

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 1 Revision [0.8]

Workshop

Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mistake/Misconception #3		Mistake/Misconception #4	
Question #:	Page #:	Question #:	Page #:
Question #: Notes:	Page #:	Question #: Notes:	Page #:
	Page #:		Page #:

Section A: Cheat Sheets

[1.1.1] - Find the Maximal Domain and Range

- Inside of a log must be _____ bigger than 0 ____
- Inside of a root must be
 bigger than or equal to 0
- Denominator cannot be zero
- The domain of sum or product of two functions is equal to the ______ intersection _____ of the two domains.

[1.1.2] - Find the Rule. Domain and Range of a Composite Function (Range Does Not Require Splitting to Find as the Function is Easy to Draw)

- For composite function to exist range (output) of inside _ c_ domain (input) of outside
- The domain of composite is equal to the domain of _____inside (1st) ____ function.
- The range of composite is a ____subset __ of the range of the outside.

[1.1.3] – Find the Rule. Domain. and Range of Inverse Functions

- f needs to be 1:1 for f⁻¹ to exist.
- Domain of the inverse function equals to _____ range of the original ____ and vice versa.
- Symmetrical around y = x
- For intersections of inverses, we can equate the function to y = x.

[1.1.4] - Find the Composite Function of the Inverse Function

[1.2.1] - Find a New Domain to Fix Composite Functions

- The range of the inside function must be a subset of the domain of the outside function.
- We restrict the ____domain ___ of the inside function so its ___ range ___ fits in the domain of the outside function.

[1.2.2] - Find the Range of Complex Composite Functions

To find the range of a complicated function, we can break the function into a composition of two simpler functions.

[1.2.3] - Find the Gradient of Inverse Functions

If the gradient of f at (a, f(a)) = m, then the gradient of f^{-1} at $(f(a), a) = \underbrace{\frac{1}{m}}_{m}$

[1.3.1] - Applying x' and y' Notation to Find Transformed Points. Find the Interpretation of Transformations and Altered Order of Transformations

- The transformed noint is called the image and is denoted by (x', y').
- The dilation factor is ____ multiplied __ to the original coordinate.
- Reflection makes the original coordinates the negative ____ of their original values.
- Translation _____adds ___a unit to the original coordinate.
- Transformations should be interpreted when x' and y' are isolated.
- The order of transformation follows the _____ BODMAS order.
- To change the order of transformations, we either factorise or expand

Cheat Sheet

[1.3.2] - Find Transformed Functions

To transform the function, replace its
 old variables
 with the new one.

[1.3.3] - Find Transformations From Transformed Functions (Reverse Engineering)

LHS and RHS after separating the transformations of x and y.

[1.4.1] - Apply Quick Method to Find Transformations

- For applying transformations in the quick method:

 Apply everything for x in the _____ opposite _____ direction.

 Including the order!

[1.4.2] - Find Opposite Transformations

- Order is reversed
- All transformations are in the opposite direction.

[1.4.3] - Apply Transformations of Functions to Find Their Domain, Range, Transformed Points and Tangents

- Everything moves together as a function.
- Steps:
 - Find the _____transformations _____between two functions.
 - Apply the _____ transformations to domain, range, points and tangents.

[1.4.4] - Find Transformations of the Inverse Functions f(x)

- Steps:
 - Find the transformations between the two original functions.
 - Inverse the transformations found in 1.

[1.4.5] - Find Multiple Transformations For the Same Functions

- Same transformations can be done _____ differently ____ by either putting it in or out of the f().
- Commonly, look for basic algebra, index and _ log laws

[1.4.6] - Apply Manipulation of the Functions to Find Appropriate Transformations

- - Identify the region of ______

 Manipulate the function so that all the

changes are within the region of x or y.

[1.5.1] - Find the Midpoint and Distance (Horizontal & Vertical) Between Two Points or Functions

- Midpoint is simply the ___average __ of 2 points.
- Distance formula is derived from Pythagoras theorem
- Horizontal distance is the distance between x values.
- Vertical distance is the distance between y values.

