

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
AOS 1 Revision [1.0]

Contour Check (Part 1)

Contour Checklist

[1.1] - Functions and Relationships		_] - Transformations Exam Skills	
(<u>Checkpoints)</u>		<u>(Che</u>	eckpoints)	
[1.1.1] - Find the Maximal Domain an of Functions	nd Range Pg 3-5		[1.4.1] – Apply Quick Method to Find Transformations	Pg 53-55
[1.1.2] - Existence, Rule, Domain, and Composite Functions	d Range of Pg 6-9		[1.4.2] - Apply Transformations of Formations of Formations of Formation and Range	unctions to Pg 56-59
[1.1.3] - Finding the Rule, Domain, ar of Inverse Functions	nd Range Pg 10-13		[1.4.3] - Apply Transformations of Formations of Formation	
[1.1.4] - Finding the Composition of I	Inverse		and Tangents	Pg 60-62
Functions	Pg 14-15		[1.4.4] - Find Transformations with Constraints	Pg 63-66
[1.2] - Functions and Relationships Exan (Checkpoints)	<u>n Skills</u>		[1.4.5] - Find Transformations of the Functions	Inverse Pg 67-69
[1.2.1] - Finding a New Domain to Fix				J
Composite Functions	Pg 16-19		[1.4.6] - Find Opposite Transformations	Pg 70-72
[1.2.2] - Finding the Range of Comple	ex		Transformations	. 8 , 3 , 2
Composite Functions	Pg 20-22		Exam 1 Questions	Pg 73-77
[1.2.3] - Finding the Gradient of Inve Functions	rse Pg 23-24		Exam 2 Questions	Pg 78-84
Exam 1 Questions	Pg 25-29			
Exam 2 Questions	Pg 30-37			
[1.3] - Transformations (Checkpoints)				
[1.3.1] - Applying Transformations to Points	Pg 38-42			
[1.3.2] - Transforming Graphs of Functions	Pg 43-47			
[1.3.3] - Find Transformations from Transformed Function	Pg 48-52			

Section A: [1.1] - Functions and Relationships (Checkpoints)

Sub-Section [1.1.1]: Find the Maximal Domain and Range of Functions

Question 1

Find the maximal domain of the following functions:

- **a.** $f(x) = \sqrt{x^2 + 1}$
- $\mathbf{b.} \ \ f(x) = \log_e(x+4)$
- **c.** $f(x) = \frac{1}{x+2} 3$

Question 2

Find the maximal domain of the following functions:

a. $f(x) = \sqrt{(x+1)^2 - 4}$

b. $f(x) = \log_e(4 - x^2)$

 $c. \quad f(x) = \frac{3+x^2}{x^2+5x+6}$

Question 3

Find the maximal domain of the following functions:

a. $f(x) = \cos(x)\log_e(2x) + \frac{1}{x^2 - 5}$

b. $f(x) = \sqrt{\frac{x-3}{x+1}}$

c. $f(x) = \frac{1}{2-x} \times \sqrt{x^2 - 4} \log_e(x^2 - 1)$

Question 4

Find the maximal domain and range of $f(x) = \frac{e^{2x}-1}{e^{2x}+1}$.

<u>Sub-Section [1.1.2]</u>: Existence, Rule, Domain, and Range of Composite Functions

$\mathbf{\alpha}$	4.	_
Ou	estion	5

The following functions are defined over their maximal domain:

$$f(x) = x^2$$
 and $g(x) = 3 - x$

- **a.** Determine whether f(g(x)) and g(f(x)) exist.
 - ______
- **b.** Find the rule of any composition that exists.
- c. State the domain of any composition that exists.

Space for Personal Notes

6

The following functions are defined over their maximal domain:

$$f(x) = e^{2x}$$
 and $g(x) = \log_e(2x)$

a. Determine whether f(g(x)) and g(f(x)) exist.

b.	Find the rule of an	y composition	that exists.
----	---------------------	---------------	--------------

c. State the domain of any composition that exists.

Question 7	7
------------	---

For the following functions:

$$f(x) = x^2 + 1$$
 and $g(x) = \frac{1}{x^2 - 4}$

- **a.** Determine whether f(g(x)) and g(f(x)) exist.
- **b.** Find the rule of any composition that exists.
- c. State the domain of any composition that exists.

Onestion	Q

Functions are defined over their maximal domain unless specified otherwise.

For the functions f and g, determine whether f(g(x)) and g(f(x)) exist. State the rule and the domain of the composite function that do exist.

$$f(x) = e^x - e^{-x}$$

$$g(x) = \frac{1}{x(x-2)}$$

<u>Sub-Section [1.1.3]</u>: Finding the Rule, Domain, and Range of Inverse Functions

Qu	estion 9	Í
For	the function:	
	$f:(0,\infty)\to\mathbb{R}, f(x)=\log_e(3x)$	
a.	Fully define the inverse function.	
b.	Find the range of the inverse function.	

\sim	4 •	40
Ou	iestion	10

For the function:

$$f:(b,-\infty)\to \mathbb{R}, f(x)=\frac{1}{(x+2)^2}-2$$

a. Find the largest value of b such that the inverse function exists.

- **b.** Fully define the inverse function.
- c. Find the range of the inverse function.

For the following functions:

$$f: (-\infty, k] \to \mathbb{R}, f(x) = 2x^2 - 8x + 4$$

- **a.** Find the largest value of k such that the inverse function exists.
- **b.** Fully define the inverse function.
- c. Find the range of the inverse function.
- **d.** Find the point of intersection between f and f^{-1} .

