

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

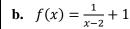
VCE Mathematical Methods ¾ Functions & Relations

Homework

Homework Outline:

Compulsory	Pg 2 - Pg 15
Supplementary	Pg 16 - Pg 28
Solutions	Pg 2 - Pg 28

Section A: Compulsory


Sub-Section [1.1.1]: Find the Maximal Domain and Range of Functions

Question 1

Find the maximal domain of the following functions.

a. $f(x) = \sqrt{x+3}$

 $\mathbf{c.} \quad f(x) = \log_e(4-x)$

Question 2

Find the maximal domain of the following functions.

a. $f(x) = -\sqrt{x^2 + 5x + 6}$

b. $f(x) = \log_e(x^2 + 6x + 5)$

c. $f(x) = \frac{1}{x^2 + 2x - 3}$

Question 3

Find the maximal domain of the following functions.

a. $f(x) = \log_e(5 - x) + \sqrt{2x - 7} + 1$

b. $f(x) = \frac{1}{x} - \frac{1}{x^2 - 5x + 4}$

c. $f(x) = \frac{1}{x-4} \times \sqrt{x^2 - 3}$

Question 4 Tech-Active.

Find the maximal domain and range of $f(x) = \frac{x^2-3}{x^2+5x+6} + \log_e(3-x^2)$. Give the range correct to three decimal places.

<u>Sub-Section [1.1.2]</u>: Existence, Rule, Domain, and Range of Composite Functions

$\mathbf{\alpha}$	4.	_
Ou	estion	5

The following functions are defined over their maximal domain.

$$f(x) = \sqrt{x}$$
 and $g(x) = x - 3$

- **a.** Determine whether f(g(x)) and g(f(x)) exist.
 - _____
- **b.** Find the rule of any composition that exists.
- c. State the domain of any composition that exists.

Question	6
Question	v

The following functions are defined over their maximal domain.

$$f(x) = \frac{1}{x-1} \text{ and } g(x) = \frac{1}{x}$$

a. Determine whether f(g(x)) and g(f(x)) exist.

b. Find the rule of any composition that exists.

c. State the domain of any composition that exists.

For the following functions:

$$f: [0, 6] \to \mathbb{R}, f(x) = x^3 \text{ and } g(x) = \sqrt{x+4}.$$

a. Determine whether f(g(x)) and g(f(x)) exist.

b. Find the rule of any composition that exists.

c. State the domain of any composition that exists.

<u>Sub-Section [1.1.3]</u>: Finding the Rule, Domain, and Range of Inverse Functions

Question 8

For the function:

$$f:(5,\infty)\to\mathbb{R}, f(x)=\frac{1}{5-x}$$

a. Fully define the inverse function.

b. Find the range of the inverse function.

$\mathbf{\alpha}$	4 •	•
Ou	estion	y

For the function:

$$f:(-\infty,k]\to\mathbb{R}, f(x)=x^2+2x+1$$

a. Find the largest value of k such that the inverse function exists.

h	Fully	define	the	inverse	function.
D.	гипу	deline	uie	mverse	Tunction.

 ${f c.}$ Find the range of the inverse function.

For the following functions:

$$f:[b,\infty)\to\mathbb{R}, f(x)=-\sqrt{x+2}.$$

- **a.** Find the smallest value of *b* such that the inverse function exists.
- **b.** Fully define the inverse function.

- **c.** Find the range of the inverse function.
- **d.** Find the point of intersection between f and f^{-1} .

Question 11 Tech-Active.

Fully define the inverse and state its range for:

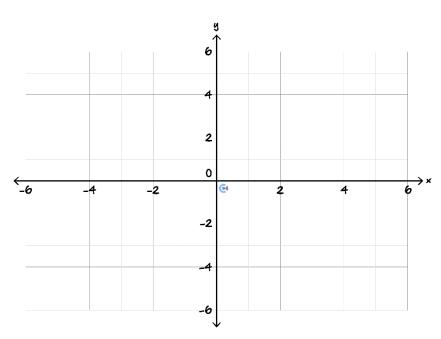
$$f: (-\infty, 3] \to \mathbb{R}, f(x) = -x^2 + 6x - 12$$

Sub-Section [1.1.4]: Finding the Composition of Inverse Functions

Question 12

Let
$$f: \mathbb{R} \setminus \{3\} \to \mathbb{R}, f(x) = \frac{2}{x-3} + 1.$$

Find the rule and domain for $f^{-1}(f(x))$.


Question 13

Let
$$f: (-5, \infty) \to \mathbb{R}, f(x) = -(x+5)^2$$

a. Find the rule and domain for $f^{-1}(f(x))$.

b. Sketch the graph of $f^{-1}(f(x))$ on the axis below.

Question	14

Let $f(x) = x^2 - 4kx + 6$, where $x \ge 0$ and $k \ge 0$.

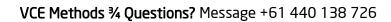
The function $f^{-1} \circ f$ is defined on its maximal domain.

Find the rule and domain for $f^{-1}(f(x))$.