[1.5.2] - Find Parallel and Perpendicular Lines

- Parallel lines have the __same _gradient.
- Perpendicular lines have ____negative reciprocal ____ gradient.

Cheat Sheet

[1.5.3] – Find the Angle Between a Line and x-axis or Two Lines

- To find the angle between a line and the x-axis we can use the equation m = tan(θ)
- To find the angle between two lines we can use

or
$$\theta=|\frac{|\tan^{-1}(m_1)-\tan^{-1}(m_2)|}{\tan\theta=\left|\frac{m_1-m_2}{1+m_1m_2}\right|}$$

[1.5.4] - Find The Unknown Value for Systems of Linear Equations

- Two linear equations have unique solutions if they have
 different gradients.
- Two linear equations have infinitely many solutions when they have the same gradient and the same constant.
- Two linear equations have no solution when they have the same gradient and different constant.

[1.5.5] - Sketching the Sum of Two Function's Graph by Using the Addition of Ordinates

- Addition of ordinates is used to sketch the __sum __ of two functions.
- We always add their y values.
- When we have an x intercept for one graph, sum graph intersects the other graph.
- When we have an intersection between two graphs, the sum graph equals to _____double _____ their ____y ____ value.
- When we have an equidistance from the x-axis, sum graph has an x₋ intercept.

[1.6.1] - Apply Midpoint to Find a Reflected Point

- The perpendicular int and its reflection is ____ to the line it is reflected in.
- The ____ of a line and its reflection lies on the line it is reflected in.
- Steps for finding the reflection of a point in a line:
 - Find the _____ perpendicular ____ line passing through the point.
 - Find the _____ intersection ____ between the original line and the perpendicular line.
 - Find the reflected point (x, y) by treating the intersection from 2. as the _____ midpoint ____ between the original and reflected point.

[1.6.2] - Apply Parallel and Perpendicular Lines to Geometric Problems

When solving geometric problems always draw a diagram of the situation.

[1.7.1] - Apply the Factor Theorem and Remainder Theorem to Identify the Roots, and Remainders and Find the Unknown of a Function

- The degree of a polynomial is the polynomial's highest power.
- The roots of a polynomial are its _____ x-intercepts
- For polynomial long division:

$$\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}$$

- When P(x) is divided by $(x \alpha)$, the remainder is $P(\alpha)$.
- If $P(\alpha) = 0$, then $(x \alpha)$ is a factor of P(x).

ONTOUREDUCATION

[1.7.2] - Find Factored Form of Polynomials

- Steps to factor a cubic polynomial are:
 - Find a single root by trial and error.

(Factor Theorem: § into the function and zero see if we get.

- long division to find the quadratic factor. Use
- 3. Factorise the quadratic.
- Rational Root Theorem narrows down the possible roots. If the roots are rational numbers, it must be that any:

Potential root =

Factors of constant term a₀ Factors of leading coefficient an

Sum and difference of cubes:

[1.7.3] - Graph Factored and Unfactored Polynomials

- Graphs of $a(x-h)^n + k$, where n is an odd positive integer that is not equal to 1:
 - The point (h, k) gives us the stationary point of inflection
- Graphs of $a(x h)^n + k$, where n is an even positive
 - turning point The point (h, k) gives us the _
 - These graphs look like a _ quadratic

- Steps to graphing factorised polynomials:
 - Plot x-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - Use the repeated factors to deduce the shape:
 - x-intercept Non-Repeated: Only _
 - Even Repeated: x-intercept and a turning point
 - Odd Repeated: x-intercept and a stationary point of inflection

Cheat Sheet

[1.7.4] - Identify Odd, and Even Functions and Correct Power Functions

Odd Functions:

$$f(-x) = -f(x)$$
Property: Reflecting on the _____ y-axis __ is the same as reflecting around the _____ x-axis __-

Even Functions:

Power Functions:

$$y = x^{\frac{n}{m}}$$

- m: Dictates the number of tails.
 - ➤ Odd $m = _____$ tails.
 - ► Even m = One __tail.
- @ n: Dictates the range.
 - Odd n: Range could be _____ all real ____
 - Even n: Range must be ______non-negative
- Power < 1: Looks like a _____ root ____ function.