Question	12
Question	1 1 4

Find the inverse function of:

$$f(x) = e^{2x} + 4e^x + 1$$

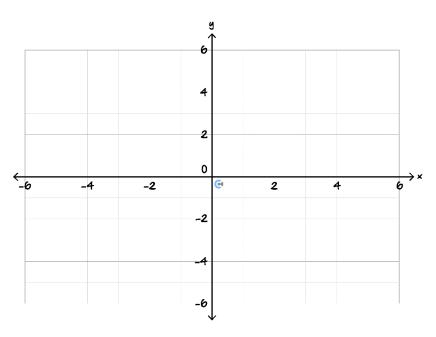
And determine whether f and f^{-1} have any points of intersection.

Sub-Section [1.1.4]: Finding the Composition of Inverse Functions

Question 13

Let
$$f: (3, \infty) \to \mathbb{R}$$
, $f(x) = x^2 - 4x + 7$.

Find the rule and domain for $f^{-1}(f(x))$.


Question 14

Let
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$$
, $f(x) = \frac{5}{x-1} + 3$.

a. Find the rule and domain for $f^{-1}(f(x))$.

b. Sketch the graph of $f^{-1}(f(x))$ on the axis below.

Let $f(x) = x^2 - 2kx + 9$, where $x \ge 0$ and $k \ge 0$.

The function $f^{-1} \circ f$ is defined on its maximal domain.

Find the rule and domain for $f^{-1}(f(x))$.

Question 16

Let f^{-1} : $\left[\frac{\pi}{2}, \pi\right] \to \mathbb{R}, f^{-1}(x) = \sin(x)$.

Define the function f and find the rule and domain for $f^{-1}(f(x))$.

Section B: [1.2] - Functions and Relationships Exam Skills (Checkpoints)

Sι

ub-Section: [1.2.1] - Finding a New Domain to Fix Composite Functions)			
---	---	--	--	--

Question 17

Consider the functions the following functions defined over their maximal domains:

$$f(x) = \log_e(x)$$
 and $g(x) = e^x - 1$

a. Show that f(g(x)) does not exist.

b. Find the maximal domain of g such that f(g(x)) exists.

Question	15	2
Oucsuon	10	J

Consider the following functions defined over their maximal domains:

$$f(x) = (x^2 - 2)^2$$
 and $g(x) = \sqrt{x - 1}$

Find the maximal domain of f such that g(f(x)) exists.

-	 	

Ouestion	19
Outsuon	1,

Consider the following functions defined over their maximal domains:

$$f(x) = \frac{1}{1+x}$$
 and $g(x) = \sqrt{16 - (x-1)^2}$

Find the maximal domain of f such that g(f(x)) exists.

Or	estion	20
\mathbf{v}	icsuon	40

Consider the following functions:

$$f:[0,2)\to\mathbb{R}, f(x)=\log_2(4-x^2) \text{ and } g:(-\infty,2)\to\mathbb{R}, g(x)=3(x-1)^2-1$$

Find the largest interval of x-values for which f(g(x)) and g(f(x)) both exist.

Sub-Section: [1.2.2] - Finding the Range of Complex Composite Functions

Question 21	j
Find the range of $f(x) = e^{x^2+1}$.	

Question 22

Find the range of $f:[0,\infty)\to\mathbb{R}, f(x)=\log_3(3^x+8)$.

Question	23
Question	4

Find the range of $f(x) = \sqrt{\frac{x}{x+1}}$ where f is defined on its maximal domain.

Question	24
Oucsuon	47

Consider the following functions defined on all real numbers:

$$f(x) = \sin(x)$$
 and $g(x) = \log_3(4x^2 - 4x + 2)$

Find the range of $g(f(x))$.			

Sub-Section: [1.2.3] - Finding the Gradient of Inverse Functions

Question 25	
Consider the function $f:[0,\infty)\to\mathbb{R}, f(x)=x^2$.	
The gradient of f at $x = a$ is $2a$.	
Let g be the inverse function of f . Find the gradient of g when $x = 2$.	

Question 26

Consider the one-to-one function f with the following properties:

$$f(2) = 5, f(5) = 7, f'(2) = 3$$
 and $f'(5) = 1$

Let g be the inverse function of f. Find the gradient of g when x = 5.

Consider the function f(x), the gradient of f at x = a is 2f(a) + 2a, and f(0) = 1.

From this information, we can tell that the gradient of f^{-1} at x = b is c. Find b and c.

Question 28

Consider the differentiable, one-to-one, function $f:(0,1) \to \mathbb{R}$. It is known that:

- 1. $f'(x) = -[f(x)]^2$, for all $x \in (0, 1)$.
- **2.** ran $f = (1, \infty)$.

If g is the inverse function of f, find the domain and range of g'(x).

Hint: g'(a) denotes the gradient of g at x = a.

Sub-Section: Exam 1 Questions

Question 29

Let $f:[0,\infty)\to\mathbb{R}, f(x)=\sqrt{x+4}$.

- **a.** State the range of f.
- **b.** Let $g: (-\infty, c] \to \mathbb{R}$, $g(x) = x^2 + 6x + 7$, where c < 0.

Find the largest possible value of c such that the range of g is a subset of the domain of f.

c. For the value of c found in **part b.**, state the range of f(g(x)).

d. Let $h: \mathbb{R} \to \mathbb{R}$, $h(x) = x^2 + 5$.

State the range of f(h(x)).

Question 30

Let $f: (-2, \infty) \to \mathbb{R}$, $f(x) = 3 - \frac{4}{(x+2)^2}$.

