

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 1 Revision [0.8]

Workshop

Error Logbook:

Mistake/Misco	nception #1	Mistake/Misco	nception #2
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mistake/Misconception #3		Mistake/Misco	nception #4
Question #:	Page #:	Question #:	Page #:
Question #: Notes:	Page #:	Question #: Notes:	Page #:
	Page #:		Page #:

Section A: Cheat Sheets

Cheat Sheet

[1.1.11 - Find the Maximal Domain and Range

- Inside of a log must be ______
- Inside of a root must be
- Denominator _________ = O · ____
- The domain of sum or product of two functions is equal to whose firm of the two domains.

[1.1.2] - Find the Rule, Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

- The domain of composite is equal to the domain of ______function.
- Range of composite is a **Solution** of the range of the outside.

[1.1.3] - Find the Rule, Domain, and Range of Inverse Functions

- ightharpoonup f needs to be for f^{-1} to exist.
- Domain of the inverse function equals to

 and vice versa.
- For intersections of inverses, we can equate the function to

[1.1.4] - Find the Composite Function of the Inverse Function

The composite function of inverses is always equal to ______.

[1.2.1] - Find a new domain to fix composite functions

- The range of the <u>daw</u> function must be a subset of the <u>daw</u> of the outside function.
- We restrict the **domain** of the inside function so its **fixe** fits in the domain of the outside function.

[1.2.2] - Find the range of complex composite functions

To find the range of a complicated function, we can break the function into a ______ of two simpler functions.

[1.2.3] - Find the gradient of inverse functions

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at (f(a), a) = m.

[1.3.1] – Applying x' and y' notation to find transformed points, find the interpretation of transformations and altered order of transformations.

- The transformed point is called the ______ and is denoted by ________.
- Reflection makes the original coordinates the __ecale__ of their original values.
- Translation adds a unit to the original coordinate.
- Transformations should be interpreted when are isolated.
- The order of transformation follows the **bodings** order.
- To change the order of transformations, we either fashing or expanse.

[1.3.2] - Find transformed functions.

To transform the function, replace its with the new one.

[1.3.3] - Find transformations from transformed functions (Reverse Engineering).

To find the transformations, simply equate the $\frac{y}{y}$ after separating the transformations of x and y.

[1.4.1] - Apply quick method to find transformations

[1.4.4] - Find transformations of the inverse functions f(x)

[1.4.2] - Find opposite transformations

[1.4.5] - Find multiple transformations for the same functions

[1.4.3] - Apply transformations of functions to find their domain, range, transformed points and tangents.

[1.4.6] - Apply manipulation of the functions to find appropriate transformations.

[1.5.1] – Find the Midpoint and Distance (Horizontal & Vertical) Between Two Points Or Functions

- Midpoint is simply the ______ of 2 points.
- Distance formula is derived from pythog
- Horizontal distance is the distance between 14 values.

[1.5.2] - Find Parallel and Perpendicular Lines

- Parallel lines have the _____ gradient.
- Perpendicular lines have <u>regalite recipied</u> gradient.

[1.5.3] – Find the Angle Between a Line and x-axis or Two Lines

- To find the angle between a line and the x-axis we can use the equation $m = \frac{1}{2}$
- To find the angle between two lines we can use $\theta = \frac{(m_1) (m_2)}{(m_1) (m_2)}$ or $\tan \theta$

[1.5.4] - Find The Unknown Value for Systems of Linear Equations

- Two linear equations have unique solutions if they have gradients.
- Two linear equations have infinitely many solutions when they have _____ gradient and _____ constant.
- Two linear equations have no solution when they have _____ gradient and _____ different constant.

[1.5.5] – Sketching the sum of two function's graph by using the addition of ordinates

- Addition of ordinates is used to sketch the _____of two functions.
- We always add their ______ values.
- When we have an x intercept for one graph, sum graph the other graph.
- When we have an equidistance from the x-axis, sum graph has an \nearrow intercept.