Cheat Sheet

[1.8.1] – Apply Transformations to Restrict the Number of Positive/Negative *x*-intercept(s)

To solve these questions, figure out how to translate the relevant intercept to the origin

[1.8.2] – Apply Discriminant to Solve Number of Solutions Questions

- There are no real solutions for a quadratic when Δ
 < —0.</p>
- There is one real solution for a quadratic when Δ = 0.
- There are two unique real solutions for a quadratic when Δ > 0.

[1.8.3] - Apply Shape/Graph to Solve Number of Solutions Questions

To find the number of solutions for f(x) = k, draw a horizontal line at y = k and count the intersections.

[1.8.4] – Apply Odd and Even Functions (MHS Investigation 2023)

- For an odd function, $f(x) = \frac{-f(-x)}{-f(-x)}$
- For an even function, f(x) = f(-x)

[1.8.5] - Identify Possible Rule(s) From a Graph

- A turning point x-intercept has α(n)
 even power on its factor.
- A stationary point of inflection x intercept has a(n) odd power on its factor.
- If the x-intercept passes straight through, the power of the factor is ______1

Section B: Questions (61 Marks)

Sub-Section: Exam 1

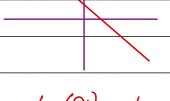
INSTRUCTION: 31 Marks. 5 Minutes Reading. 35 Minutes Writing.

Question 1 (4 marks)

Consider the points A(-3,5) and B(4,-2).

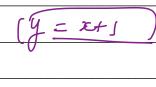
a. Find the equation of the line joining A and B and hence, find the angle that the line segment AB makes with the positive x-axis. (2 marks) [1.5.2] [1.5.3]

$$M = \frac{5 - (-2)}{-3 - 4} = \frac{7}{-7} = \frac{7}{-7}$$



b. Find the equation of the line that the point *A* could be reflected in to map it onto the point *B*. (2 marks) [1.5.2] [1.6.1]

$$midpoint = \begin{pmatrix} -3+4 & 5+-2 \\ \hline 2 & 2 \end{pmatrix}$$



Question 2 (3 marks) [1.5.4]

Consider the system of linear equations:

$$(a-4)x + 3y = 2$$
 $y = -\frac{(a-4)}{3} \times 4 = \frac{2}{3}$
 $4x + (a+7)y = a+3$ $y = -\frac{4}{a+7} \times 4 = \frac{3}{a+7}$

where $a \in \mathbb{R}$. Find the value of a such that the system of equations has infinitely many solutions.

$$\frac{-4}{a+7} = \frac{-(a-4)}{3}$$
 AND $\frac{2}{3} = \frac{a+3}{a+7}$

$$(2 - a^2 + 3a - 2)$$
 $2a + 14 - 3a + 9$

$$\frac{(\lambda = \alpha^2 + 3\alpha - 2)}{\alpha^2 + 3\alpha - 40 = 0}$$

$$\frac{(\alpha + 8)(\alpha - 5) = 0}{(\alpha + 8)(\alpha - 5) = 0}$$

$$\frac{(\alpha + 8)(\alpha - 5) = 0}{(\alpha + 8)(\alpha - 5) = 0}$$

Question 3 (10 marks)