State the rule and domain of f^{-1} .

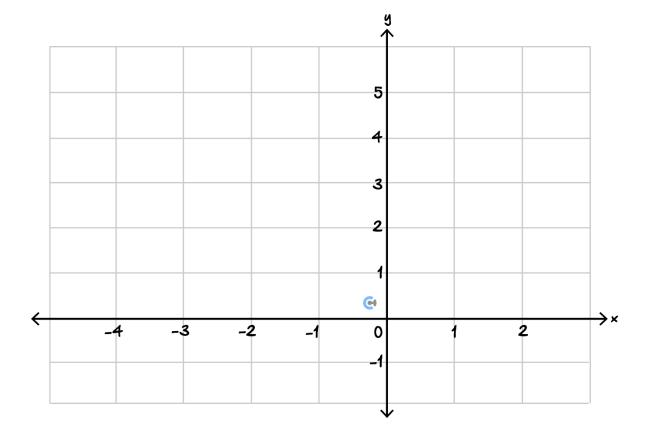
a. Let $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$, $f(x) = \frac{1}{x-3}$. Find the rule for f^{-1} .

- **b.** State the domain of f^{-1} .
- **c.** Let g(x) = f(x c) + d for $c, d \in \mathbb{R}$.

Find the values of c and d, given that $g = f^{-1}$.

d. Given that $f'(1) = -\frac{1}{4}$ and f'(4) = -1, find the value of g'(1).

VCE Methods ¾ Questions? Message +61 440 138 726


Question 32
Find the maximal domain of f , where $f(x) = \frac{1}{\sqrt{x^2 - 6x + 5}}$.

S	Space for Personal Notes

CONTOUREDUCATION

Question 33

a. Sketch the graph of $f(x) = 3 + \frac{1}{x+1}$ on the axes below, labelling all asymptotes with their equations and axial intercepts with their coordinates.

b. Find the values of x for which $f(x) \in (2, 4)$.

Sub-Section: Exam 2 Questions

Question 34

Which one of the following is the inverse function of $g:(-\infty,2]\to\mathbb{R}, g(x)=4(x-2)^2+3$?

A.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 2 + \frac{\sqrt{x-3}}{2}$$

B.
$$f: [3, \infty) \to \mathbb{R}, f(x) = 2 - \frac{\sqrt{x-3}}{2}$$

C.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 4 + \frac{\sqrt{x-3}}{4}$$

D.
$$f:[3,\infty) \to \mathbb{R}, f(x) = 4 - \frac{\sqrt{x-3}}{4}$$

Question 35

The maximal domain of the function f is $(-\infty, 1 - \sqrt{5}] \cup [1 + \sqrt{5}, \infty)$.

A possible rule of f is:

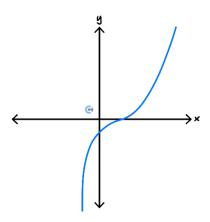
A.
$$f(x) = \sqrt{5 - (x - 1)^2}$$

B.
$$f(x) = \log_e(5 - (x - 1)^2)$$

C.
$$f(x) = \frac{1}{\sqrt{5} - (x - 1)^2}$$

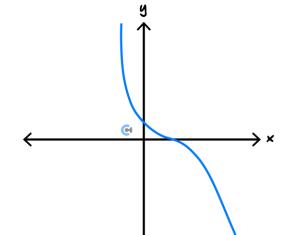
D.
$$f(x) = \frac{1}{\log_e(5-(x-1)^2)}$$

Let f be a one-to-one differentiable function and the following values are known:

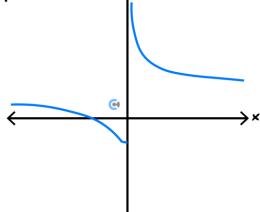

$$f(-1) = 3, f(3) = 7, f'(-1) = 5$$
 and $f'(3) = 2$

Let $g(x) = f^{-1}(x)$, the value of g'(3) is:

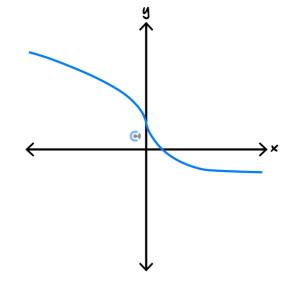
- **A.** 5
- **B.** 2
- C. $\frac{1}{5}$
- **D.** $\frac{1}{2}$

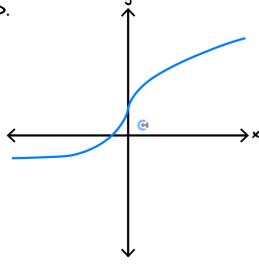


Part of the graph of the function f is shown below. The same scale has been used on both axes.



The corresponding part of the graph of the inverse function f^{-1} is best represented by:


A.


₿.

C.

D.

