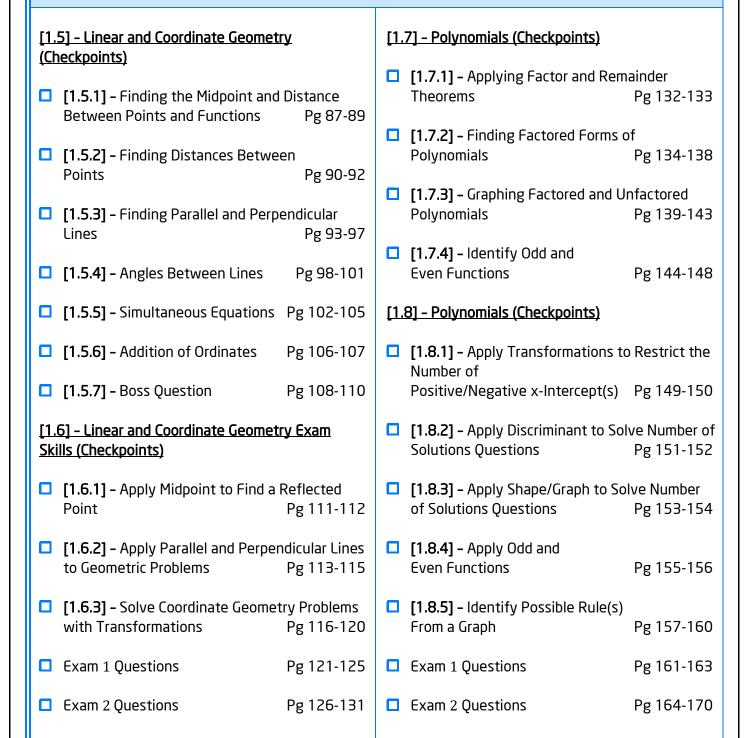
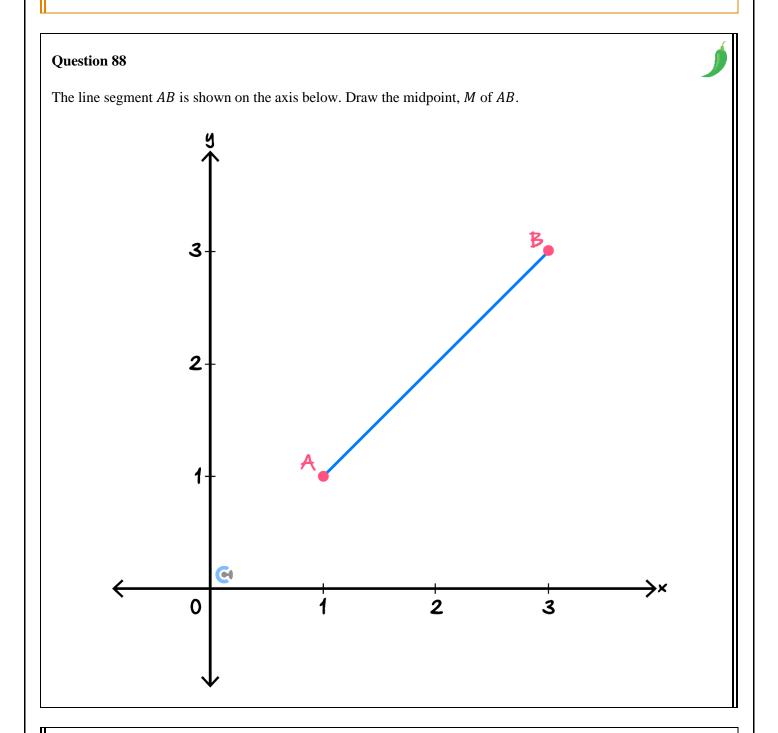


Website: contoureducation.com.au | Phone: 1800 888 300


Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 1 Revision [1.0]

Contour Check (Part 2)


Contour Checklist

Section A: [1.5] - Linear and Coordinate Geometry (Checkpoints)

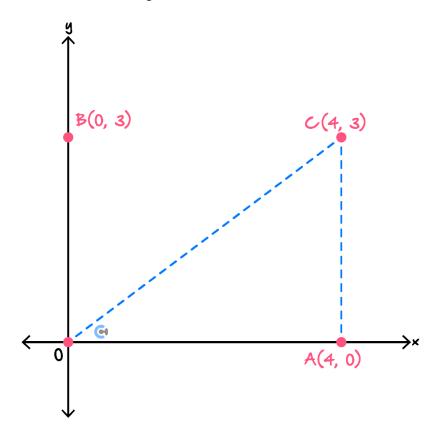
<u>Sub-Section [1.5.1]</u>: Finding the Midpoint and Distance Between Points and Functions

$\mathbf{O}_{\mathbf{I}}$	iestion	20

Find the midpoints of the following points.

- **a.** A(3,7) and B(5,9).
- **b.** C(-2, -3) and D(6, 4).

Qu	testion 90			
Th	The midpoint of points A and B is $M(2,2)$.			
a.	If the coordinates of A are $(6, -4)$, find the coordinates of B .			
Co	nsider the points $C(c, 5)$ and $D(-3, d)$. The midpoint of the line CD is the origin.			
b.	Find the values of c and d .			
c.	Find the midpoint of $E(x_1, y_1)$ and $F(x_2, y_2)$ in terms of x_1, x_2, y_1 , and y_2 .			
J	The count of $x = x^2 + h$ and the line $x = 1$ has a minimum vertical distance of A . Find the value of h			
a.	The graph of $y = x^2 + k$ and the line $y = 1$ has a minimum vertical distance of 4. Find the value of k .			



Sub-Section [1.5.2]: Finding Distances Between Points

Question 91

Consider the points, A, B, C as well as the origin drawn below.

a. Find the distance between the origin and point A.

b. Find the distance between the origin and point B.

c. Use Pythagoras' theorem to find the distance between the origin and point C.

Or	iestion	92

Find the distance between the following pairs of points.

- **a.** A(2,5) and B(-2,2).
- **b.** C(-1, -7) and D(4, 5).

Question 93				
A point $P(u, v)$ lies on the line $y = 3 - x$.				
a. Express the distance between P and the origin in terms of u only.				
Consider the points $A(-1,-1)$, $B(5,7)$ and $C(x,y)$.				
The length of AC is equal to the length of BC which is equal to halve the length of AB .				
b. Find the coordinates of C .				
c. Tech-Active. The distance between the point $P(u, v)$ is 3 units away from the origin and 4 units away from the point $Q(1, 4)$. Find the coordinates of P .				

