

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 1 Revision [0.8]

Workshop

Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mistake/Misconception #3		Mistake/Misconception #4	
Mistake/Misco	nception #3	MISTAKE/MISCO	nception #4
Mistake/Misco	nception #3	MISTAKE/MISCO	nception #4
Mistake/Misco	Page #:	Question #:	Page #:
	•		
Question #:	•	Question #:	

The order of transformation follows the ____

To change the order of transformations, we either

order.

Section A: Cheat Sheets

Cheat Sheet [1.1.1] - Find the Maximal Domain and Range [1.2.1] - Find a New Domain to Fix Composite Functions Inside of a log must be ______. The range of the _____function must be a subset of the _____of the outside function. Inside of a root must be We restrict the ______ of the inside function so its _____ fits in the domain of the outside function. Denominator ______. The domain of sum or product of two functions is equal [1.2.2] - Find the Range of Complex Composite Functions to the ______ of the two domains. To find the range of a complicated function, we can break the function into a ______ of two simpler [1.1.2] - Find the Rule, Domain and Range of a Composite functions. Function (Range Does Not Require Splitting to Find as the **Function is Easy to Draw)** [1.2.3] - Find the Gradient of Inverse Functions $f(g(x)) = \underline{\hspace{1cm}} \circ \underline{\hspace{1cm}} (x).$ If the gradient of f at (a, f(a)) = m, then the gradient of For composite function to exist, f^{-1} at (f(a), a) =_____. The domain of composite is equal to the domain of [1.3.1] - Applying x' and y' Notation to Find Transformed _____ function. Points, Find the Interpretation of Transformations and Altered **Order of Transformations** The range of composite is a _____ of the range of the outside. The transformed point is called the _____ and is denoted by ______. [1.1.3] - Find the Rule, Domain, and Range of Inverse The dilation factor is ______ to the original <u>Functions</u> coordinate. f needs to be _____ for f^{-1} to exist. Reflection makes the original coordinates the _____ of their original values. Domain of the inverse function equals to _____ and vice versa. Translation _____ a unit to the original coordinate. Symmetrical around ______. Transformations should be interpreted when For intersections of inverses, we can equate the function _____ are isolated.

[1.1.4] - Find the Composite Function of the Inverse Function

The composite function of inverses is always given by $f(f^{-1}(x)) =$ ______.

Cheat Sheet

	1/2 (200 C) (2
[1.3.2] - Find Transformed Functions	[1.4.4] - Find Transformations of the Inverse Functions $f(x)$
To transform the function, replace its with the new one. [1.3.3] - Find Transformations From Transformed Functions (Reverse Engineering)	 Steps: 1. Find the transformations between the two original functions. 2. Inverse the transformations found in 1.
To find the transformations, simply equate the after separating the transformations of x and y.	[1.4.5] - Find Multiple Transformations For the Same Functions Same transformations can be done
[1.4.1] - Apply Quick Method to Find Transformations	either putting it in or out of the $f()$.
For applying transformations in the quick method: Apply everything for <i>x</i> in the direction. Including the order!	Commonly, look for basic algebra, index and
For interpreting transformations in the quick method: Read everything for <i>x</i> in the opposite direction. Including the!	[1.4.6] - Apply Manipulation of the Functions to Find Appropriate Transformations Steps:
[1.4.2] - Find Opposite Transformations	1. Identify the region of
• Order is	2. Identify the region of
All transformations are in the direction.	3 the function so that all the changes are within the region of x or y .
[1.4.3] - Apply Transformations of Functions to Find Their Domain, Range, Transformed Points and Tangents	[1.5.1] - Find the Midpoint and Distance (Horizontal & Vertical) Between Two Points or Functions
 Everything moves together as a function. Steps: Find the	 Midpoint is simply the of 2 points. Distance formula is derived from Horizontal distance is the distance between values.
Apply the transformations to domain, range, points and tangents.	Vertical distance is the distance betweenvalues.
	 [1.5.2] - Find Parallel and Perpendicular Lines Parallel lines have the gradient. Perpendicular lines have gradient.