Consider the functions f and g, defined over their maximal domains where:

$$f(x) = 2\sqrt{x+2} - 2$$

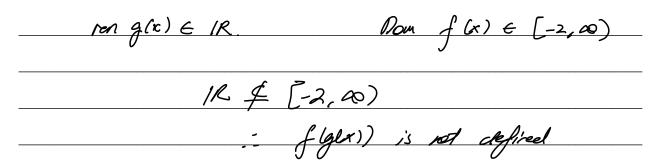
$$g(x) = \log_2(3 - x)$$

a. Find the maximal domain of $f(x) + \frac{1}{\sqrt{g(x)}}$. (2 marks) [1.1.1]

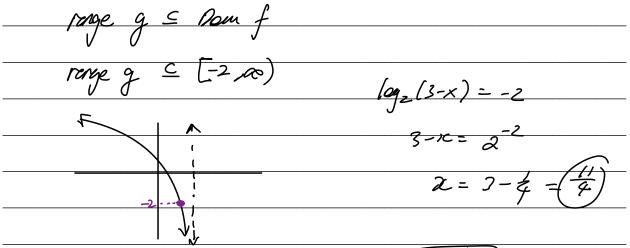
xt270		10g2 (3-x) >0
x>2		3-16>1
	α	26 2

: xe[-2,2)

b. Show that f(g(x)) is not defined. (1 mark) [1.1.2]

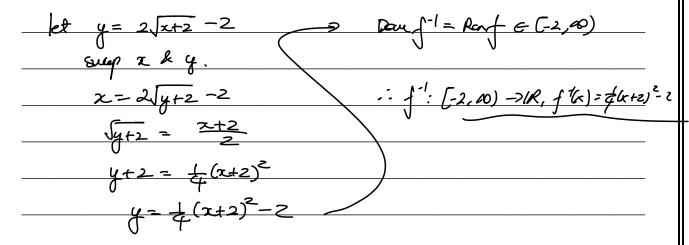


c. The domain of g is restricted to $x \in (-\infty, a]$. Find the largest value of a such that f(g(x)) exists and write down its rule. (3 marks) [1.1.2] [1.2.1]

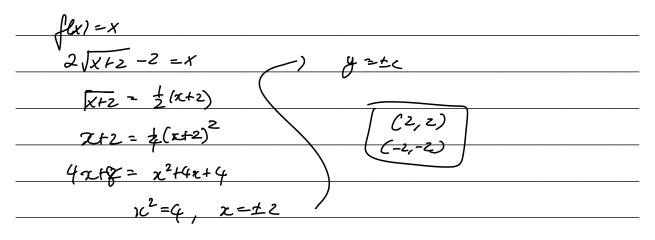


Ta = 4)

d. Define f^{-1} , the inverse function of f. (2 marks) [1.1.3]

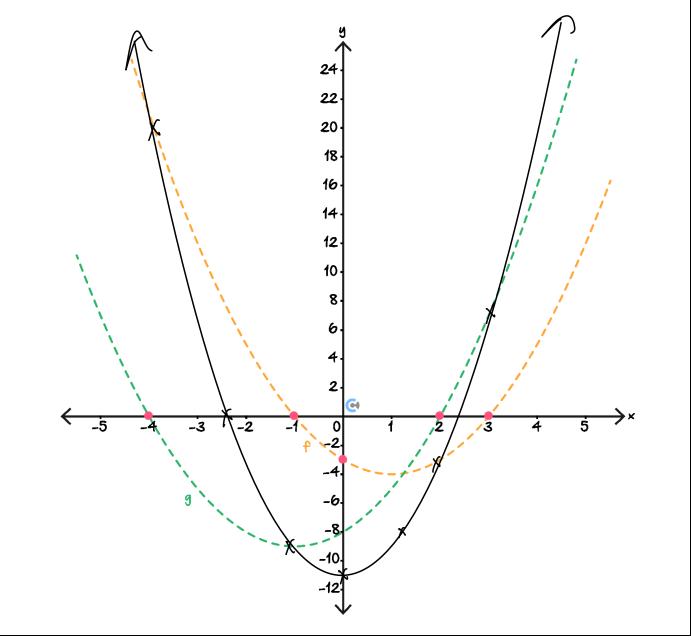


e. Find all points of intersection between f and f^{-1} . (2 marks) [1.1.3]



Question 4 (3 marks) [1.5.5]

The graphs of quadratic functions f and g are sketched on the axes below. Sketch the graph of f+g on the same axes.