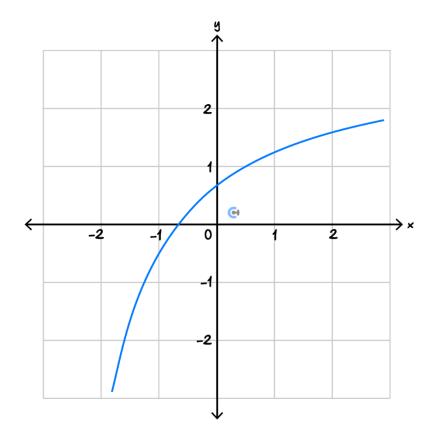
Consider the following functions:

$$f: \left(-\frac{\sqrt{3}}{2}, \infty\right) \to \mathbb{R}, f(x) = \log_e\left(x + \frac{\sqrt{3}}{2}\right)$$

$$g:(-\infty,3)\to\mathbb{R}, g(x)=\cos(x)$$

The largest interval of x-values for which f(g(x)) and g(f(x)) both exist is:

- $\mathbf{A.} \ \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right]$
- **B.** $\left(-\frac{\sqrt{3}}{2}, \frac{5\pi}{6}\right)$
- $\mathbf{C.} \ \left(-\frac{5\pi}{6}, \frac{5\pi}{6}\right)$
- **D.** $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$


a. Express $\frac{3x+2}{x+3}$ in the form of $a + \frac{b}{x+2}$, where a and b are non-zero integers.

b. Let $f : \mathbb{R} \setminus \{-3\} \to \mathbb{R}, f(x) = \frac{3x+2}{x+3}$.

i. Find the rule and domain of f^{-1} and the inverse function of f.

ii. Part of the graph of f is shown in the diagram below.

Sketch the graph of $y = f^{-1}$, labelling all points of intersection with their coordinates.

c. Let $g(x) = -\sqrt{16 - x^2}$.

i. Show that both f(g(x)) and g(f(x)) do not exist.

ii. Find the largest interval on which both f(g(x)) and g(f(x)) are defined on.

Oue	stion	40

Let $f(x) = 2^{-x}$ and $g(x) = 4x^2 - 4x + 3$.

a.

i. State the rule of f(g(x)).

ii. State the range of f(g(x)).

b.	Let $h: [a, \infty) \to \mathbb{R}$	$\mathbb{R}, h(x) = g(f)$	(x)). Find the sm	allest value of α suc	ch that h is a one-to	one function.

VCE Methods ¾ Questions? Message +61 440 138 726

c. For the value of a found in part b. , state the rule and domain for h^{-1} .
d. How many solutions does the equation $f(g(x)) + g(f(x)) = 0$ have?
Space for Personal Notes

Section C: [1.3] - Transformations (Checkpoints)

<u>Sub-Section [1.3.1]</u>: Applying Transformations to Points

Question 41
Consider the following transformations of the plane:
\triangleright S, a dilation by a factor of 2 from the y-axis, followed by a translation of 3 units up.
T, a translation of 2 units left and 1 unit up.
\blacktriangleright W, a reflection in the line $y = x$.
a. Find $S(x,y)$.
b. Find $T(x,y) = (x',y')$. Express x and y in terms of x' and y' .
c. Find $W(x,y)$.

Consider the following transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (-2x + 4, 5(y + 3)).

T can be described using the following sequence of transformations:

- A dilation by a factor of α from the x-axis, followed by,
- A dilation by a factor of b from the y-axis, followed by,
- A reflection in the y-axis, followed by,
- \blacktriangleright A translation c units in the positive direction of the x-axis, followed by,
- \blacktriangleright A translation of d units in the positive direction of the y-axis.

b	Desci	ribe T	as a sequen	ce of two	translatio	ns, foll	owed by	two dilat	ions, an	d a ref	lection.

c. The image of (p, -5) under T is (2, q). Find p and q.

Question 43

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ described by the following sequence of transformations:

- A dilation by a factor of $\frac{1}{5}$ from the x-axis, followed by,
- \blacktriangleright A translation of 2 units in the positive direction of the x-axis, followed by,
- A reflection in the y-axis, followed by,
- \blacktriangleright A translation of 3 units in the positive direction of the x-axis, followed by,
- A translation of 5 units in the negative direction of the y-axis, followed by,
- \blacktriangleright A dilation by a factor of 5 from the x-axis, followed by,
- \triangleright A reflection in the x-axis, followed by,
- A dilation by a factor of 3 from the y-axis.
- **a.** Find (x', y'), the image of (x, y) under T.

b. Express x in terms of x' and y in terms of y'.

c. A transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$ maps T(x, y) = (x', y') to (x, y).

Describe S as a sequence of 2 translations followed by 2 reflections followed by a dilation.

>

>

>

>

-

Question 44

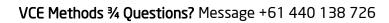
a. Describe a reflection in the line y = x + b using elementary transformations.

>

>

>

A reflection in the line y = ax can be described via the following transformation:


$$T(x,y) = \left(\frac{x(1-a^2)+2ay}{1+a^2}, \frac{y(a^2-1)+2ax}{1+a^2}\right).$$

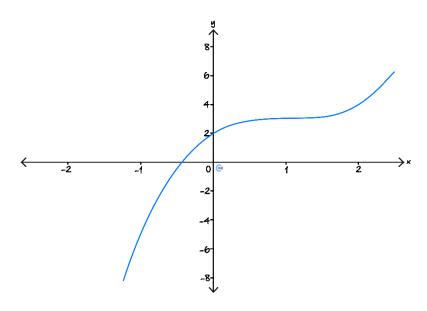
b. Describe a reflection in the line y = ax + b using elementary transformations and T.

>

>

>

c.	Find the image of the point (2, 4) when it is reflected in the line $y = 3x + 5$.
	-
d.	Show using coordinate geometry that T describes a reflection in the line $y = ax$.
	Hint: Find the line going through a point (x_0, y_0) with a gradient $-\frac{1}{a}$.
	Time. That the line going through a point (x_0, y_0) with a gradient a .
	Then, equate that line to $y = ax$ to get a point (x_1, y_1) .
	Then, (x_1, y_1) is the midpoint of (x_0, y_0) and $(x'_0, y'_0) = T(x_0, y_0)$.



Sub-Section [1.3.2]: Transforming Graphs of Functions

Question 45

a. The graph of f(x) is shown below.