- The line between a point and its reflection is _______ to the line it is reflected in.
- The ______ of a line and its reflection lies on the line it is reflected in.
- Steps for finding the reflection of a point in a line:
 - 1. Find the _____ line passing through the point.
 - 2. Find the ______ between the original line and the perpendicular line.

[1.6.2] – Apply parallel and perpendicular lines to geometric problems

[1.7.1] – Apply the Factor Theorem and Remainder Theorem to identify the roots, and remainders and find the unknown of a function.

- The degree of a polynomial is the polynomial's ______power.
- For polynomial long division:

- When P(x) is divided by $(x \alpha)$, the remainder is P(x).
- If $P(\alpha) = 0$, then $(x \alpha)$ is a ______ of P(x).

[1.7.2] - Find factored form of polynomials.

- Steps to factor a cubic polynomial are:
 - 1. Find a single root by trial and error.

- 2. Use dirit to find the quadratic factor.
- 3. Factorise the quadratic.
- Rational Root Theorem **narrows down** the possible roots. If the roots are rational numbers, it must be that any:

Potential root =
$$\pm \frac{Factors\ of\ anster few\ a_0}{Factors\ of\ each\ a_n}$$

Sum and difference of cubes:

$$a^{3} + b^{3} = ($$
 $a+b$ $)(a^{2} - ab + b^{2})$
 $a^{3} - b^{3} = ($ $a+b$ $)(a^{2} + ab + b^{2})$

[1.7.3] - Graph factored and unfactored polynomials

- Graphs of $a(x h)^n + k$, where n is an odd positive integer that is not equal to 1:
 - The point (h, k) gives us the stationary point of
- Graphs of $a(x h)^n + k$, where n is an even positive integer:
 - \bullet The point (h,k) gives us the ______
- Steps to graphing factorised polynomials:
 - **1.** Plot *x*-intercepts.
 - **2.** Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:
 - Non-Repeated: Only 💢 🔐
 - Even Repeated: x-intercept and a
 - Odd Repeated: x-intercept and a SPI)

[1.7.4] – Identify odd, and even functions and correct power functions.

Odd functions:

$$f(-x) = -f(x)$$

- Property: Reflecting on the _______ is the same as reflecting around the ________ x owh___.
- **Even functions:**

$$f(-x) = f(x)$$

- Property: It is symmetrical about the
- Power Functions:

$$y=x^{\frac{n}{m}}$$

- m: Dictates the number of **tails**.
 - ightharpoonup Odd m= _____ tails.
 - \blacktriangleright Even m =____tail.
- (e) n: Dictates the range.
 - Odd n: Range could be _____
- Power < 1: Looks like a ______function.

[1.8.1] – Apply Transformations to Restrict the Number of Positive/Negative *x*-intercept(s)

[1.8.2] – Apply Discriminant to Solve Number of Solutions Ouestions

- There are no real solutions for a quadratic when Δ

 0.
- There is one real solution for a quadratic when Λ = 0
- There are two unique real solutions for a quadratic when Δ 0.

[1.8.3] – Apply Shape/Graph to Solve Number of Solutions Ouestions

To find the number of solutions for f(x) = k, draw a line at _____ = k and count the intersections.

[1.8.4] - Apply Odd and Even Functions (MHS Investigation 2023)

- For an odd function, f'(a) = f'(-a),
- For an even function, $\frac{-f'(a) = f'(-a)}{-f'(a)}$

[1.8.5] - Identify Possible Rule(s) From a Graph

- A stationary point of inflection x intercept has a(n) power on its factor.
- If the *x*-intercept passes straight through, the power of the factor is ______.

Section B: Questions (66 Marks)

Sub-Section: Exam 1

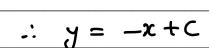
INSTRUCTION: 30 Marks. 5 Minutes Reading. 35 Minutes Writing.

Question 1 (4 marks)

Consider the points A(-3,5) and B(4,-2).