Sub-Section [1.5.3]: Finding Parallel and Perpendicular Lines

Question 94

State whether the following lines are parallel or perpendicular to each other.

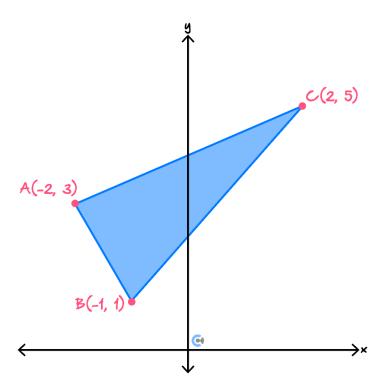
- **a.** y = 2x + 1 and y = 2x + 5.
- **b.** y = 3x + 2 and $y = -\frac{1}{3}x 2$.
- **c.** 2x + 3y = 5 and 4x + 6y = 12.

		<u> </u>		
Qu	Question 95			
Αl	A line l_1 goes through the points $(2,3)$ and $(3,5)$.			
a.	Find the gradient of l_1 .			
		-		
b.	Find the equation of l_1 .			
		-		
Th	e line l_2 is perpendicular to l_1 and goes through the point $(2,3)$.			
c.	Find the gradient of l_2 .			
		-		
d.	Find the equation of l_2 .			
		-		
Sp	ace for Personal Notes			
II				

Λ	aa4 : a	Ω.
Qu	estion	フリ

The line l_1 is parallel to the line $l_2 = \{(x, y) \in \mathbb{R}^2 : 2y + 3x = 5\}$ and goes through the origin.

a. Find the equation of l_1 .


b. Find the equation of the line that is perpendicular to the line with the equation y = -5x + 7 and passes through the point (2, -5).

Qı	Question 97				
a.	Find the perpendicular bisector of the points $A(2,3)$ and $B(4,9)$.				
b.	A point $P(u, v)$ lies on the line $y = 2x$.				
	Find the value of u and v for which the distance between P and the point $Q(0,1)$ is minimum.				
	Hint: The line PQ is perpendicular to the line $y = 2x$.				

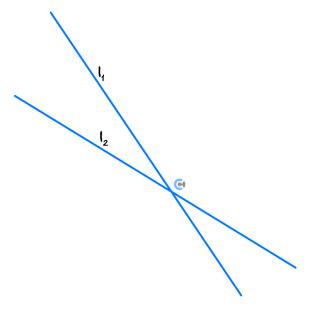
c. Consider the triangle *ABC* drawn below.

i. Show that the line AB is perpendicular to the line AC.

ii. Hence, find the area of the triangle *ABC*.

<u>Sub-Section [1.5.4]</u>: Angles Between Lines

Question 98			
a.	Find the angle of the line $y = x + 1$ makes with the positive direction of the <i>x</i> -axis.		
b.	Find the equation of the line that passes through the origin and makes an angle of 30 degrees with the positive direction of the x -axis.		
Sp	ace for Personal Notes		


Question 99

a. Find the acute angle between the lines $y = \frac{1}{\sqrt{3}}x + 2$ and $y = \frac{-1}{\sqrt{3}}x$.

b. Tech-Active. Consider the line l_1 , with the equation 2y + 3x = 5.

The line l_2 intersects l_1 at an acute angle 25°. Both l_1 and l_2 are drawn below.

Find the slope of l_2 correct to 2 decimal places.

VCE Methods ¾ Questions? Message +61 440 138 726

	т
c.	Tech-Active. Find the acute angle of intersection between the lines $y = 3x + 5$ and $-2x + 3y = 7$.
	Give your answer in degrees correct to the nearest degree.
Sp	pace for Personal Notes

Qι	testion 100				
Th	The line l intersects the positive y-axis at 30°				
a.	Find the gradient, m of l if $m < 0$.				
b.	Tech-Active. Find the acute angle of intersection between the lines $y = 2x + 3$ and $3x + 5y = -4$.				
	Give your answer in degrees correct to the nearest degree.				
c.	Find the equation of all lines that intersect the line $y = x + 3$ at the point (1, 4) at an acute angle of 15°.				

<u>Sub-Section [1.5.5]</u>: Simultaneous Equations

Question 101

Solve the following equations simultaneously.

a. 3x + 4y = 7 and 5x - 2y = 3.

b. y = 5x + 3 and 3y + 4x = 8.

Question 102

a. Find the point of intersection between the lines y = 3x + 7 and 2x + 5y = 1.

b. Explain why the equations 2x + 4y = 6 and 3x + 6y = 5 have no solutions.

c. Tech-Active. For each pair of simultaneous equations, state whether they have, no solution, a unique solution or infinitely many solutions.

i. 2x + 5y = 7 and 3x + 2y = 8.

ii. y = -3x + 6 and 2y + 6x = 6.

iii. 6x + y = 2 and y = -6x + 2.

CONTOUREDUCATION

Question 103

a. Consider the following pair of simultaneous equations,

$$kx - y = 6$$
$$7x + (k - 8)y = 4$$

For what value(s) of k do they have:

- i. A unique solution?
- ii. No solution?

b. Consider the following pair of simultaneous equations,

$$ax + 3y = 6$$
$$x + (4 - a)y = 2$$

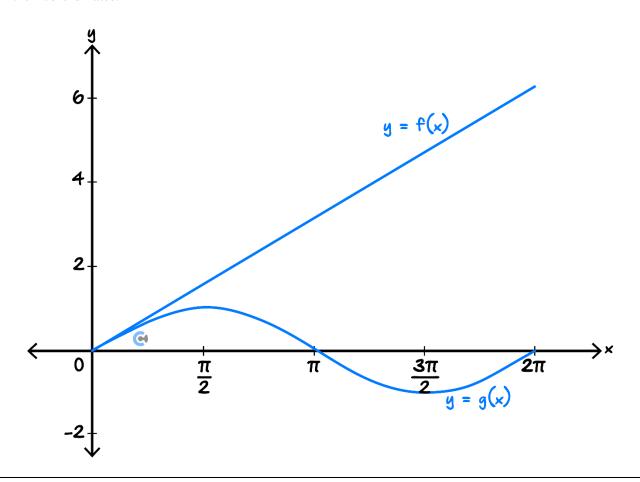
For what value(s) of a do they have:

- **i.** No solution?
- ii. Infinitely many solutions?
- iii. A unique solution?

VCE Methods ¾ Questions? Message +61 440 138 726

c.	c. Tech-Active. Consider the following pair of simultaneous equations,				
	3x + (1-a)y = 2 $ax - 2y = b$				
	Find all pairs (a, b) such that the equations have infinitely many solutions.				
					