On the same axes, sketch the graph of g(x) = f(-2x).

b. Let $f(x) = e^x$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x-1,y+2) maps the graph of f(x) onto the graph of g(x). Find the rule for g(x).

c. Find the rule for the image of the graph of y = cos(x) under the transformation,

$$S = \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = \left(-3x, \frac{1}{2}y\right).$$

CONTOUREDUCATION

Question 46

a. Let $f(x) = 5\sqrt{x} - 3$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (4x, 3-y) maps the graph of f(x) onto the graph of g(x). Find the rule for g(x).

b. Find the rule for the image of the graph of $y = e^{x+2} - \log_e(-2x)$ under the transformation,

 $S: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (-2x - 1, y + 3).

c. Let f(x) = (x-1)(x+2)(x-3), and g(x) = 4 f(2-x) + 5.

Solve g(x) = 5.

- **a.** Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ which can be described by the following sequence of transformations:
 - A translation is 3 units up and 2 units left, followed by,
 - A dilation by a factor of 3 from the x-axis and $\frac{1}{2}$ from the y-axis followed by,
 - \triangleright A reflection in the x-axis.

T maps the graph of f(x) onto the graph of $g(x) = \log_e(x)$. Find the rule of f(x).

b.	Consider the transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$, which the following sequence of transformations can describe:
	A dilation by a factor of 2 from the x -axis and 5 from the y -axis, followed by,
	A translation 1 unit down and 4 units right.
	Find the rule for the image of the graph of $y = 25x^2 + 5x - 1$ under S.
c.	A transformation $U: \mathbb{R}^2 \to \mathbb{R}^2$, $U(x,y) = (2x+5,3-2y)$ maps the graph of $y = af(x) + b$ onto the graph
	of $y = f(cx + d)$. Find the values of a , b , c , and d .
	
Ç.	pace for Personal Notes
	ace 101 1 e13011a1 140te3

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which is described by the following sequence of transformations:

- A translation of 3 units upwards and 5 units left, followed by,
- A reflection in the line y = x, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the x-axis and $\frac{1}{4}$ from the y-axis, followed by,
- \blacktriangleright A reflection in the x-axis.

T maps the graph of $f:(-\infty,2], f(x)=3x^2+12x+5$ onto the graph of g.

\mathbf{d} the rule of g .		

Sub-Section [1.3.3]: Find Transformations from Transformed Function

Question 49

a. Let $f(x) = x^2$ and $g(x) = 3x^2 - 2$.

Describe a transformation that maps the graph of f onto the graph of g.

b. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax+b,cx+d)$ maps the graph of $y = \log_e(x)$ to the graph of

Find the values of a, b, c, and d.

 $y = 5 - \log_e(2x + 3).$

c. A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $f(x) = \sqrt{x}$ onto the graph of $g(x) = 3\sqrt{x-1} + 5$.

 ${\it T}$ can be described by the following sequence of transformations,

- ➤ A dilation by a factor of ______ from the *x*-axis, followed by
- \blacktriangleright A translation of _____ unit(s) in the positive direction of the x-axis, followed by
- A translation of _____ unit(s) in the positive direction of the y-axis.

Fill in the blanks.

a. Let
$$f(x) = 4(x-5)^2$$
.

The transformations:

$$S: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + b, ay),$$

and

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (cx + d, y)$.

Both map the graph of $y = x^2$ onto the graph of f.

Find the values of a, b, c, and d.

b. Consider a function $f:[0,\infty)\to\mathbb{R}, f(x)=100-4x$.

g(0) = f(0). State a single transformation that maps the graph of f onto the graph of g.

A different function g has the property, that g decreases at half the rate of f at any point in time and that

c. Let $g(x) = -\frac{f(4x+12)}{5} - 20$.

Fill in the blank lines to make the following sequences of transformations map the graph of f(x) onto the graph of g(x).

- A dilation by a factor of ______ from the x-axis, followed by,
- \blacktriangleright A translation of _____ units in the positive direction of the x-axis, followed by,
- A translation of _____ units in the positive direction of the y-axis, followed by,
- A dilation by a factor of ______ from the y-axis, followed by,
- \rightarrow A reflection in the x-axis.

Question 51

a. Describe a sequence of three transformations that map the graph of $f(x) = \sqrt{7 - 6x - x^2}$ onto the graph of $g(x) = \sqrt{4 - x^2}$.

ONTOUREDUCATION

b.	Let $f: [2, \infty) \to \mathbb{R}$, $f(x) = \sqrt{4x^2 - 16x + 16}$.
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (ax+b,y)$ maps the graph of $f(x)$ onto the graph of $g: [0,\infty) \to \mathbb{R}$, $g(x) = x$.
	Find the values of a and b .
c.	A function f has its only stationary point at $(2,3)$ and its only x -axis intercept at $(-5,0)$.
	A function g has its only stationary point at $(6, -2)$ and only x -axis intercept at $(-8, 0)$.
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (ax + b, cy)$ maps the graph of f onto the graph of g .
	Find a , b , and c .

Question 52 Tech-Active.

Let $f(x) = x^4 + x^3 + x^2 + x + 1$ and $g(x) = x^4 + 2x^3 + 4x^2 + 8x + 11$.

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, cx + d) maps the graph of f onto the graph of g.

Find a, b, c, d and show that they are unique.