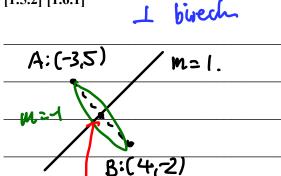
a. Find the equation of the line joining A and B and hence find the angle that the line segment AB makes with the positive x-axis. (2 marks) [1.5.2] [1.5.3]

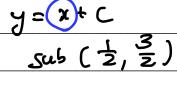
$$m = \frac{5 - (-2)}{-3 - 4} = -1$$



b. Find the equation of the line that the point A could be reflected in to map it onto the point B. (2 marks)

[1.5.2] [1.6.1]





Question 2 (3 marks) **[1.5.4]**

Consider the system of linear equations:

$$(a-4)x+3y = 2$$

 $4x + (a+7)y = a+3$

where $a \in \mathbb{R}$. Find the value of a such that the system of equations has infinitely many solutions.

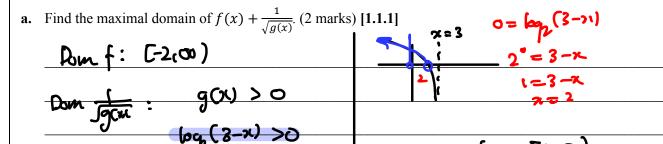
$M_1 = M_2$	C1 = (2
3 = a+7	$\frac{3}{2} = \frac{0+7}{a+3}$
(a-4) (a+1)= 12	3a+9= 2a+14
a2+ 3a-28=12	a = 5
a2+3a -40 =0	
(at g)(a-5)=0	
0=2'-8	a=5

Question 3 (9 marks)

Consider the functions f and g, defined over their maximal domains where:

$$f(x) = 2\sqrt{x+2} - 2$$

$$g(x) = \log_2(3 - x)$$



x ∈ (-∞,2)

b. Show that f(g(x)) is not defined. (1 mark) [1.1.2]

Pame
$$g = IR$$

Dom $f = (-2,0)$

: Raye g & Damf. : Not defined

c. The domain of g is restricted to $x \in (-\infty, a]$. Find the largest value of a such that f(g(x)) exists and write down its rule. (2 marks) [1.1.2] [1.2.1]

rame 9 = pom T	
. / 0	[eq2 (3~21) = -2
(3-x) <u>C</u> [-2,00)	3-2= 2-2
<u> </u>	3-x = 4
	3-4 = 2
-2!	(1) = 7L
/;	4

; x ∈ (-\omega, 4]

fcgcx11 = 2 | log_2 (3-21+2 -2

MM34 [0.8] - AOS 1 Revision - Workshop

d. Define f^{-1} , the inverse function of f. (2 marks) [1.1.3]

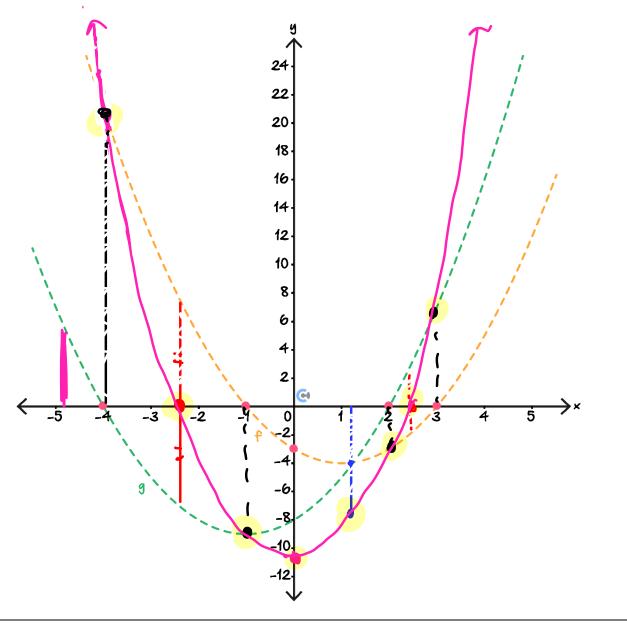
(et y=f-(x)	$\frac{(\chi+2)^2}{4} = y+2$
= x= 2 y+2 -2	$f(x) = \frac{(x+2)^2}{4} - 2$
$\frac{x+2}{2} = \sqrt{y+2}$	1-cx1= 4-2
	Dom f1 = Raye f = (-2,0)

e. Find all points of intersection between f and f^{-1} . (2 marks) [1.1.3]