Space	for	Personal	Notes
Space	. 0.	. Ci Soilai	110103

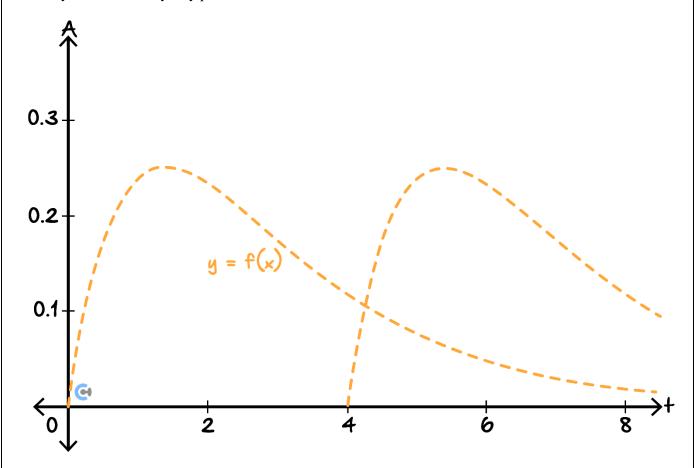

Sub-Section [1.5.6]: Addition of Ordinates

Question 104

J

The graphs of $f:[0,2\pi]\to\mathbb{R}$, f(x)=x, and $g:[0,2\pi]\to\mathbb{R}$, $g(x)=\sin(x)$ are drawn below.

Sketch the graph of h(x) = f(x) + g(x) on the axis below, labelling all points of intersection between f and h with their co-ordinates.


Question 105

t hours after taking a mystery pill, the concentration of dopamine in a patient's bloodstream is A = f(t) milligrams per litre. The graph of f is shown below.

4 hours after taking one mystery pill, the patient takes another mystery pill.

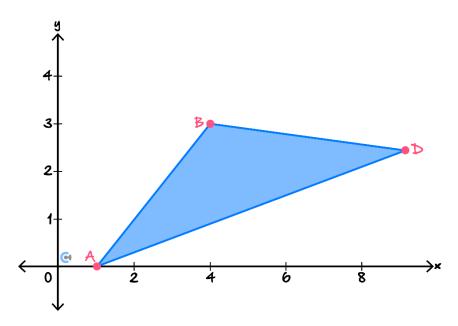
On the axis below, sketch the concentration of dopamine in the patient's bloodstream during the first 8 hours after they take the first mystery pill.

Question 106 Tech-Active.

Let
$$f(x) = e^x - e^{-2x}$$
 and $g(x) = e^{x-x^2}$.

How many solutions does the equation f(x) + g(x) = 0 have?

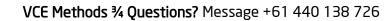
Sub-Section [1.5.7]: Boss Question



uestion 107	JJJ.
onsider the points $A(1,0)$ and $B(4,3)$.	
Find the equation of the line segment <i>AB</i> .	
here is another point C , such that A is the midpoint of the line segment CB .	
Find the coordinates of C .	
The the coordinates of C.	
Hence or otherwise, find the length of <i>BC</i> .	
Thence of otherwise, find the length of BC.	

d. Another point $D(u, v)$ has the following properties,
\blacktriangleright The length of AD is equal to twice the length of AB .
The angle between AD and AB is 30° .
\blacktriangleright The gradient of AB is larger than the gradient of AD .
\blacktriangleright Both u and v are positive.
Find the values of u and v correct to 3 decimal places.

e. The triangle *ABD* is drawn below.



i. Find the equation of the line, l perpendicular to AD that goes through B.

ii. Hence or otherwise, find the area of ABD correct to the nearest integer.

Section B: [1.6] - Linear and Coordinate Geometry Exam Skills (Checkpoints)

Sub-Section [1.6.1]: Apply Midpoint to Find a Reflected Point

Question 108	j
The point $(-1,5)$ is reflected in the line $y=2$. Find the coordinates of the reflected point.	
Question 109	/
The point $(2, -3)$ is reflected in a line to become the point $(-10, -3)$. State the equation of the line.	
Space for Personal Notes	

ind the perpendi	cular bisector of th	ne line segment jo	ining the points	(4,-2) and $(-1,0)$.	
mostion 111					
uestion 111					JJJJ
he point $(1, -6)$	is reflected in a lin	ne to become the	point $(5, -4)$. F	ind the equation of the	e line.
Space for Perso	nal Notes				
Space for Perso	nal Notes				
Space for Perso	nal Notes				
Space for Perso	nal Notes				
Space for Perso	nal Notes				

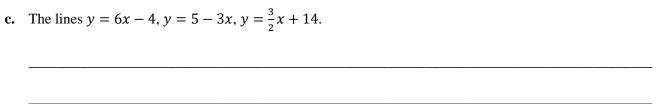
<u>Sub-Section [1.6.2]</u>: Apply Parallel and Perpendicular Lines to Geometric Problems

Question 112
Find the equation of the line that passes through the point $(-2,3)$ and is perpendicular to $y = x + 7$.
Question 113
Find the area of the triangle formed by the lines $y = 2x - 8$, $y = 6x - 4$, and $y = 2$.
Space for Personal Notes

Question 114	لالالا
Find the distance between the point (2, 7) and the line $y = 3x - 1$.	
Space for Personal Notes	
ppace for reisonal Notes	

ce for Personal Notes	S		

<u>Sub-Section [1.6.3]</u>: Solve Coordinate Geometry Problems with Transformations


Question 116

The area bound by the lines y = 2x - 4, y = -1 - x, and $y = \frac{1}{2}x + 2$ is $\frac{27}{2}$ square units. Hence, find the area bound by:

a. The lines y = 8x - 4, y = -1 - 4x and y = 2x + 2.

b. The lines y = -2x + 4, y = 1 + x and $y = -\frac{1}{2}x - 2$.

Question 117

- a. The original function is $f(x) = \frac{2}{(x-5)^2} 16$, and the tangent line to the graph of y = f(x) at x = 6 is y = -4x + 8. The graph of f(x) is reflected in the x-axis translated 2 units down, then dilated by a factor of $\frac{1}{2}$ from the x-axis. Find the equation of the tangent to the transformed graph when x = 6.
- **b.** The graph of $f(x) = 2x^2 3x + 1$ has a tangent line at x = -1 with an equation of y = -7x 1. f(x) undergoes a translation 3 units right, followed by a dilation by a factor of 4 from the x-axis. Find the equation of the tangent to the transformed graph when x = 2.

c. Consider the graph $f(x) = x^2 - 6x + 4$. The line y = 2x - 12 is a tangent to f(x) at x = 4. Find the equation of the tangent to $y = 4x^2 - 28x + 32$ at x = 4.