MM34 [1.0] - AOS 1 Revision - Contour Check (Part 1)

Section D: [1.4] - Transformations Exam Skills (Checkpoints)

Sub-Section [1.4.1]: Apply Quick Method to Find Transformations

Question 53
Find the image of the graph of $y = x^2$ under the transformation, $T : \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (1 - 2x, y + 5)$.
Question 54
Describe a sequence of transformations that maps the graph of $y = x^3$ onto the graph of $y = 2(3x + 2)^3 - 3$.
Space for Personal Notes

Question 55
Find the image of the graph of $y = 2 \log_2(x) - 3$ under the following sequence of transformations:
\blacktriangleright A dilation by a factor of 3 from the <i>x</i> -axis, followed by,
➤ A translation of 2 units left and 3 units up, followed by,
A reflection in the y-axis, followed by,
A dilation by a factor of 5 from the <i>y</i> -axis.
<u> </u>

_	. •	
()	uestion	56
\cdot	ucsuvii	$ \mathbf{v}$

Consider four linear functions, $p_1(x)$, $p_2(x)$, $q_1(x)$, and $q_2(x)$.

A transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x', y')$$

maps the graph of y = f(x) onto the graph of $y = (p_1 \circ p_2 \circ f \circ q_2 \circ q_1)(x)$. Express x' in terms of x and y' in terms of y.

<u>Sub-Section [1.4.2]</u>: Apply Transformations of Functions to Find its Domain and Range

Question 57					
The function $f: \mathbb{R} \to \mathbb{R}$ has a range of $[2, \infty)$.					
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (5-2x,3+y)$ maps the graph of f onto the graph of g . State the domain and range of g .					
Space for Personal Notes					

Question 58				
The function $f:(-\infty,-1]\to\mathbb{R}$ has a range of $[-2,\infty)$.				
Describe a sequence of transformations that maps the graph of f onto a graph of a function with a domain of $[0, \infty)$ and a range of $(-\infty, 2]$.				
Space for Personal Notes				

CONTOUREDUCATION

Question	59
Oucsuon	"

Consider the function, $f : \mathbb{R} \setminus \{-2\} \to \mathbb{R}$, $f(x) = \frac{3}{(x+2)^2} - 5$.

The following sequence of transformations maps the graph of f onto the graph of g:

- \blacktriangleright A reflection in the x-axis, followed by,
- \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the y-axis, followed by,
- A translation of 3 units up and 2 units left.

State the domain and range of g.

Let $f: (-2,1] \to \mathbb{R}$, $f(x) = 2(x+1)^2 - 3$.

Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, cy + d) where a and c are both non-zero.

The transformation T maps the graph of f onto the graph of g.

a. Explain why the range of g will always be of the form [p,q] for some real p < q.

b. Explain why the domain of g will always be of the form (p,q] or [p,q) for some real p < q.

c. For what values of a, is the domain of g of the form (p,q]?

<u>Sub-Section [1.4.3]</u>: Apply Transformations of Functions to Find Transformed Points and Tangents

Ω	estioi	. 6

The equation of the tangent to the graph of f(x) at the point (1,3) is y=2x+1.

The transformation, $T(x,y) = \left(x, \frac{y}{3} + 1\right)$ maps the graph of f onto the graph of g.

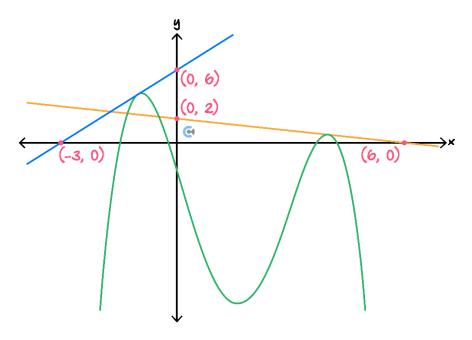
Find the equation of the tangent to the graph of g at the point (1,2).

Question 62

The points (2,4) and (4,7) lie on the graph of f(x).

Evaluate g(2), where g(x) = 3f(6 - x) + 5.

Question 63
Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ described by the following sequence of transformations:
\blacktriangleright A dilation by a factor of 2 from the <i>x</i> -axis, followed by,
A translation by a factor of 4 in the negative direction of the x-axis, followed by,
A dilation by a factor of $\frac{1}{3}$ from the y-axis, followed by,
➤ A translation by a factor of 5 in the positive direction of the <i>y</i> -axis.
The image of $A(u, v)$ under T is $(3, 7)$. Find the values of u and v .


Space for Personal Notes	

CONTOUREDUCATION

Question 64

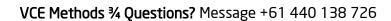
The graph of y = f(x) is drawn below along with two tangents at x = 4 and at x = -1.

Find the equation of the tangent to the graph of g(x) = 1 - 3f(2 - 2x) when x = -1.

Sub-Section [1.4.4]: Find Transformations with Constraints

Question	65

Consider the transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the following sequence of transformations:


- \blacktriangleright A dilation by a factor of α from the x-axis.
- A translation by a factor of b in the positive direction of the y-axis.

T maps the graph of $f(x) = \sqrt{x}$ onto the graph of $g(x) = \sqrt{9x} + 6$.

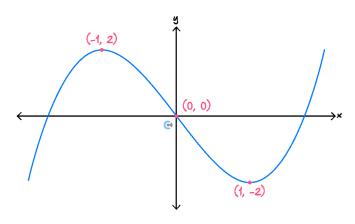
Find the values of a and b.

Snace	for	Personal	Notes
Space	101	Personar	MO162

63

O	
Question	ս սս

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + b, y + c) maps the graph of $y = 2^x$ onto the graph of $y = 8 \times 2^{3x-1} - 5$.


Find the values of a, b, and c.

