maximal domain of sum of two functions, you find the union of the two domain.		
c.	Composite function is only defined if the range of the inside is a subset of the domain of the outside.		
d.	Composite function's range is always the range of the outside function.		
e.	The composition of inverse functions is always equal to $y = x$ with a domain equal to domain of inside.		

Space	for	Personal	Notes
Jpace	101	i Ci Soriai	140163

Question 2 (2 marks)

Consider the following functions both defined on their maximal domains.

$$f(x) = -\sqrt{x + 15}$$

$$g(x) = \log_2(-x+4)$$

Find the maximal domain of f(x) + g(x).

Question 3 (5 marks)

Consider the following functions both defined on their maximal domains.

$$f(x) = \sqrt{4 - x^2}$$

$$g(x) = x^2 + 3$$

a. State whether f(g(x)) or g(f(x)) is defined. (1 mark)

Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)
Find the range of the composite function which is defined from part. a . (2 marks)

Question 4 (8 marks)

Consider the following function:

$$f: (-\infty, a] \to R, f(x) = x^2 - 4x - 6$$

a. Solve for the largest value of α such that, the inverse function f^{-1} exists. (1 mark)

b.	Define the function $f^{-1}(x)$. (3 marks)
c.	Find the point of intersection between $f(x)$ and $f^{-1}(x)$. (2 marks)
d.	Define the function $f^{-1}(f(x))$. (2 marks)

Space for Personal Notes

Section B: Extension Test Questions (5 Marks)

INSTRUCTION: 5 Marks. 3 Minutes Writing.

Question 5 (5 marks)

Consider the following functions defined on their maximal domains.

$$f(x) = x^2 - 4$$

$$g(x) = \frac{1}{\sqrt{x - 5}}$$

a.	Restrict the domain of	f so that the	composite function	g \circ	f is defined.	(2 marks)

b.	Hence, define the function g	• f. (1 mark)

VCE Methods 3/4 Questions? Message +61 440 138 726

Let $h(x) = x^4 - 2kx^2 + 21$ where $k > 0$.
c. Find the range of values of k for which the function $g \circ h$ exists. (2 mark)

Space for	Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