Question 118

a. Find the value of a such that the area bound by the graphs y = x - 2, y = ax + a and the y-axis is 2 square units.

Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y -axis is 12.	
	Find the values of a where the area between the lines $y = ax$, $y = x - 4$ and the y-axis is 12.

ONTOUREDUCATION

Ouestion 119

value of a fi a c	(-∞, 1).	2	,			square units. Fi
	$(\infty,1)$.					
Hence or otherw	vise, find the va	lues of m and a	such that the a	area bound b	y the graphs y	=-2x+2,
y = 4x + 8, and						

Sub-Section: Exam 1 Questions

Question 120

Consider the simultaneous linear equations:

$$2ax - (a+1)y = -1$$

$$\frac{x}{2a+1} + 3y = 4a + 5$$

Where a is a real constant.

a. Find the values of a for which there is a unique solution to the set of equations.

b. Find the value of a for which there are no unique solutions.

VCE Methods 3/4 Questions? Message +61 440 138 726

	Find the value of a for which there are infinitely many solutions.
ue	estion 121
on	sider the points $A(8,-2)$ and $B(2,6)$.
	Find the equation of the line that is parallel to the line segment AB , and also contains the point $C(6,9)$.
	Find the equation of the perpendicular bisector of AB .
	Third the equation of the perpendicular disector of AB.

c. Find the coordinates of D, the point of intersection between the lines found in **part a.** and **b. d.** Find the area of the quadrilateral *ABCD*. **e.** Let $E(\frac{8}{3}, -4)$, $F(\frac{2}{3}, 12)$, G(2, 18), and H(3, 10). Find the area of *EFGH*.



Question 122						
The point $P(4,1)$ is reflected in the line $y = 2x - 2$ to become the point P' .						
a.	a. Find the coordinates of P' .					
b.	Find the point of intersection between the lines $y = 2x - 2$ and $y = 7x - 27$.					
c.	The line $y = 7x - 27$ is reflected in the line $2x - 2$. Find the equation of the new line.					

Question 123					
At $x = -2$, the graph $y = f(x)$ has a tangent line with the equation $y = 3 - 2x$, and a normal line is given by $y = \frac{1}{2}x + 8$.					
a. Find the area bounded by the tangent line, normal line, and the x -axis.					
					
- 					
The graph of $f(x)$ is translated down 3 units, dilated by a factor of 2 from the x-axis, and dilated by a factor of 5 from the y-axis to become the graph $g(x)$.					
b. Find the equation of the normal line to $y = g(x)$ at $x = -4$.					
					
c. Find the area bounded by the x-axis, the tangent line and the normal line of the graph $y = g(x)$ at $x = -4$.					
					

The set of simultaneous equations:

$$\frac{5}{3k-4}y - \frac{x}{2} = \frac{3}{8}k + \frac{3}{2}$$

$$(k-6)x + 2ky = \frac{4}{3} - k$$

Has no solutions for:

A.
$$k = 3$$
 or $k = -\frac{10}{3}$

B.
$$k = -\frac{10}{3}$$

C.
$$k = 3$$

D.
$$k \neq -\frac{2}{3}$$
 or $k \neq -\frac{10}{3}$

Question 125

The area of the triangle formed by the points (2,3), (-4,7) and (4,6) is:

A. 13 square units.

B. 25 square units.

C. 26 square units.

D. 19 square units.

The graph $f(x) = x^2 - 4x + 3$ has a tangent line and a normal line constructed at x = 1. The area bound by the tangent line, the normal line, and the y-axis is $\frac{5}{4}$ square units. The area bound by the y-axis, tangent line, and normal line to the graph $y = -\frac{1}{2}x^2 + 4x - 3$ at x = -2 is:

- A. $\frac{5}{8}$ square units.
- **B.** $\frac{5}{4}$ square units.
- C. 5 square units.
- **D.** 8 square units.

Question 127

The acute angle formed between the lines y = 3x - 1 and y = mx + 5 is at least 45° when:

- **A.** $m \in \left[\frac{1}{2}, \infty\right)$
- **B.** $m \in \left[-2, \frac{1}{2}\right]$
- C. $m \in (-\infty, -2] \cup \left[\frac{1}{2}, \infty\right)$
- **D.** $m \in \left[-2,0\right) \cup \left(0,\frac{1}{2}\right]$

Question 128

The equation of the tangent line to f(x) at x = 2 is y = 1 - 4x. The equation of the normal line to f(x) at x = 2 is:

- **A.** $y = \frac{1}{4}x \frac{15}{2}$
- **B.** $y = -\frac{1}{4}x + 1$
- C. y = 4x 2
- **D.** Cannot be determined.

Qι	Question 129						
Co	Consider the points $A(6, -2)$ and $B(3, 4)$.						
a. Find the perpendicular bisector of <i>AB</i> .							
	·						
	·						
b.	Find the values of m such that the line $y = mx$ forms a 45° angle with the line segment AB.						
c.	Point $C(m, n)$ and point $D(p, q)$ are different points that lie on the perpendicular bisector of AB , where m , $n \in \mathbb{R}^+$. Find the coordinates of C and D such that the triangles ABC and ABD are both right-angle triangles.						
	·						
	<u></u>						
	·						

VCE Methods ¾ Questions? Message +61 440 138 726

	= b. State the values of a and b .
Fir	ad the area of ACBD.
Fir	and the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.
Fir	and the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.
Fir	and the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.
Fir	and the area of the square that has opposite corners at $(7, -4)$ and $(1, 8)$.
_	
_	for Personal Notes
_	

The function $f(x) = 2(x+3)^2 - 5$ has a tangent line with the equation y = 4x + 5.

a. Show that y = 4x + 5 is a tangent to f(x) at the point (-2, -3).

b. Find the equation of the normal line to f(x) at x = -2.

c. State the obtuse angle formed between the line y = 4x + 5 and the x-axis, correct to 2 decimal places.

d. Find the area enclosed by the tangent line, the normal line, and the x-axis.

The graph of y = f(x) is translated 4 units right, dilated by a factor of 4 from the *x*-axis, and dilated by a factor of $\frac{2}{3}$ from the *y*-axis to become the graph y = g(x).

e. Find the equation of the tangent line to y = g(x) at $x = \frac{4}{3}$.

f. State the obtuse angle formed between the new tangent of y = g(x) at $x = \frac{4}{3}$, correct to 2 decimal places.

g. Find the area of the triangle formed between the x-axis, the tangent, and the normal line to y = g(x) at $x = \frac{4}{3}$.