Cheat Sheet

[1.5.3] – Find the Angle Between a Line and x-axis or Two Lines

- To find the angle between a line and the x-axis we can use the equation m =_____.
- To find the angle between two lines we can use

 $heta=\mid$ or $an heta=\mid$

[1.5.4] - Find The Unknown Value for Systems of Linear Equations

- Two linear equations have unique solutions if they have _____ gradients.
- Two linear equations have infinitely many solutions when they have ______ gradient and _____ constant.
- Two linear equations have no solution when they have _____ gradient and _____ constant.

[1.5.5] – Sketching the Sum of Two Function's Graph by Using the Addition of Ordinates

- Addition of ordinates is used to sketch the ______ of two functions.
- We always add their _____ values.
- When we have an *x* intercept for one graph, sum graph

 the other graph.
- When we have an intersection between two graphs, the sum graph equals to ______ their _____
- When we have an equidistance from the x-axis, sum graph has an _____intercept.

[1.6.1] - Apply Midpoint to Find a Reflected Point

- The line between a point and its reflection is ______ to the line it is reflected in.
- The ______ of a line and its reflection lies on the line it is reflected in.
- > Steps for finding the reflection of a point in a line:
 - 1. Find the _____ line passing through the point.
 - **2.** Find the ______ between the original line and the perpendicular line.
 - **3.** Find the reflected point (x, y) by treating the intersection from **2**. as the _____ between the original and reflected point.

[1.6.2] - Apply Parallel and Perpendicular Lines to Geometric Problems

When solving geometric problems always draw a ______ of the situation.

[1.7.1] - Apply the Factor Theorem and Remainder Theorem to Identify the Roots, and Remainders and Find the Unknown of a Function

- The degree of a polynomial is the polynomial's power.
- The roots of a polynomial are its ______
- For polynomial long division:

$$\frac{\textit{Dividend}}{\textit{Divisor}} = \textit{Quotient} + \underline{\hspace{1cm}}$$

- When P(x) is divided by $(x \alpha)$, the remainder is
- If $P(\alpha) = 0$, then $(x \alpha)$ is a _____ of P(x).

ONTOUREDUCATION

VCE Methods ¾ Questions? Message +61 440 138 726

[1.7.2] - Find Factored Form of Polynomials

- Steps to factor a cubic polynomial are:
 - 1. Find a single root by trial and error.

(Factor Theorem: Substitute into the function and see if we get ______).

- **2.** Use ______ to find the quadratic factor.
- **3.** Factorise the quadratic.
- Rational Root Theorem **narrows down** the possible roots. If the roots are rational numbers, it must be that any:

$$Potential\ root = \pm \frac{Factors\ of\ _____ a_0}{Factors\ of\ _____ a_n}$$

Sum and difference of cubes:

$$a^3 + b^3 = (\underline{})(a^2 - ab + b^2)$$

$$a^3 - b^3 = (\underline{})(a^2 + ab + b^2)$$

[1.7.3] - Graph Factored and Unfactored Polynomials

- Graphs of $a(x h)^n + k$, where n is an odd positive integer that is not equal to 1:
 - The point (h, k) gives us the stationary point of
- Graphs of $a(x h)^n + k$, where n is an even positive integer:
 - \bullet The point (h,k) gives us the ______.
 - These graphs look like a _______

- Steps to graphing factorised polynomials:
 - **1.** Plot *x*-intercepts.
 - **2.** Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:
 - Non-Repeated: Only _____
 - Even Repeated: x-intercept and a
 - Odd Repeated: x-intercept and a

Cheat Sheet

[1.7.4] – Identify Odd, and Even Functions and Correct Power Functions

Odd Functions:

$$f(-x) = -f(x)$$

- Property: Reflecting on the ______ is the same as reflecting around the _____.
- Even Functions:

$$f(-x) = f(x)$$

- Property: It is symmetrical about the ______.
- Power Functions:

$$y=x^{\frac{n}{m}}$$

- m: Dictates the number of **tails**.
 - ightharpoonup Odd m= _____ tails.
 - \blacktriangleright Even m =____tail.
- (in the state of the state) in: Dictates the range.
 - \blacktriangleright Odd n: Range could be ______.
 - \blacktriangleright Even n: Range must be ______.
- Power > 1: Looks like a ______ function.
- Power < 1: Looks like a ______ function.

