

Website: contoureducation.com.au | Phone: 1800 888 300

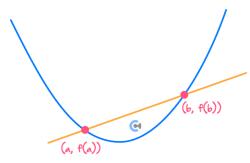
Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation [0.9]

Workshop

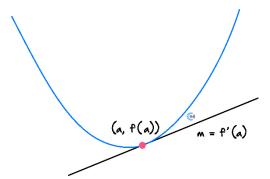
Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mictako/Micconcoption #2		Mistake/Misco	ncention #4
Mistake/Misconception #3			III CIJIIIJII #4
i i i stake/ i i i sco	nception #5	i iistake/i iiseo	
Question #:	Page #:	Question #:	Page #:
	•		
Question #:	•	Question #:	



Section A: Recap

Average Rate of Change


The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =
$$\frac{f(b) - f(a)}{b - a}$$

It is the gradient of the line joining the two points.

Instantaneous Rate of Change

Instantaneous rate of change is a gradient of a graph at a single point/moment.

Instantaneous rate of change = f'(x)

- **Differentiation** is the process of finding the derivative of a function.
- First principles derivative definition:

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Alternative Notation for Derivative

$$f'(x) = \frac{dy}{dx}$$

Derivatives of Functions

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
x^n	$n \times x^{n-1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
e^x	e ^x
$\log_e(x)$	$\frac{1}{x}$

The Product Rule

The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x)$$

Or, in another form:

$$\frac{d}{dx}(u\cdot v)=u'v+v'u$$

CONTOUREDUCATION

Definition

The Quotient Rule

The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

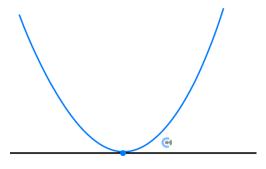
Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$$

Always differentiate the top function first.

Definition

The Chain Rule


$$y = f(g(x))$$

$$\frac{dy}{dx} = f'(g(x))g'(x)$$

> The process for finding derivatives of composite functions.

Stationary Points

The point where the gradient of the function is zero.

$$f'(x)=0, \frac{dy}{dx}=0$$

Calculator Commands: Finding Derivatives

Mathematica

TI

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

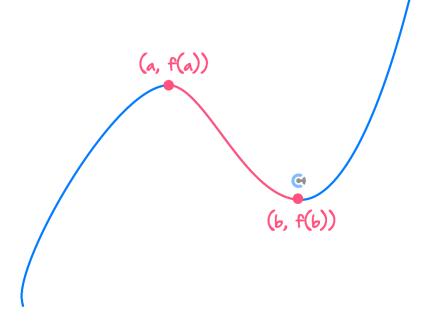
Math 2

$$\frac{d}{dx}(f(x))$$

Types of Stationary Points

Local Maximum	Local Minimum	Stationary Point of Inflection
+	- +	- 0 - + 0 +

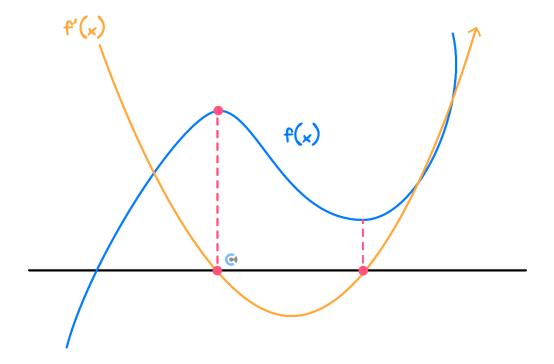
- Sign test
- We can identify the nature of a stationary point by using the sign table.


x	Less than $oldsymbol{a}$	а	Bigger than a
f'(x)	Negative	0	Positive
Shape ∩ - Decreasing curve		Stationary Point	∪ - Increasing curve

Find the gradient of the neighbouring points.