Question 5 (4 marks)

Consider the functions $f(x) = 2 \log_2(x)$ and $g(x) = -4 \log_2(3x - 6)$.

a. Using dilations, reflections, and horizontal translations only, describe a sequence of transformations that map f(x) to g(x). (2 marks) [1.4.5]

$$y = 2 \log_{2}(x)$$

$$y' = -4 \log_{2}(3x'-6)$$

$$y' = -4 \log_{2}(3x'-6)$$

$$y' = -4 \log_{2}(3x'-6)$$

$$\frac{y}{2} = \frac{y'}{4}$$

$$\frac{3x'-6=x}{2 \cdot 0i/\frac{1}{3} \int_{0}^{0} y}$$

$$\frac{y'=-2y}{4 \cdot \text{ Peffect in } z}.$$

b. Without using any dilations from the y-axis, describe a sequence of transformations that map g(x) to f(x). (2 marks) [1.4.6]

$$y = -4 \log_{2}(3x-6)$$

$$y' = \lambda \log_{2}(x')$$

$$-4 \log_{2}(3) + \log_{2}(x-2)$$

$$y' = -4 \log_{2}(3) - 4 \log_{2}(x-2)$$

$$y' = -4 \log_{2}(3) - 4 \log_{2}(x-2)$$

$$y' = -4 \log_{2}(3)$$

$$y' = -4 \log_{2}(3)$$

$$y' = -4 \log_{2}(3)$$

$$y'' = -4 \log_{2}(3)$$

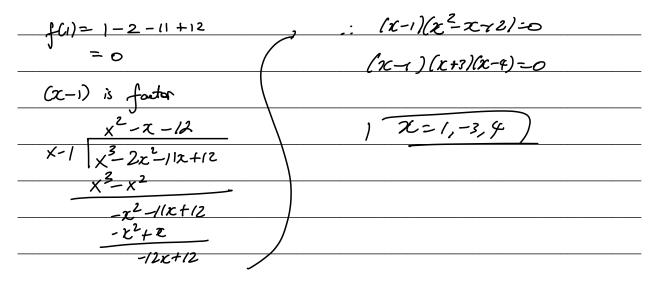
$$y'' = -4 \log_{2}(3)$$

$$y'' = -4 \log_{2}(3)$$

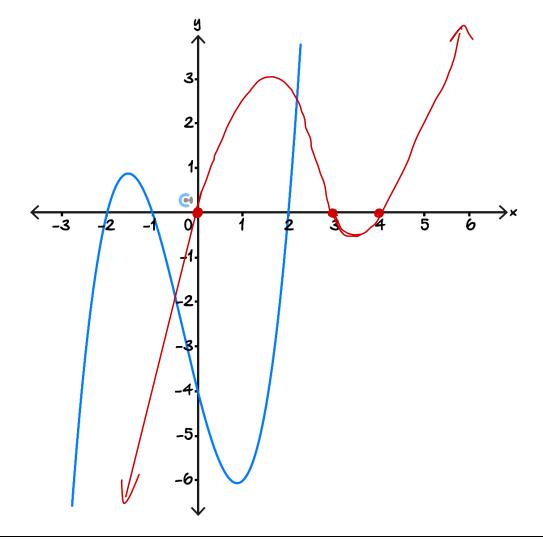
$$y'' = -4 \log_{2}(3)$$

Question 6 (7 marks)

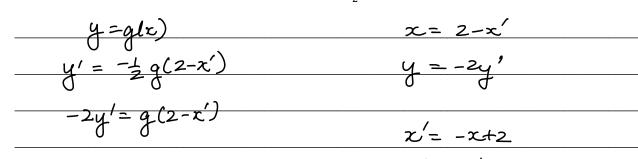
a. Let $f(x) = x^3 - 2x^2 - 11x + 12$. Solve the equation f(x) = 0. (2 marks) [1.7.2]