2/2+2 -2 = 76	$4 = n^2$
252+2-2=7c Increase fur.	
$2\sqrt{x+2} = x+2$	χ= ± 2 .
$4(x+2) = x^2 + 4x + 4$	
4x +8= x2+4x+4	(-2,-2) d (2,2)

Question 4 (3 marks [1.5.5]

The graphs of quadratic functions f and g are sketched on the axes below. Sketch the graph of f+g on the same axes.



Question 5 (4 marks)

Consider the functions $f(x) = 2 \log_2(x)$ and $g(x) = -4 \log_2(3x - 6)$.

a. Using dilations, reflections and horizontal translations only, describe a sequence of transformations that map f(x) to g(x). (2 marks) [1.4.5]

	DI 2 from x axis (y
y = 2 (092 (31)	feffection in 2 ciris
y= ~4 (092(3x-6)	
	Pil & from y aris (
3n'-6= K	Pil 3 from y axis. (Trambée 2 unto right
$3\pi' = \chi + 6$	0 . 1
ス ¹ = jx+2	

b. Without using any dilations from the y-axis, describe a sequence of transformations that map g(x) to f(x). (2 marks) [1.4.6]

(2 marks) [1.4.0]	
y=-4 (ogz (3x-6)	Transit 2 who left.
$= -4(o_{12}(2-2) - 4(o_{12}(3))$	Trails 4 kg (3) und cys
	Dil & from rave
y = 2 log2(x)	Reflect in 21 am
$\chi^{\dagger} = \chi - 2$	OFE
	Transit 2 units left.
	Dil & from 2 ou

Space for Personal Notes

Trouble 2 logs (3) when down

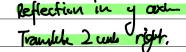
Question 6 (7 marks)

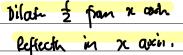
a. Let $f(x) = x^3 - 2x^2 - 11x + 12$. Solve the equation f(x) = 0. (2 marks) [1.7.2]

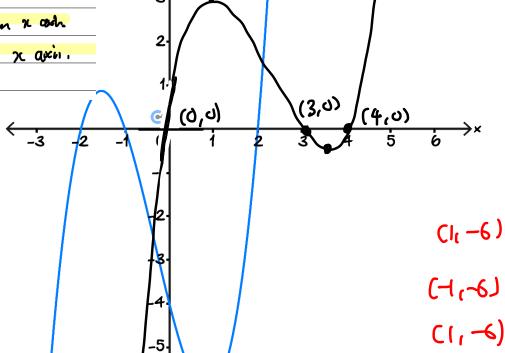
(x-1)(x-4)(x+3)=0
:. x=1,4,-3.

Let g(x) = (x-2)(x+1)(x+2). The graph of y = g(x) is shown on the axes below:

(1,3)







C((3)

b. Describe the transformations that map g(x) to $h(x) = -\frac{1}{2}g(2-x)$. (2 marks) [1.3.1]

Reflection in y axh	y = 9(20)
Translete 2 cmb right.	
	y= - 29 (2-x)
Dilate & fran x ooch	
leftects in 2c aveir.	2-10 = 20
	2-11-11

c. Find the factored form of h(x) and sketch the graph of h(x) on the same axes as g(x). Label all axes intercepts. (3 marks) [1.3.2]

g(x)=(x-2)(x+1)(x+2)	4 Use key points.
U	
$\frac{-1}{2}q(2-x) = -\frac{1}{2}(-x)(3-x)(4-x)$	
20, 2	
$= \frac{1}{2} x (3-x) (4-x)$	

Sub-Section: Exam 2

INSTRUCTION: 30 Marks. 5 Minutes Reading. 35 Minutes Writing. (No Page 25)

Question 7 (1 mark) [1.1.4]

Consider the function $f: [-3, \infty) \to \mathbb{R}$, $f(x) = (x+3)^2 - 5$. Which of the following is the rule and domain of $f(f^{-1}(x))$?