Strictly Increasing and Strictly Decreasing Functions

Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$


Strictly Decreasing: $x \in [a, b]$

- Steps:
 - 1. Find the turning points.
 - 2. Consider the sign of the derivative between/outside the turning points.

Graphs of the Derivative Function

f(x)	f'(x)
Stationary Point	<i>x</i> -intercepts
Increasing	Positive
Decreasing	Negative

y value of f'(x) = Gradient of <math>f(x)

Steps

- 1. Plot x-intercept at the same x value as the stationary point of the original.
- **2.** Consider the trend of the original function and sketch the derivative.
 - Original is increasing \rightarrow Derivative is above the x-axis.
 - ▶ Original is decreasing \rightarrow Derivative is below the x-axis.

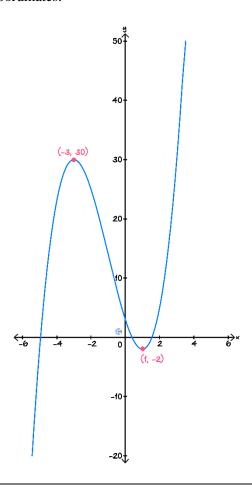
Section B: Warmup

Question 1

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 3x^2 - 9x + 3$.

a. Find f(1).

b. Find the average rate of change from x = 0 to x = 2.


- c.
- i. Find f'(x).

ii. Find f'(-1).

d.	Determine the coordinates and nature of any stationary points.	

e. The graph of y = f(x) is sketched on the axes below. Sketch the graph of y = f'(x) on the same axes. Label all axial intercepts with coordinates.

VCE Methods ¾ Questions? Message +61 440 138 726

f	Hence, state the values of x for which $f(x)$ is strictly decreasing.
1.	Thence, state the values of x for which $f(x)$ is strictly decreasing.
Sn	pace for Personal Notes
٦٢	de foi l'ersonaritotes

Section C: Exam 1 Questions (17 Marks)

INSTRUCTION: 17 Marks. 25 Minutes Writing.

Question 2 (3 marks)

a. Let $y = \frac{\tan(2x)}{x^3}$. Find $\frac{dy}{dx}$. (1 mark)

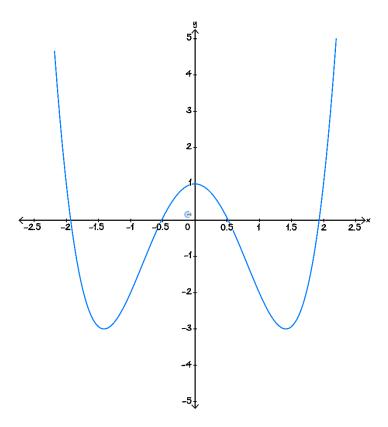
b. Let $f(x) = x^3 \tan(e^x)$. Evaluate $f'\left(\log_e\left(\frac{\pi}{6}\right)\right)$. (2 marks)

Question 3 (3 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^{kx^2}$, where $k \in \mathbb{R}$.

a. Show that $f'(x) = (2kx^2 + 1)e^{kx^2}$. (1 mark)

b. Find the value(s) of k for which the graph of y = f(x) and y = f'(x) have exactly one point of intersection. (2 marks)



wider the functions $f:\mathbb{D} \to \mathbb{D}$ $f(x) = x^2 + \mathbb{E}x$ A and $g:\mathbb{D} \to \mathbb{D}$ $g(x) = a^{\chi}$
nsider the functions $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 5x - 4$ and $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^x$.
State the rule of $g(f(x))$. (1 mark)
Find the values of x for which $g(f(x))$ is strictly decreasing. (2 marks)
Find the coordinates of the stationary point of the graph of $f(g(x))$ and state its nature. (3 marks)

Question 5 (5 marks)

The graph of $f(x) = x^4 - 4x^2 + 1$ is shown below.

a. Sketch the graph of y = f'(x) on the axes above. Label all axes intercepts with coordinates. (3 marks)

b. For both f(x) and f'(x) state whether they are an odd function, even function or neither. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