Let g(x) = (x-2)(x+1)(x+2). The graph of y = g(x) is shown on the axes below:



b. Describe the transformations that map g(x) to $h(x) = -\frac{1}{2}g(2-x)$. (2 marks) [1.3.1]



$$-2y'=g(2-x')$$
 $x'=-x+2$

c. Find the factored form of h(x) and sketch the graph of h(x) on the same axe intercepts. (3 marks) [1.3.2]

$$h(x) = \frac{-1}{2} \left[(2-x+a)(2-x+1)(2-x-2) \right]$$

$$= \frac{-1}{2} (4-x)(3-x)-x$$

$$= \frac{1}{2}x(x-4)(x-3)$$

Sub-Section: Exam 2

INSTRUCTION: 30 Marks. 5 Minutes Reading. 35 Minutes Writing.

Question 7 (1 mark) [1.1.4]

Consider the function $f: [-3, \infty) \to \mathbb{R}$, $f(x) = (x+3)^2 - 5$. Which of the following is the rule and domain of $f(f^{-1}(x))$?

A.
$$f(f^{-1}(x)) = x, x \in [-3, \infty)$$

B.
$$f(f^{-1}(x)) = x, x \in [-5, \infty)$$

C.
$$f(f^{-1}(x)) = -x, x \in (-\infty, -5]$$

D.
$$f(f^{-1}(x)) = x, x \in (-\infty, -3]$$

Dom f-1 = Par f

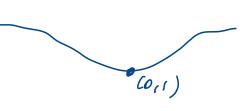
Question 8 (1 mark) [1.2.2]

The range of the function $f(x) = \log_2(\sqrt{x^2 + 4})$ is:

A. [2,∞)

B. $(2, \infty)$

D. $(1, \infty)$



CONTOUREDUCATION

Question 9 (1 mark) [1.2.3]

The function f has an inverse function f^{-1} . It is known that f(1) = 2, f(2) = 3 and f'(2) = 3, f'(3) = 5. Find the gradient of f^{-1} when x = 3.

- **A.** $\frac{1}{2}$
- B. /3

___ f(2)

- **C.** 2
- **D.** $\frac{1}{5}$

Question 10 (1 mark) [1.4.1]

The function $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $y = (x-1)^2$ onto the graph $y = 2(x-3)^2 + 6$. The rule for T could be:

A.
$$T(x,y) = (x-2,2y-6)$$

B.
$$T(x,y) = (x+2,2y+3)$$

C.
$$T(x,y) = (x+2,2y-3)$$

$$\mathbf{D}./T(x,y) = (x+2,2y+6)$$

Question 11 (1 mark) [1.7.1]

The polynomial $x^3 + ax^2 + bx + 5$ is perfectly divisible by x + 3 and has a remainder of 1 when divided by x - 2. The values (a, b) are:

- **A.** (4, 12)
- $\frac{4}{15}$, $-\frac{98}{15}$
- C. $\left(\frac{16}{3}, -\frac{26}{3}\right)$
- **D.** $\left(-\frac{14}{3}, \frac{10}{3}\right)$

Question 12 (1 mark) [1.8.2]