Section C: [1.7] - Polynomials (Checkpoints)

Sub-Section [1.7.1]: Applying Factor and Remainder Theorems

Question 131

- **a.** State the remainder when $x^2 + 5x 3$ is divided by x + 2.
- **b.** Is x 2 a factor of $f(x) = x^4 16$?
- **c.** Is x + 4 a factor of $g(x) = x^3 + 4x^2 + 2$?

Question	132
Question	102

Let $f(x) = 2x^3 + ax^2 + ax + 3$. Find the value of a such that f(x) has a factor of 2x + 3.

One	stion	133
Vuc	SUUL	100

A cubic polynomial, g(x) has the following properties:

- 1. g(x) 3 has a factor of $(x 2)^2$.
- 2. g(x) divided by $x^2 1$ leaves a remainder of 2.

Find the rule for g(x).

<u>Sub-Section [1.7.2]</u>: Finding Factored Forms of Polynomials

Question 135

Factorise the following polynomials:

a. $x^3 - 8$

b. $x^3 - 7x^2 + 10x$

c. $x^3 + 3x^2 - 4x - 12$

a. Factorise $f(x) = x^3 + x^2 - 17x + 15$.

b. Factorise $g(x) = x^3 - 4x^2 + x + 6$.

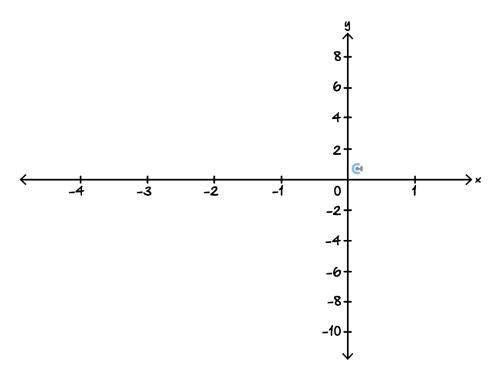
c. Find all of the real roots of $h(x) = x^3 - 3x^2 + 4$.

a. Factorise $f(x) = x^3 - 5x^2 - 29x + 105$.

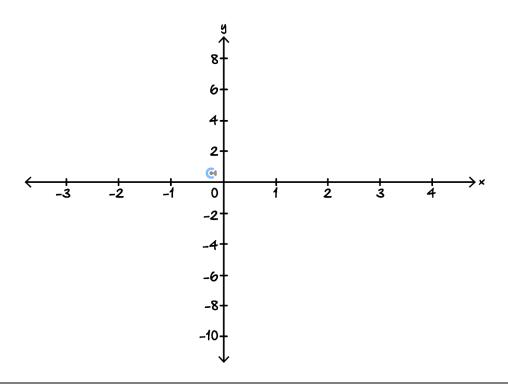
b. Factorise $g(x) = 18x^3 - 3x^2 - 28x - 12$.

,	Factorise $h(x) = 2x^3 + 14x^2 - 10x - 150$.

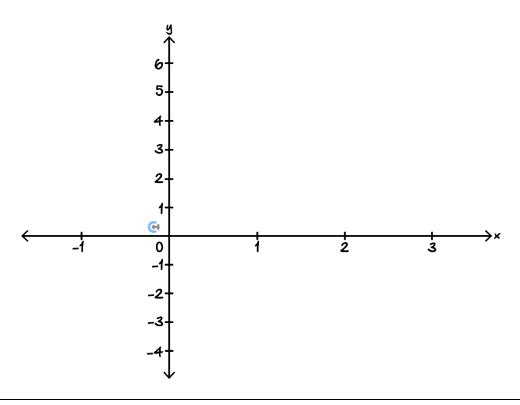
Question 138					
Let $f(x) = ax^2 + bx + c$ with a, b, c being co-prime non-zero integers, and assume that $\frac{p}{q}$ is a root of f with p and q co-prime and both non-zero.					
a.	Show that p divides c .				
b.	Show that q divides a.				
c.	If <i>a</i> , <i>b</i> , <i>c</i> are not co-prime integers, where would your arguments for parts a . and b . breakdown?				



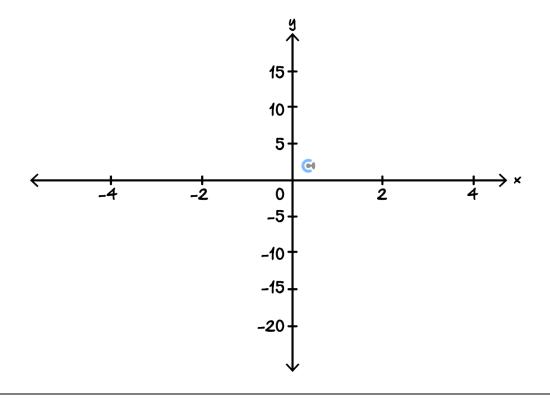
Sub-Section [1.7.3]: Graphing Factored and Unfactored Polynomials


Question 139

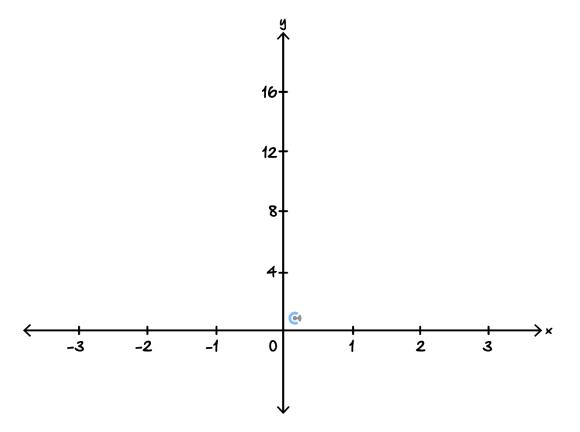
a. Sketch the graph of $y = (x + 2)^3 - 1$ on the axis below.



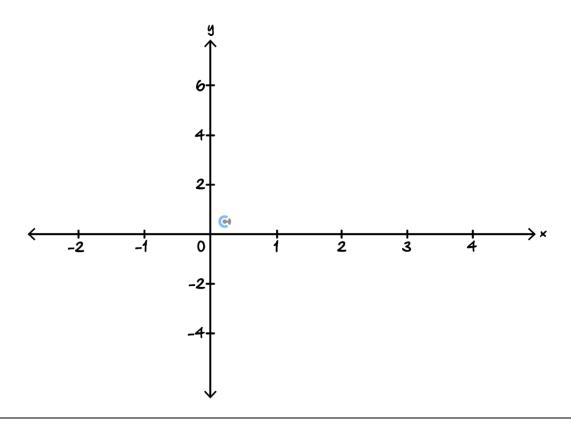
b. Sketch the graph of y = x(x-1)(x+2)(x-3) on the axis below.


c. Sketch the graph of $y = 2(x - 1)^3 + 2$ on the axis below.