Let g be an even po	lynomial function of degree $n \geq 2$. Is it always true that g' is an odd function? (1 mar
space for Personal N	otes
, , , , , , , , , , , , , , , , , , , ,	

Section D: Tech Active Exam Skills

E CAS

Calculator Commands: Stationary Point

- ALWAYS sketch the graph first to get an idea of the nature of the stationary point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and subbing the result into f.
- **Example:** Find the turning point for $f(x) = e^{-x^2 + 2x}$.
- TI:

Define
$$f(x) = e^{-x^2 + 2 \cdot x}$$

$$\operatorname{solve}\left(\frac{d}{dx}(f(x)) = 0, x\right) \qquad x = 1$$

$$f(1) \qquad e$$

Casio:

define
$$f(x) = e^{-x^2+2x}$$
 done
$$solve(\frac{d}{dx}(f(x))=0,x)$$

$$\{x=1\}$$

$$f(1)$$

Mathematica:

In[4]:=
$$f[x_]$$
 := $Exp[-x^2 + 2x]$
In[5]:= $Solve[f'[x] == 0 && y == f[x], Reals]$
Out[5]= $\{\{x \to 1, y \to e\}\}$

Section E: Exam 2 Questions (20 Marks)

INSTRUCTION: 20 Marks. 25 Minutes Writing.

Question 6 (1 mark)

The average rate of change for the function with the rule $f(x) = y = -4e^{-\frac{2x}{5}}$ from y = -3 to y = -1 is closest to:

- **A.** 1.02
- **B.** -1.02
- **C.** 1.37
- **D.** 0.73

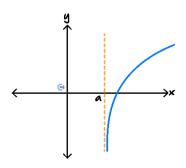
Question 7 (1 mark)

Let f(x) and g(x) be differentiable functions, with the following values given:

$$f(2) = 3$$
, $f'(4) = 5$, $g(2) = 4$, $g'(2) = 6$.

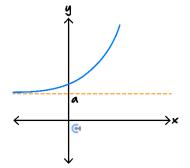
Find the gradient of f(g(x)) at x = 2.

- **A.** 20
- **B.** 15
- **C.** 30
- **D.** 24

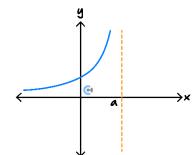

Question 8 (1 mark)

Given that f(1) = 2, f'(1) = 3, g(1) = 4, g'(1) = 5, find the gradient of f(x)g(x) at x = 1.

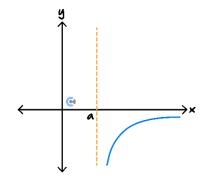
- **A.** 13
- **B.** 22
- **C.** 18
- **D.** 20

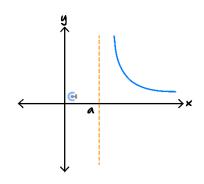

Question 9 (1 mark)

The graph of the function f is shown below:



The graph corresponding to f' is:


A.


В.

C.

D.

Question 10 (1 mark)

Suppose f(x) and g(x) are differentiable, and the following values are given:

$$f(3) = 5$$
, $f'(3) = 4$, $g(3) = 2$, $g'(3) = 1$.

Find the gradient of $\frac{f(x)}{g(x)}$ at x = 3.

- A. $\frac{2}{5}$
- **B.** $\frac{3}{4}$
- C. $\frac{1}{2}$
- **D.** $\frac{2}{3}$

Question 11 (1 mark)

Consider the graph of g with the rule $g(x) = ax^3 + bx^2 + cx + d$, where $a \ne 0$, has a y-intercept at (0,10) and turning points when x = -3 and x = 2 and passes through (3,64).