The function $f(x) = x^3 - x^2 + (k - 6)x + 2k$, where $k \in \mathbb{R}$, has exactly one root for:

$$k < \frac{9}{4}$$

$$k < \frac{9}{4}$$
 $k = -20$ (3 sol²)

$$\mathbf{R} \sim \frac{9}{2}$$

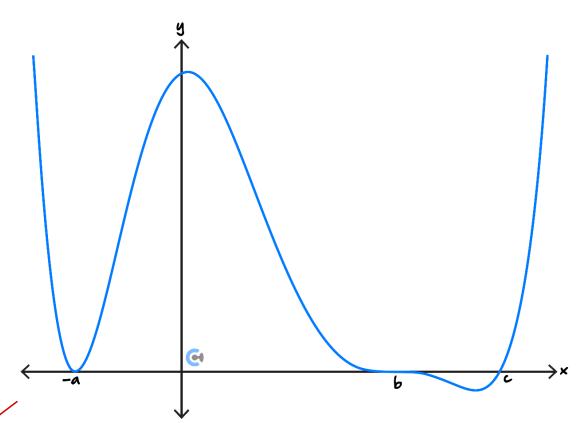
D.
$$k = \frac{9}{4}$$

Question 13 (1 mark) [1.4.2] $y = -\frac{1}{3} + (4x + 8)$ -3y = +(4x + 8)Let f(x) and $g(x) = -\frac{1}{3}f(4x + 8)$ be functions. A sequence of transformations that maps g(x) to f(x) is:

- A. A dilation by a factor $\frac{1}{3}$ from the x-axis, a dilation by a factor $\frac{1}{4}$ from the y-axis, a reflection in the x-axis, and a translation 2 units to the left.
- **B.** A dilation by a factor 3 from the x-axis, a dilation by a factor 4 from the y-axis, a reflection in the x-axis. And a translation 2 units to the left.
- A translation 2 units to the right, a reflection in the x-axis, a dilation by a factor 4 from the y-axis, and a dilation by a factor 3 from the x-axis.
- **D.** A translation 2 units to the left, a reflection in the x-axis, a dilation by a factor 3 from the y-axis, and dilation by a factor 4 from the x-axis.

Question 14 (1 mark)

Consider the graph of a function f shown below, where a, b, c > 0. A possible rule for f(x) is:



A.
$$f(x) = -(x+a)^2(x-b)^3(x-c)$$

B.
$$f(x) = (x+a)^2(x-b)^3(x-c)$$

$$C f(x) = (x - a)^2 (x - b)^3 (x - c)$$

D.
$$f(x) = (x+a)^2(x+b)^3(x-c)$$

Question 15 (1 mark) [1.7.4] [1.8.4]

ging a contoureducation com an an an 29 Consider the function $f(x) = x^5 + 3x^3 + (k^2 - 3k - 4)x^2 + 2kx + 2k^2 + k - 1$. The value(s) of k for which f(x) is an odd function are:

A.
$$k = 1$$

B.
$$k = 1$$
 or $k = -1$

$$C.$$
 $= -1$

D.
$$k = 4$$

Refire
$$f(x) = \sqrt{k}$$

Solve $(f(x) = f(x), k)$, $k = -1$

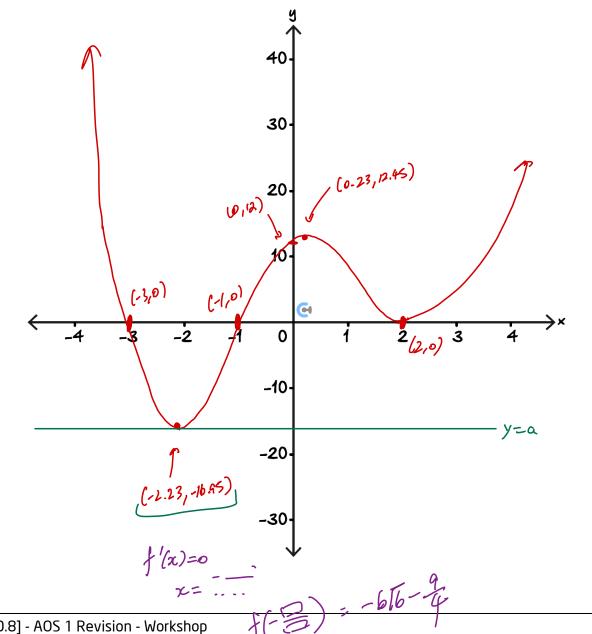
Question 16 (12 marks)