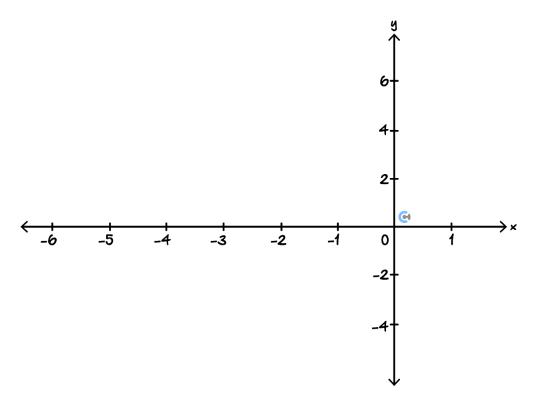
Question 140

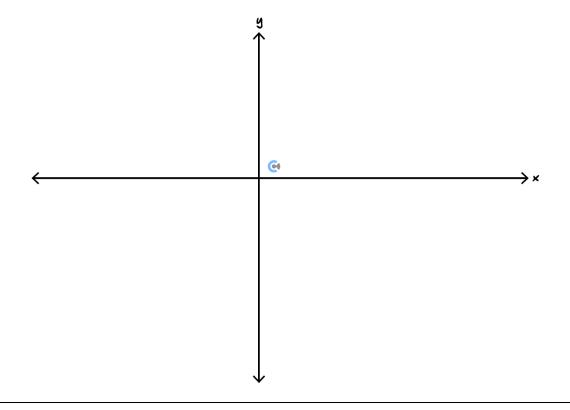


a. Sketch the graph of $y = x^3 + 2x^2 - 11x - 12$ on the axis below, the labelling axis intercepts with their coordinates.

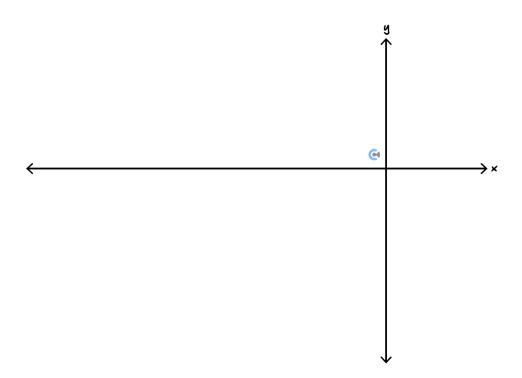


b. Sketch the graph of $y = x^4 - 8x^2 + 16$ on the axis below, the labelling axis intercepts with their coordinates.

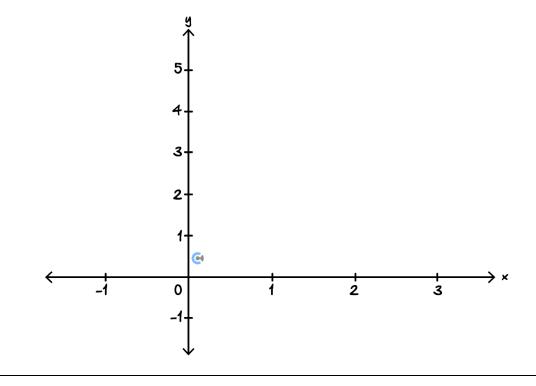

c. Sketch the graph of $y = x^3 - 4x^2 + x + 6$ on the axis below, the labelling axis intercepts with their coordinates.



a. Sketch the graph of $y = x^3 + 8x^2 + 16x + 5$ on the axis below, the labelling axis intercepts with their coordinates.

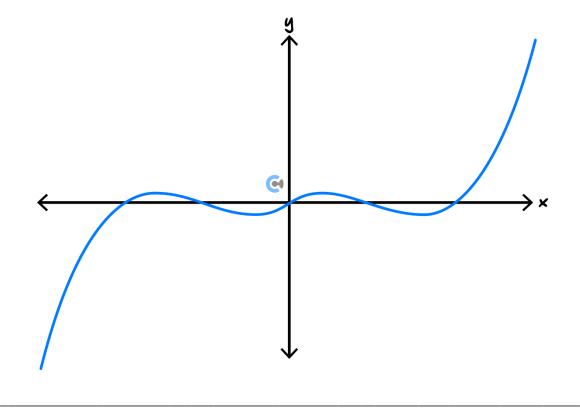


b. Sketch the graph of $y = x^2(2x-3)^3(x+1)^2$ on the axis below, the labelling axis intercepts with their coordinates.

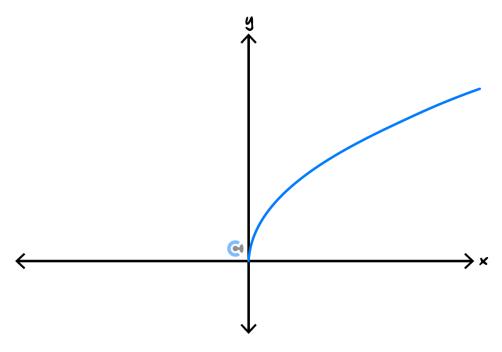

c. Sketch the graph of $y = x^4 + 5x^3 + 3x^2 - 7x - 2$ on the axis below, the labelling axis intercepts with their coordinates.

Question 142

Let $f_k(x) = x^4 - 4x^3 + 4x^2 + k$. By considering f_0 and f_{-1} , sketch the graph of f_2 on the axis below, the labelling axis intercepts and turning points with their coordinates.



Sub-Section [1.7.4]: Identify Odd and Even Functions


Question 143

- **a.** Let f(x) and g(x) both be an odd function.
 - i. State whether f(x) + g(x) is an even or an odd function.
 - ii. State whether $(f(x))^2 + 2f(x)g(x) + (g(x))^2$ is an even or an odd function.

b. Part of the graph of f(x) is drawn below. State whether f is an odd or an even function.

c. Part of the graph of $y = x^{\frac{m}{n}}$ is drawn below where m and n are co-prime.

State whether m and n are even or odd.

ONTOUREDUCATION VCE Methods ¾ Questions? Message +61 440 138 726

Question 144

a. Show that $f(x) = x^4 - 2x^3$ is neither an even nor an odd function.

b. Describe a translation that maps the graph of $y = x^2 + 6x + 7$ onto the graph of an even function.

c. Consider the function f(x). It is known that f(2x + 3) is an odd function.