Sub-Section: Final Boss

Question 15 (13 marks)

Consider the functions f and g, defined over their maximal domains where:


$$f(x) = -\sqrt{x+3}$$

$$g(x) = \log_e(2 - x)$$

a. Find the maximal domain of $f(x) + \frac{1}{g(x)}$. (2 marks)

b. Show that only g(f(x)) is defined. (2 marks)

c. Find the rule, domain, and range of g(f(x)). (2 marks)

Fully define the inverse function, f^{-1} , of f . (2 marks)
Find all points of intersection between f and f^{-1} . (2 marks)
Find the rule and domain of $f(f^{-1}(x))$. (1 mark)
Find the rule and domain of $f(f(x))$. (1 mark)

Section B: Supplementary

Sub-Section [1.1.1]: Find the Maximal Domain and Range of Functions

Question 16

Find the maximal domain of the following functions.

a. $f(x) = \sqrt{x^2 + 1}$

b.	f(x)	$=\log_e(x)$	(+4)
----	------	--------------	------

c. $f(x) = \frac{1}{x+2} - 3$

Question 17

Find the maximal domain of the following functions.

a. $f(x) = \sqrt{(x+1)^2 - 4}$

b. $f(x) = \log_e(4 - x^2)$

 $c. \quad f(x) = \frac{3+x^2}{x^2+5x+6}$

Question 18

Find the maximal domain of the following functions.

a. $f(x) = \cos(x)\log_e(2x) + \frac{1}{x^2 - 5}$

b. $f(x) = \sqrt{\frac{x-3}{x+1}}$

c. $f(x) = \frac{1}{2-x} \times \sqrt{x^2 - 4} \log_e(x^2 - 1)$

Question 19

Find the maximal domain and range of $f(x) = \frac{e^{2x}-1}{e^{2x}+1}$.

<u>Sub-Section [1.1.2]</u>: Existence, Rule, Domain, and Range of Composite Functions

Question	20
----------	----

The following functions are defined over their maximal domain:

$$f(x) = x^2$$
 and $g(x) = 3 - x$

- a. Determine whether f(g(x)) and g(f(x)) exist.
 - _____
- **b.** Find the rule of any composition that exists.
- c. State the domain of any composition that exists.

CONTOUREDUCATION

Question 21

The following functions are defined over their maximal domain.

$$f(x) = e^{2x}$$
 and $g(x) = \log_e(2x)$

a. Determine whether f(g(x)) and g(f(x)) exist.

b.	Find the rule	of any con	nposition that	exists.
----	---------------	------------	----------------	---------

c. State the domain of any composition that exists.

For the following functions:

$$f(x) = x^2 + 1$$
 and $g(x) = \frac{1}{x^2 - 4}$

a. Determine whether f(g(x)) and g(f(x)) exist.

b. Find the rule of any composition that exists.

c. State the domain of any composition that exists.

Questio	on 23
Oucsu	UII 43

Functions are defined over their maximal domain unless specified otherwise.

For the functions f and g, determine whether f(g(x)) and g(f(x)) exist. State the rule and the domain of the composite function that do exist.

$$f(x) = e^x - e^{-x}$$

$$g(x) = \frac{1}{x(x-2)}$$

Space for	Personal	Notes
-----------	----------	-------

Sub-Section [1.1.3]: Finding the Rule, Domain, and Range of **Inverse Functions**

Question 24

For the function:

$$f:(0,\infty)\to\mathbb{R}, f(x)=\log_e(3x)$$

a. Fully define the inverse function.

b. Find the range of the inverse function.

For the function:

$$f:(b,-\infty)\to\mathbb{R}, f(x)=\frac{1}{(x+2)^2}-2$$

a. Find the largest value of *b* such that the inverse function exists.

- **b.** Fully define the inverse function.
- c. Find the range of the inverse function.

For the following functions:

$$f: (-\infty, k] \to \mathbb{R}, f(x) = 2x^2 - 8x + 4.$$

- **a.** Find the largest value of k such that the inverse function exists.
- **b.** Fully define the inverse function.

- **c.** Find the range of the inverse function.
- **d.** Find the point of intersection between f and f^{-1} .

Ω	~~ 4 • ~	25
Ou	estion	41

Find the inverse function of:

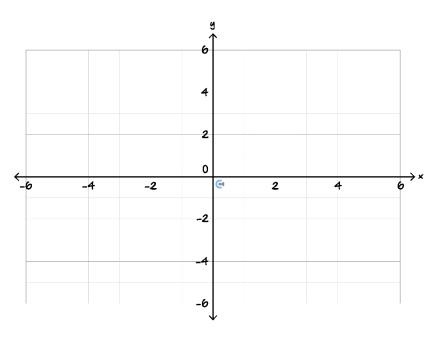
$$f(x) = e^{2x} + 4e^x + 1$$

And determine whether f and f^{-1} have any points of intersection.

<u>Sub-Section [1.1.4]</u>: Finding the Composition of Inverse Functions

Question 28

Let $f: (3, \infty) \to \mathbb{R}$, $f(x) = x^2 - 4x + 7$. Find the rule and domain for $f^{-1}(f(x))$.


Question 29

Let $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{5}{x-1} + 3$.

a. Find the rule and domain for $f^{-1}(f(x))$.

b. Sketch the graph of $f^{-1}(f(x))$ on the axis below.

Let $f(x) = x^2 - 2kx + 9$, where $x \ge 0$ and $k \ge 0$.

The function $f^{-1} \circ f$ is defined on its maximal domain.

Find the rule and domain for $f^{-1}(f(x))$.

Question 31

Let f^{-1} : $\left[\frac{\pi}{2}, \pi\right] \to \mathbb{R}, f^{-1}(x) = \sin(x)$.

Define the function f and find the rule and domain for $f^{-1}(f(x))$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