Consider the quadratic function $f(x) = x^4 - 9x^2 + 4x + 12$.

a. Fully factorise f and hence, find all its roots. (2 marks) [1.7.2]

 $f(x) = (x-\lambda)^2(x+1)(x+3)$ f(x)=0, x=2,-1,-3

b. Sketch the graph of y = f(x) on the axes below. Label all axes, intercepts, and turning points correct to two decimal places where appropriate. (3 marks) [1.7.3]



c.

i. Find all values of $k \in \mathbb{R}$ such that f(x - k) = 0 has two positive solutions. (2 marks) [1.8.1]

ii. The equation f(x) = a, $a \in \mathbb{R}$ has no solutions. Find all possible values of a, exactly. (1 mark) [1.8.3]

 $a < -656 - \frac{9}{4}$

iii. Find the shortest horizontal distance between two points on the graph of y = f(x) when y = 10. Give your answer correct to two decimal places. (2 marks) [1.5.1]

f(x)=10, z=0.78, -0.30.

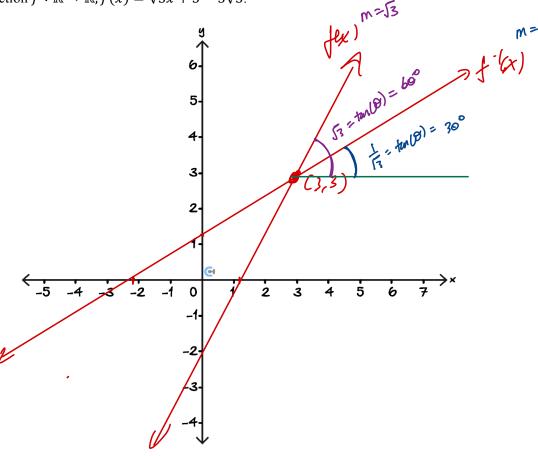
d. The graph of y = f(x) and the graph of y = -f(x) + k has exactly one point of intersection. Find the exact value of k. (2 marks) [1.3.3]

2(2+6 Tb) (Bistre to nove down)

-. k= - \frac{9}{2} -12\bar{6}

Question 17 (9 marks)

Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{3}x + 3 - 3\sqrt{3}$.

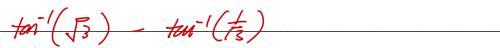


a.

- i. Sketch the graph of f and f^{-1} on the axes above. Label the point of intersection with coordinates. (2 marks) [1.1.3]
- ii. Find the distance between the origin and the intersection. (1 mark) [1.5.1]

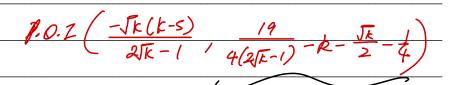
$$distrue = \sqrt{3^2 + 3^2} = \sqrt{18} = (3\sqrt{2})$$

iii. Find the exact size of the acute angle between f and f^{-1} at their intersection point. (1 mark) [1.5.3]

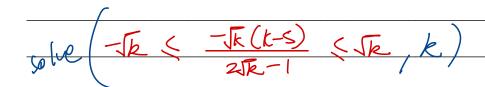


Consider the functions g(x) = 2x - 5 and $h: [-\sqrt{k}, \sqrt{k}] \to \mathbb{R}, h(x) = \frac{1}{\sqrt{k}}x - k$, where $k \in \mathbb{R}^+$.

b. Find the coordinates for any point of intersection between g and h in terms of k. (1 mark)



c. Find the values of k for which g(x) = h(x) has a unique solution. (2 marks)



d. Find the shortest distance from any intersection of g and h to the origin. Give your answer correct to two decimal places. (2 marks) [1.5.1]

$$d(k) = \left(\frac{-5k(k-5)}{2k-1} - 0\right)^2 + \left(\frac{-5k(k-5)}{2k-1} - 0\right)^2$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-methods-consult-2025