A.
$$f(f^{-1}(x)) = x, x \in [-3, \infty)$$

B.
$$f(f^{-1}(x)) = x, x \in [-5, \infty)$$

C.
$$f(f^{-1}(x)) = -x, x \in (-\infty, -5]$$

D.
$$f(f^{-1}(x)) = x, x \in (-\infty, -3]$$

Question 8 (1 mark) **[1.2.2]**

The range of the function $f(x) = \log_2(\sqrt{x^2 + 4})$ is:

A. $[2, \infty)$

B. (2, ∞)

C. [1,∞)

D. (1, ∞)

asobre for

ONTOUREDUCATION

Question 9 (1 mark) [1.2.3]

The function f has an inverse function f^{-1} . It is known that f(1) = 2, f(2) = 3 and f'(2) = 3, f'(3) = 5 Find the gradient of f^{-1} when x = 3.

A.
$$\frac{1}{2}$$

$$f: (1,2) l (2,3) (3,2)$$
 $m=3$ $m=3$

$$m=3$$

$$m = 3$$

C. 2

D. $\frac{1}{5}$

Question 10 (1 mark) [1.4.1]

Check if you go

The function $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $y = (x-1)^2$ onto the graph $y = 2(x-3)^2 + 6$. The rule for T could

A.
$$T(x,y) = (x-2,2y-6)$$

B.
$$T(x,y) = (x+2,2y+3)$$

B.
$$T(x,y) = (x+2,2y+3)$$

$$T(x,y) = (x+2,2y+3)$$

$$T(x,y) = (x+2,2y+3)$$

C.
$$T(x,y) = (x+2,2y-3)$$

D.
$$T(x,y) = (x+2,2y+6)$$

Question 11 (1 mark) [1.7.1]

The polynomial $x^3 + ax^2 + bx + 5$ is perfectly divisible by x + 3 and has a remainder of 1 when divided by x - 2. The values (a, b) are:

B.
$$\left(\frac{4}{15}, -\frac{98}{15}\right)$$

C.
$$\left(\frac{16}{3}, -\frac{26}{3}\right)$$

D.
$$\left(-\frac{14}{3}, \frac{10}{3}\right)$$

$$\int f(-3) = 0$$

$$f(2) = 1.$$

Question 12 (1 mark) [1.8.2]

The function $f(x) = x^3 - x^2 + (k - 6)x + 2k$, where $k \in \mathbb{R}$, has exactly one root for:

A. $k < \frac{9}{4}$

B. $k > \frac{9}{4}$

C. $-\frac{9}{4} < k < \frac{9}{4}$

D.
$$k = \frac{9}{4}$$

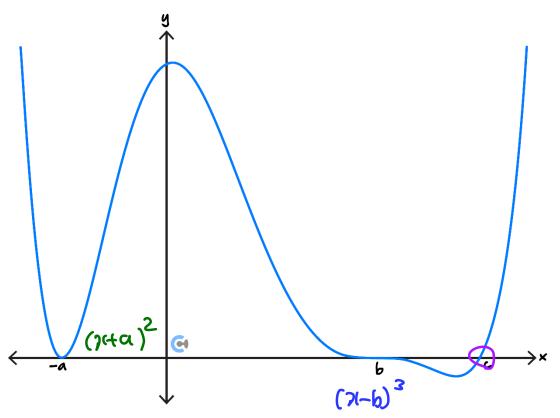
Question 13 (1 mark) [1.4.2]

Let f(x) and $g(x) = -\frac{1}{3}f(4x + 8)$ be functions. A sequence of transformations that maps g(x) to f(x) is:

- A. A dilation by a factor $\frac{1}{3}$ from the x-axis, a dilation by factor $\frac{1}{4}$ from the y-axis, a reflection in the x-axis and a translation 2 units to the left.
- **B.** A dilation by a factor 3 from the x-axis, a dilation by factor 4 from the y-axis, a reflection in the x-axis and a translation 2 units to the left.
- C. A translation 2 units to the right, a reflection in the x-axis, a dilation by factor 4 from the y-axis and a dilation by a factor 3 from the \bar{x} -axis.
- **D.** A translation 2 units to the left, a reflection in the x-axis, a dilation by factor 3 from the y-axis and dilation by a factor 4 from the x-axis.