The rule of g(x) is:

A.
$$g(x) = -4x^3 - 6x^2 + 72x + 10$$

B.
$$g(x) = -3x^3 - 9x^2 + 27x + 10$$

C.
$$g(x) = 3x^3 + 8x^2 + 10x + 10$$

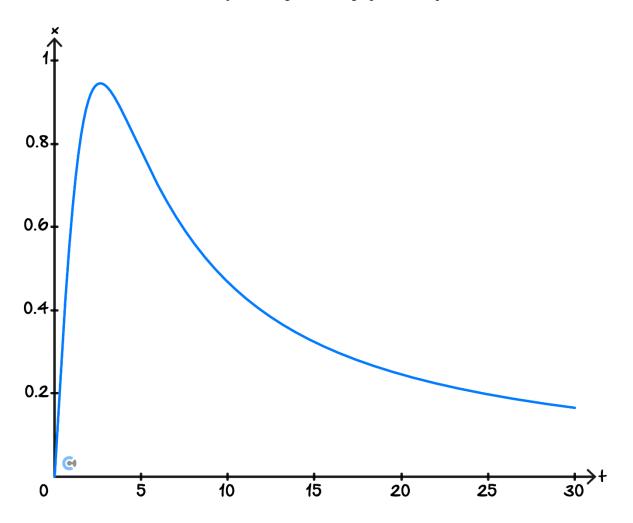
D.
$$g(x) = 2x^3 + 12x^2 + 6x + 10$$

Question 12 (1 mark)

The graph of $f(x) = ax^5 + bx^4 + x^3 - 3$, where a and b are real constants, will have three stationary points when:

- **A.** $a > -\frac{4b^2}{15}$
- **B.** $a \le -\frac{4b^2}{15}$
- C. $a < \frac{4b^2}{15}$
- **D.** $a > \frac{4b^2}{15}$

Space	for	Personal	Notes
-------	-----	----------	-------



Question 13 (13 marks)

A tranquiliser is injected into a muscle from which it enters the bloodstream. The concentration, x, mg/L, of the tranquiliser in the bloodstream, may be modelled by the function:

$$x(t) = \frac{5t}{7+t^2}, t \ge 0$$

Where t is the number of hours after the injection is given. The graph of the equation is shown:

a. The tranquiliser is effective when the concentration is at least $0.5 \, mg/L$. Find, correct to two decimal places, the length of time in hours for which the tranquiliser is effective according to this model. (2 marks)

i.	Find the coordinates for the stationary point of $x(t)$. (2 marks)
ii.	State the nature of the stationary point from part b.i. (1 mark)
iii.	Hence, find the maximum concentration of tranquiliser in the bloodstream. Give your answer correct three decimal places. (1 mark)
For	what times, is the concentration of transquiliser in the bloodstream strictly decreasing? (1 mark)

d.	According to this model, the derivative of x with respect to t gives the measure of the rate of absorption of the tranquiliser in the bloodstream.			
	How many hours after the injection is the rate of absorption into the bloodstream $0.3 mg/L/h$?			
	Give your answer correct to two decimal places. (1 mark)			
	that the tranquiliser concentration does not get too low, the exact same tranquiliser is re-applied when $t = 8$. om this point onwards the concentration of tranquiliser in the bloodstream is measured by a new function $x_1(t)$.			
e.	State the domain for $x_1(t)$. (1 mark)			
f.	$x_1(t)$ has the rule $x_1(t) = x(t) + x(t-a)$. State the value of a . (1 mark)			
g.	Find the time it takes for the concentration of tranquiliser to double from its value at $t=8$. Give your answer in hours correct to two decimal places. (2 marks)			

VCE Methods ¾ Questions? Message +61 440 138 726

h.	Determine the times, $t \ge 8$, when the concentration of tranquiliser in the bloodstream is strictly decreasing. (1 mark)
Sp	pace for Personal Notes

Section F: Extension Exam 1 (13 Marks)

INSTRUCTION: 13 Marks. 16 Minutes Writing.