CONTOUREDUCATION

Question 67

The graph of $y = x^3 - 3x$ is drawn below.

The transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (a - x, b - y)$$

Maps the graph of $y = x^3 - 3x$ onto the graph of $y = (x - 1)^3 - 3x + 5$.

Find the values of a and b.

\mathbf{a}	4.	/ 0
()	uestion	hΧ

Consider the functions:

$$f: [-1, \infty) \to \mathbb{R}, f(x) = x^2 + 2x + 2$$

$$g:(-\infty,1]\to\mathbb{R}, g(x)=4(2x-1)^2+3$$

scribe a sequence	of a dilation fol	llowed by two	translations a	nd lastly a refle	ection that ma	ps the graph o	f f c
graph of g .							

Sub-Section [1.4.5]: Find Transformations of the Inverse Functions

Question 69
Consider the function, $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{2}{x-1} + 4$.
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x+a,y+b)$ maps the graph of f onto the graph of its inverse function. Find the values of a and b .

0 "	=^
Question	70

Consider the one-to-one functions, f(x) and g(x). The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (3-x,2y+7) maps the graph of f onto the graph of g.

Describe a sequence of transformations that maps the graph of f^{-1} onto the graph of g^{-1} .

Let $f: (-\infty, 2] \to \mathbb{R}$, $f(x) = 3x^2 - 12x + 11$ and $g: [-3, \infty) \to \mathbb{R}$, $g(x) = 2\sqrt{x+3} + 4$.

a. Describe a sequence of transformations that maps the graph of f onto the graph of g^{-1} .

b. Hence, or otherwise, describe a sequence of transformations that maps the graph of g onto the graph of f^{-1} .

Consider the function f which has the property that $f(x-3)-3=f^{-1}(x)$.

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (4x+1,2-y) maps the graph of f onto the graph of g.

Describe a sequence of basic transformations (translations, dilations, and reflections in the x- and y-axis only) that maps the graph of g onto the graph of g^{-1} .

<u>Sub-Section [1.4.6]</u>: Find Opposite Transformations

Describe a sequence of transformations that maps the graph of $y=3e^{2x+1}-4$ onto the graph of $y=e^x$. Question 74 The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y)=\left(2x+3,\frac{1}{3}y-4\right)$ maps the graph of $y=f(x)$ onto the graph of
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x + 3, \frac{1}{2}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph of
$y = x^3$.
Find the rule of f .

Question 75
The following sequence of transformations maps the graph of f onto the graph of $y = \sqrt{x}$, for $x \in (2, \infty)$:
\blacktriangleright A dilation by a factor of 3 from the <i>x</i> -axis, followed by,
A translation of 2 units left and 4 units up, followed by,
A reflection in both the x -axis and the y -axis.
State the rule and domain of f .
Space for Personal Notes

Question 76	الألالا
Describe a transformation different from $(x, y) \mapsto (x, y)$, that maps the grant onto itself.	$aph of y = a(x - k)^{5} + b(x - k)^{3} + h$

Space for Personal Notes

Sub-Section: Exam 1 Questions

Question 77

The following sequence of transformations maps the graph of y = f(x) onto the graph of $y = \frac{1}{2}\cos\left(\frac{\pi}{3} - 2x\right)$:

- A translation of $\frac{\pi}{6}$ units in the positive direction of the x-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ in from the y-axis, followed by,
- \blacktriangleright A dilation by a factor of 2 from the x-axis.

Find the rule of f.

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2 - \frac{1}{2}x^3$, and let $g: \mathbb{R} \to \mathbb{R}$, g(x) = 6 - 2x.

a.

i. Find $(g \circ f)(x)$.

ii. Find $(f \circ g)(x)$ and express it in the form $k + m(x - h)^3$, where m, k and h are integers.

b. The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+b,ay+c), where a, b and c are integers, maps the graph of $y = (f \circ g)(x)$ onto the graph of $y = (g \circ f)(x)$.

Find the values of a, b, and c.

Question 79

Let $f:[1,\infty)\to\mathbb{R}$, $f(x)=4(x-1)^2-3$ and let $g:[2,\infty)\to\mathbb{R}$, $g(x)=1-\sqrt{x-2}$.


a. Let g^{-1} be the inverse function of g.

i. State the domain and range of g^{-1} .

ii. Find the rule of g^{-1} .

b. The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax+b,y+c) maps the graph of f onto the graph of g^{-1} . Find the values of a, b, and c.

Question 80

Let $f : \mathbb{R} \setminus \{a\} \to \mathbb{R}$, $f(x) = \frac{1}{x-a} + b$.

a. Find the rule and domain for the graph of f^{-1} in terms of a and b.

- **b.** The following sequence of transformations maps the graph of f to the graph of f^{-1} :
 - A translation of 4 units in the positive direction of the x-axis, followed by,
 - A translation of 4 units in the negative direction of the y-axis.

Find the value of a in terms of b.

c. Let $g(x) = \frac{1}{x-c} + d$. A transformation,

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x + h, y + k)$$

maps the graph of g onto the graph of g^{-1} .

What restrictions are there on the values of h and k?

Sub-Section: Exam 2 Questions

Question 81

The graph of the function f passes through the point (2, -3).