Question 14 (1 mark)

Consider the graph of a function f shown below, where a, b, c > 0. A possible rule for f(x) is:



A.
$$f(x) = -(x+a)^2(x-b)^3(x-c)$$

B.
$$f(x) = (x+a)^2(x-b)^3(x-c)$$

C.
$$f(x) = (x - a)^2 (x - b)^3 (x - c)$$

D.
$$f(x) = (x+a)^2(x+b)^3(x-c)$$

Question 15 (1 mark) [1.7.4] [1.8.4]

Consider the function $f(x) = x^5 + 3x^3 + (k^2 - 3k - 4)x^2 + 2kx + 2k^2 + k - 1$. The value(s) of k for which f(x) is an odd function are:

A.
$$k = 1$$

B.
$$k = 1$$
 or $k = -1$

C.
$$k = -1$$

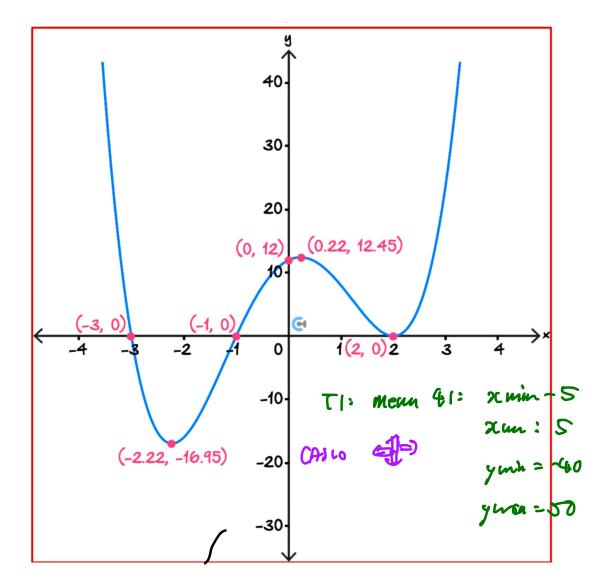
D. k = 4

Question 16 (12 marks)

Consider the quartic function $f(x) = x^4 - 9x^2 + 4x + 12$.

a. Fully factorise f and hence find all its roots. (2 marks) [1.7.2]

b. Sketch the graph of y = f(x) on the axes below. Label all axes intercepts and turning points correct to two decimal places where appropriate. (3 marks) [1.7.3]



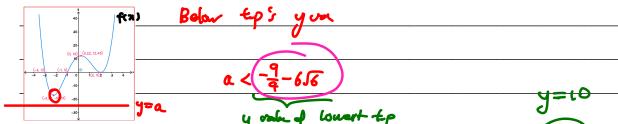
c.

k rym

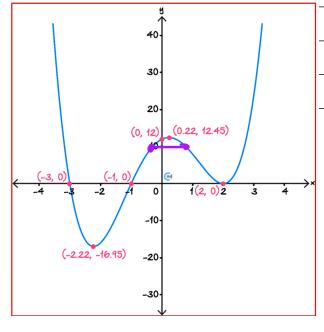
i. Find all values of $k \in \mathbb{R}$ such that f(x-k) = 0 has two positive solutions. (2 marks) [1.8.1]

KE CH3]

ii. The equation f(x) = a, $f(x) \in \mathbb{R}$ has no solutions. Find all possible values of a, exactly. (1 mark) [1.8.3]



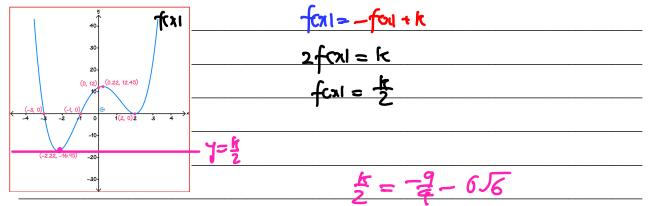
iii. Find the shortest horizontal distance between two points on the graph of y = f(x) when x = 10. Give your answer correct to two decimal places. (2 marks) [1.5.1]