For the function $f(x) = 3x^3 \tan(2x)$, $f'(x) = \frac{ax^2}{\cos(2x)}(b\sin(2x) + cx\sec(2x))$. Find the values of a , b and	d c.
	_
	_
	_
	_
	_
	_
Space for Personal Notes	

Question 15 (7 marks)
Let $f: [0, \infty) \to \mathbb{R}$, $f(x) = 5\sqrt{x} - x - 4$.
a. Find the coordinates of any stationary point of f and determine its nature. (3 marks)
Let A and B be the coordinates of the x-intercepts of the graph $y = f(x)$. Let C be any point on the graph of $y = f(x)$ that lies between the points A and B.
b. Determine the coordinates of A and B . (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Hence, determine the maximum possible area of the triangle ABC. (2 marks)

Question 16 (3 marks)

Let
$$f: [0, 12\pi] \to \mathbb{R}$$
, $f(x) = 2\sin\left(\frac{x}{3}\right) - \frac{\pi}{2}$.

The rule for f' can be obtained from the rule of f under a transformation T given by:

$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \to \left(x + \frac{3\pi}{2}, ay + b\right)$$

Find the values of a and b.

Section G: Extension Exam 2 (12 Marks)

INSTRUCTION: 12 Marks. 15 Minutes Writing.

Question 17 (1 mark)

Let f be a one-to-one differentiable function such that f(3) = 7, f(7) = 8, f'(3) = 2 and f'(7) = 3. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. g'(7) is equal to:

- **A.** $\frac{1}{2}$
- **B.** 2
- C. $\frac{1}{6}$
- **D.** $\frac{1}{3}$

Question 18 (1 mark)

Consider the function f(x) = xg(x).

It is known that g(0) = -3, g(2) = -2 and g(3) = 3.

Also g'(0) = -2, g'(2) = 1 and g'(3) = 5 and that f has only one stationary point.

Which of the following options lists the x-coordinate and nature of the stationary point of f?

- **A.** x = 0, local minimum.
- **B.** x = 2, local maximum.
- C. x = 2, local minimum.
- **D.** x = 3, local minimum.

Question 19 (1 mark)

Let f be a differentiable function. The derivative of $\log_e(f(x))$ with respect to x is:

- $\mathbf{A.} \ \frac{f'(x)}{f(x)}$
- $\mathbf{B.} \ \frac{f(x)}{\big(f(x)\big)^2}$
- C. $\frac{f'(x)}{(f(x))^2}$
- **D.** $f'(x)\log_e(f(x))$

Question 20 (1 mark)

Consider the differentiable function f. It is known that f'(1) = 2, f'(2) = 4 and f'(6) = 1.

The gradient of 3f(2x + 1) + 4 when $x = \frac{1}{2}$ is:

- **A.** 6
- **B.** 24
- **C.** 3
- **D.** 5

Question 21 (8 marks)

A train is moving along a railway. The train driver sees a large rock ahead and immediately applies the brakes when the front of the train is at a point P that is 5.5 km away from the rock at the point R.

The train's initial speed is $w \, km/h$ and $x \, km$ after the train passes the point P the train speed is given by:

$$v = k \log_e \left(\frac{x+1}{6} \right)$$

Assume that w > 0.

a.	Find the value of k in terms of w. (1 mark)	

b.	If $v = \frac{50\log_e(2)}{\log_e(6)}$	when $x = 2$, find the	value of w.	(2 marks)
D.	$\log_{e}(6)$	which $\lambda = 2$, illia tiic	varue or w.	(2 marks

c.	Show that the	location who	re the trair	stops is in	dependent o	of its initial	speed w.	(2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

	177
d.	Find a general formula for $\frac{d^n v}{dx^n}$, the n^{th} derivative of v , where $n \ge 1$. Leave your answer in terms of x , n and
	k. (3 marks)
55	ace for Dersonal Notes
2h	ace for Personal Notes


Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