If h(x) = 3f(x - 2), then the graph of the function h must pass through the point:

- A. (0,1)
- **B.** (4, -9)
- C. (0, -9)
- **D.** (4, -1)

Ouestion 82

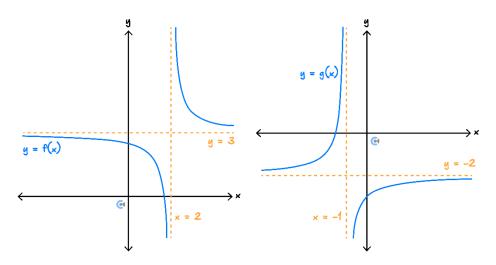
The graph of the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x - 1$, is reflected in the *y*-axis and then translated 2 units to the left and then 3 units up.

Which one of the following is the rule of the transformed graph?

- **A.** $y = 2^{2-x} + 2$
- **B.** $y = 2^{2+x} + 2$
- C. $y = \left(\frac{1}{2}\right)^{-2-x} + 2$
- **D.** $y = \frac{1}{4} \left(\frac{1}{2}\right)^x + 2$

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 4 - \log_e\left(\frac{x-1}{2}\right)$ onto the graph of $y = \log_e(x)$, has the rule:

A.
$$T(x,y) = \left(\frac{x-1}{2}, 4-y\right)$$


B.
$$T(x,y) = (2x+1, -y-4)$$

C.
$$T(x,y) = (2x + 1, 4 - y)$$

D.
$$T(x,y) = \left(\frac{x-1}{2}, -y-4\right)$$

Question 84

Consider the graph of f and g below, which have the same scale:

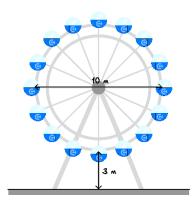
If T transforms the graph of f onto the graph of g, then:

A.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (1 - x, y - 5)$$

B.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x - 3, y - 5)$$

C.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x - 3, 5 - y)$$

D.
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (1-x, 2-y)$$


The graph of the function g is obtained from the graph of the function $f: [-2,3] \to \mathbb{R}$, $f(x) = 2x^2 - 4x + 5$, by a dilation of factor 2 from the y-axis, followed by a dilation of factor $\frac{1}{3}$, from the x-axis, followed by a reflection in the y-axis, and finally, followed by a translation of 1 unit in the negative direction of the y-axis.

The domain and range of g are respectively:

- **A.** [-6, 4] and $\left[\frac{8}{3}, 6\right]$
- **B.** $\left[-1, \frac{2}{3}\right]$ and [21, 41]
- C. [-6, 4] and $\left[\frac{2}{3}, \frac{17}{3}\right]$
- **D.** [-6, 4] and [0, 6]

Question 86

The Contour Ferris Wheel pictured below takes 30 minutes to complete a trip.

Thus, the height of the bottom of a carriage t minutes after the start of a trip is given by,

$$h(t) = 8 - 5\cos\left(\frac{\pi t}{15}\right)$$

a. Describe a sequence of transformations that maps the graph of sin(t) onto the graph of h.

b. The horizontal displacement, d from the bottom of the carriage to the centre of the roller coaster t minutes after the start of a trip is,

$$d(t) = 5\sin\left(\frac{\pi t}{15}\right)$$

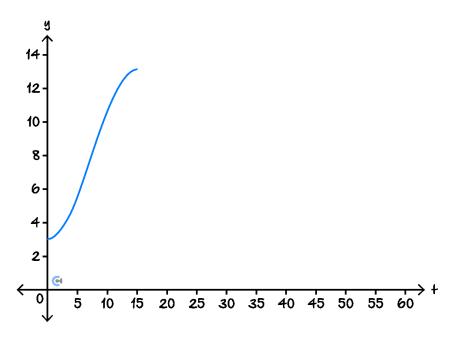
The transformation, T(t, y) = (t + a, y + b) maps the graph of h onto the graph of d.

i. Find *b*.

ii. Find the possible value of a.

CONTOUREDUCATION

c. 15 minutes into a trip on the Ferris Wheel, Caitlin crashes her car into the Ferris Wheel. This causes the Ferris Wheel to stop for 5 minutes before starting again at half speed.


The height of the Ferris wheel in this trip, $h_1:[0,r]\to\mathbb{R}$ is given by the following function:

$$h_1(t) = \begin{cases} h(t) & 0 \le t < 15 \\ k & 15 \le t < 20 \\ h(pt+q) & 20 \le t \le r \end{cases}$$

Find a set of possible values of p, q, k, and r.

d. Part of the graph of h_1 is drawn on the axis below. Draw the rest of the graph of h_1 labelling endpoints with their coordinates.

Consider the function, $f:(-1,1) \to \mathbb{R}$, $f(x) = (2x-1)^2 (x+1)$.

- **a.** State the range of f.
- **b.** The following sequence of transformations, T, maps the graph of f onto the graph of g:
 - \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
 - A translation of 2 units down and 5 units left, followed by,
 - A reflection in the y-axis.
 - **i.** State the rule of g.

- ii. State the domain of g.
- iii. State the range of g.

c. The tangent to the graph of f at the point $A\left(-\frac{1}{4}, \frac{27}{16}\right)$ is given by the equation:

$$y = \frac{9}{8} - \frac{9x}{4}$$

i. Find B, the image of A under T.

::	Find the	aquation	of the	tangent to	tha	granh	of c	at no	int l	Q
11.	THILD INC.	COUALION	OI IIIC	141125111.10	, ,,,,	graini	O1 6	<i>i</i> at ix	<i>)</i>	

d.	A transformation, $S: \mathbb{R}^2 \to \mathbb{R}^2$, $S(x, y) = (-x, a - y)$ maps the graph of f onto itself.

i. State the value of a.

ii. Hence, or otherwise, describe a sequence of transformations in terms of S and T as required, that maps the graph of g to itself, but does not map A to itself.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