- 1) $f(\pi) = 10$. $\chi = -3.1721$, -0.299195
- 2) (-0.299795)-(-2.1721)
 - = 1.08

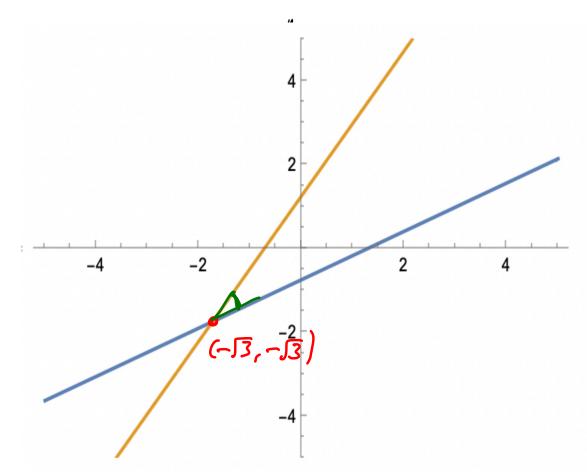
CONTOUREDUCATION

d. The graph of y = f(x) and the graph of y = -f(x) + k has exactly one point of intersection. Find the exact value of k. (2 marks) [1.3.3]



Question 17 (9 marks)

Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{3}x + 3 - \sqrt{3}$. The graph of f is shown below:



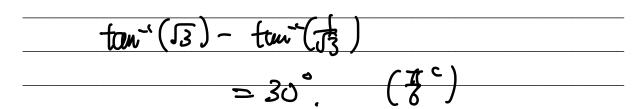
a.

i. Sketch the graph of f^{-1} , the inverse function of f, on the same axes as f above. Label the point of intersection with coordinates. (2 marks) [1.1.3]

ii. Find the distance between the origin and the intersection. (1 mark) [1.5.1]

16

iii. Find the exact size of the acute angle between f and f^{-1} at their intersection point. (1 mark) [1.5.3]



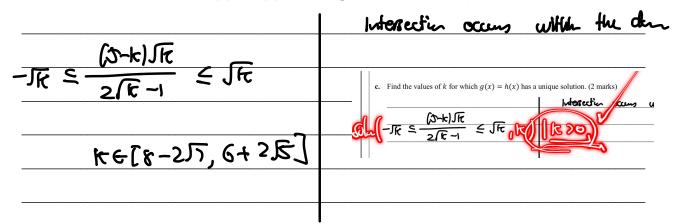
CONTOUREDUCATION

Consider the functions g(x) = 2x - 5 and $h: [-\sqrt{k}, \sqrt{k}] \to \mathbb{R}, h(x) = \frac{1}{\sqrt{k}}x - k$, where $k \in \mathbb{R}^+$.

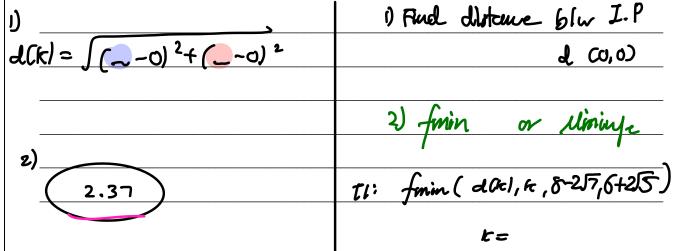
b. Find the coordinates for any point of intersection between g and h in terms of k. (1 mark)



c. Find the values of k for which g(x) = h(x) has a unique solution. (2 marks)



d. Find the shortest distance from any intersection of g and h to the origin. Give your answer correct to two decimal places. (2 marks) [1.5.1]



Space for Personal Notes

(ASIO: full decel. 4, 8-257, 6+255)

M:Ndininge[{dck], 5-27= hcg+25)h

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