If f(5) = 4 and f(-1) = -3, find the value of f(1).

a. Let f(x) be a strictly increasing function with f(0) = 0.

If $(f(x))^2$ is an even function, show that f(x) is an odd function.

b. Let $f(x) = x^4 + 2x^3 + x^2$.

Describe a transformation that maps the graph of f onto the graph of an even function.

c. Let f(x) be an even function. The function,

$$g(x) = \begin{cases} f(x) + c & x \ge 0\\ -f(x) + d & x < 0 \end{cases}$$

is an odd function.

Find the values of c and d.

Question 146

Let $f(x) = x^4 - 4x^3 + x^2 + 6x + k$, where k is a real number.

The function g(x) = f(x - h) is an even function. Find the value of h.

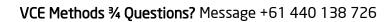
Section D: [1.8] - Polynomials (Checkpoints)

Sub-Section [1.8.1]: Apply Transformations to Restrict the Number of Positive/Negative x-Intercept(s)

Question 147

Let $f(x) = (x-1)(x+4)(x-2)^2$. Find the values of k such that f(x+k) has no positive x-intercepts.

Question 148



Let $f(x) = x^3 - 2x^2 - 5x + 6$. Find the values of k such that f(x + k) has exactly one negative x-intercept.

Question 149

Let $f(x) = 2x^2 - 15x + 14$ and $g(x) = x^2 - 10x + 8$. Find the values of k such that f(x + k) and g(x + k) have exactly two intersections with negative x-coordinates.

On	estion	150
νu	CSUUII	130

ive x -intercept.			

Space for Personal Notes	S
--------------------------	---

<u>Sub-Section [1.8.2]</u>: Apply Discriminant to Solve Number of Solutions Questions

Question 151	Í
Find the values of k such that the equation $x^2 - 2^k x + 4$ has no solutions.	
Question 152	66
Find the values of k such that the equation $x^2 - 2kx + 5k$ has exactly two solutions.	
Space for Personal Notes	

\mathbf{C}	nestion	153

Let f	$f(x) = x^2 - 4x + 3$ and $g(x) = x^2 - 6x + k$. Find the values of k such that $f(g(x))$ has exactly four ons.
_	
_	
_	
_	
_	
_	

<u>Sub-Section [1.8.3]</u>: Apply Shape/Graph to Solve Number of Solutions Questions

Question 155	
Suppose $f(x) = x^2 - kx + 3$. Find the value of $k > 0$ so that $f(x) = k$ has exactly one solution.	
Question 156	
It is known that the quartic $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 8.5$ has turning points at $(1, -0.5)$, $(2,0.5)$ and $(3, -0.5)$. Find the values of k such that $f(x) = k$ has exactly two solutions.	
Space for Personal Notes	

_		
On	estion	157

and	known that the quartic $f(x) = x^4 - 4x^3 - 8x^2 + 48x + 3$ has turning points at $(-2, -77)$, $(2, 48)$. Find the values of k such that $f(x) = k$ has exactly two solutions.

Let $f(x) = x^4 - 16x^3 + 46x^2 - 48x + 20$ and $g(x) = -x^4 + 2x^2 + 3$. It is known that the quartic $h(x) = 2x^4 - 16x^3 + 44x^2 - 48x + 17$ has turning points at $(1, -1)$, $(2, 1)$ and $(3, -1)$. Hence or otherwise, find the alue of k such that $f(x) = g(x) + k$ has exactly three solutions.

<u>Sub-Section [1.8.4]</u>: Apply Odd and Even Functions

Question 159	
Show that the function given by $f(x) = x^5 - 2x^2 + 1$ is neither even nor odd.	
	-
Question 160	
Let $f(x) = x^4 - (k^2 - 5k + 6)x^3 + k^3x^2 + 10$. Find the value(s) of k so that $f(x)$ is an even function.	

Question	161

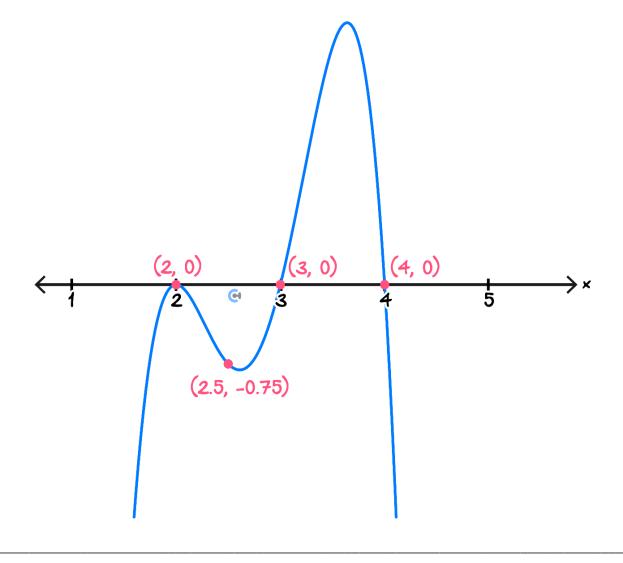
The tangent to the graph of $f(x) = x^3 - 3x$ at the point x = 2 is given by h(x) = 9x - 16. Denote the tangent to f(x) at x = -2 by k(x). The rule for k(x) can be obtained from the rule of h(x) via the following sequence of transformations:

- A translation of α units in the positive direction of the α -axis.
- A translation of *b* units in the positive direction of the *y*-axis.

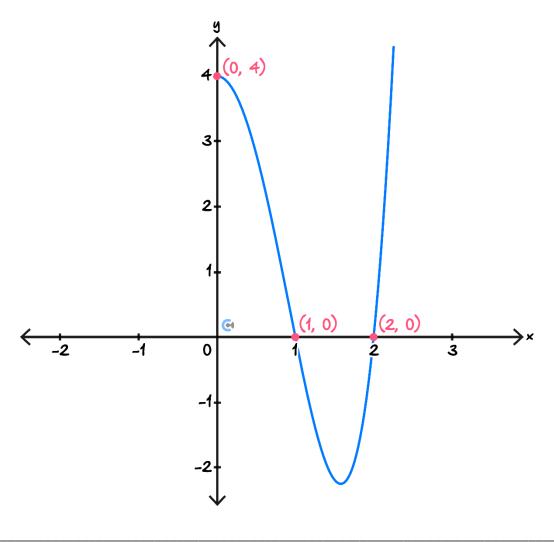
State the values of a and b and hence or otherwise, find the rule of k(x).

Space for Personal Notes									

156


<u>Sub-Section [1.8.5]</u>: Identify Possible Rule(s) from a Graph

Question 163	
Part of the graph for the function.	of $f(x)$ is plotted below. The point (3,5) is a stationary point of inflection. Find a possible rule
	
	(3, 5)
	(2, 3)
	·
-	


Part of the graph of f(x) is plotted below. Find a possible rule for the function.

Part of the graph f(x) is plotted below. Find a possible rule for the function if the function is known to be even.



Part of the graph f(x) is plotted below.

Find a possible rule for the function if the function is known to be odd. Write your answer in the form.

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

Sub-Section: Exam 1 Questions

Question 167			
Find the value(s) of k so that the equation $(x^2 - kx + 16)(x^2 - 2\sqrt{7}x + k) = 0$ has:			
a. Exactly one solution.			
b. Exactly four solutions.	-		

Question 168

Suppose that $f(x) = x^2 - 7x + 6$ and $g(x) = x^2 - kx + 1$. Find the values of k so that the equation f(g(x)) has:

a.	Exactly two solutions.

b. Exactly four solutions.

Question 169

Suppose that f(x) is an odd function such that $f(x) = (x - 2)^2$ for x > 0.

a. Write down a possible rule for f(x) in the form:

$$f(x) = \begin{cases} f_1(x), & x < 0 \\ f_2(x), & x > 0 \end{cases}$$

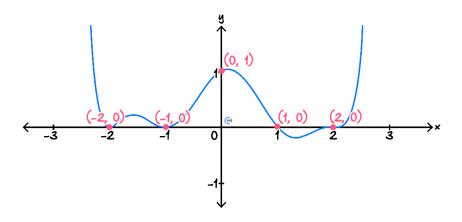
- _____
- **b.** It is known that the tangent to f(x) at the point x = 3 is given by the rule h(x) = 2x 5. By applying an appropriate sequence of transformations to h(x), find the rule for the tangent at the point x = -3.

Consider a quartic of the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$. It is known that the quartic satisfies the following conditions:

- f(1) = 0
- f(2) = 0
- f(0) = 4
- \blacktriangleright Also, f(x) is even.
- **a.** Find the values of a, b, c, d and e.

b. Verify that f(x) can be factorised to (x-1)(x+1)(x-2)(x+2).

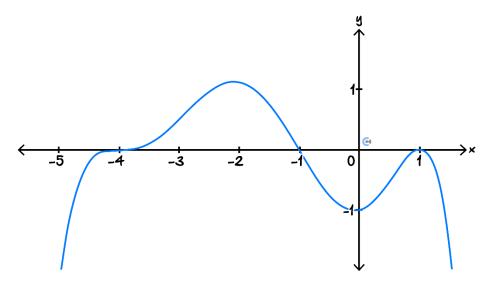
c. Find the values of k so that f(x + k) has exactly two positive x-intercepts.



Sub-Section: Exam 2 Questions

Question 171

The minimum degree of the following polynomial is:



- **A.** 2
- **B.** 4
- **C.** 6
- **D.** 8

A possible rule for the following function given below is:

- **A.** $a(x-1)^3(x+4)^2(x+1)$ where a < 0.
- **B.** $a(x-1)^3(x+4)^2(x+1)^3$ where a > 0.
- C. $a(x-1)^2(x+4)^3(x+1)$ where a < 0.
- **D.** $a(x-1)(x+4)^3(x+1)$ where a > 0.

Question 173

Let $f(x) = x^3 - (k^2 - 5k + 6)x^2 - (k^3 + 5k)x$. If f(x) is odd, then k must equal:

- **A.** 1 or 3
- **B.** 1 or 2
- **C.** 2 or 3
- **D.** 2 or 6

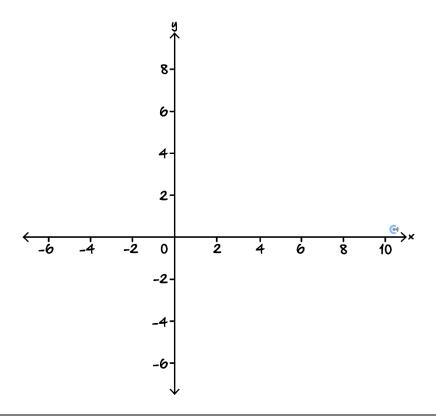
Let $g(x) = (x - 1)^2(x - 5)^2 - 4$. There will be exactly four solutions to the equation given by g(x) = k whenever:

- **A.** -16 < k < 8
- **B.** -4 < k < 12
- C. -4 < k < 0
- **D.** -4 < k < 16

Question 175

Let $h(x) = x^4 - 10x^2 + 9$. The function h(x + k) will have exactly three negative x-intercepts whenever:

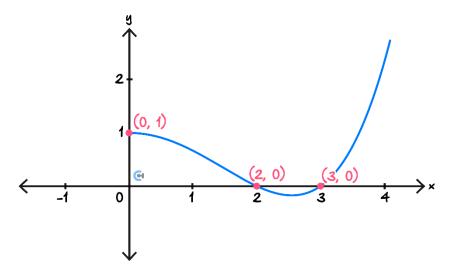
- **A.** $1 < k \le 3$
- **B.** $1 \le k \le 3$
- C. $-3 < k \le 1$
- **D.** $-3 \le k \le 1$



Consider a cubic of the form $f(x) = ax^3 + bx^2 + cx + d$. Suppose that f(x) satisfies the following conditions:

- f(0) = 4
- f(1) = 0
- f(-2) = 0
- f(4) = 0
- **a.** Calculate the values of a, b, c and d.

b. Sketch the graph of the function y = f(x), labelling all turning points and intercepts.



c.	Find the value(s) of k such that $f(x) - k = 0$ has exactly:		
	i.	2 solutions.	
	ii.	3 solutions.	
d.	Let solu	$g(x) = x^2 - kx + 5$. State the values of k such that $f(g(x)) = 0$ gives the maximum number of utions possible.	
Sp	ace	for Personal Notes	

The part of the graph of f(x) is shown below. Furthermore, it is known that the function f(x) is a quartic and also even.

a. State the rule for f(x).

b. The tangent to the graph of f(x) at x = 3 is given by $y = \frac{5}{6}x - \frac{5}{2}$.

i.	Describe a sequence of transformation(s) that can be applied to $h(x)$ to obtain the tangent to the graph of
	f(x) at $x = -3$.

ii. Hence, write down the rule for the tangent to the graph of f(x) at x = -3.

VCE Methods 3/4 Questions? Message +61 440 138 726

	_		
c. State the values of k so that $f(x - k)$ has exactly:			
	i.	3 positive x -intercepts.	
	ii.	3 negative <i>x</i> -intercepts.	
Sp	ace	for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