Cheat Sheet

[1.8.1] – Apply Transformations to Restrict the Number of Positive/Negative *x*-intercept(s)

To solve these questions, figure out how to translate the relevant intercept to the ______.

[1.8.2] – Apply Discriminant to Solve Number of Solutions Ouestions

- There are no real solutions for a quadratic when Δ 0.
- There is one real solution for a quadratic when Δ 0.
- There are two unique real solutions for a quadratic when Λ 0.

[1.8.3] - Apply Shape/Graph to Solve Number of Solutions Questions

To find the number of solutions for f(x) = k, draw a _____ line at ____ = k and count the intersections.

[1.8.4] - Apply Odd and Even Functions (MHS Investigation 2023)

- For an odd function, $f(x) = \underline{\hspace{1cm}}$.
- For an even function, f(x) =______.

[1.8.5] - Identify Possible Rule(s) From a Graph

- A turning point x-intercept has a(n) _____ power on its factor.
- A stationary point of inflection x intercept has a(n) _____ power on its factor.
- If the *x*-intercept passes straight through, the power of the factor is ______.

Section B: Questions (61 Marks)

Sub-Section: Exam 1

INSTRUCTION: 31 Marks. 5 Minutes Reading. 35 Minutes Writing.

Qu	testion 1 (4 marks)
Co	nsider the points $A(-3,5)$ and $B(4,-2)$.
a.	Find the equation of the line joining A and B and hence, find the angle that the line segment AB makes with the positive x -axis. (2 marks) [1.5.2] [1.5.3]
b.	Find the equation of the line that the point A could be reflected in to map it onto the point B . (2 marks) [1.5.2] [1.6.1]

onsider the system of linear equations: $(a-4)x+3y=2$ $4x+(a+7)y=a+3$ here $a\in\mathbb{R}$. Find the value of a such that the system of equations has infinitely many solutions.	
4x + (a + 7)y = a + 3 here $a \in \mathbb{R}$. Find the value of a such that the system of equations has infinitely many solut	
where $a \in \mathbb{R}$. Find the value of a such that the system of equations has infinitely many solution.	

Question 3 (10 marks)

Consider the functions f and g, defined over their maximal domains where:

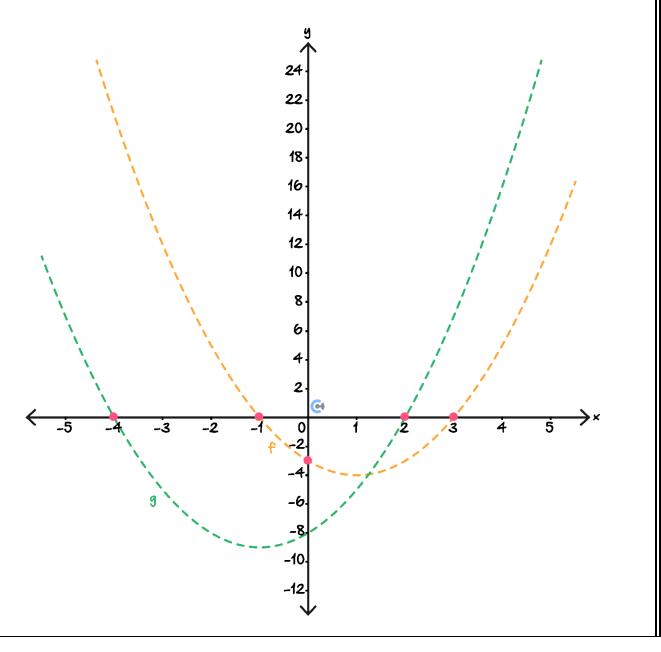
$$f(x) = 2\sqrt{x+2} - 2$$

$$g(x) = \log_2(3 - x)$$

a. Find the maximal domain of $f(x) + \frac{1}{\sqrt{g(x)}}$. (2 marks) [1.1.1]

b. Show that f(g(x)) is not defined. (1 mark) [1.1.2]

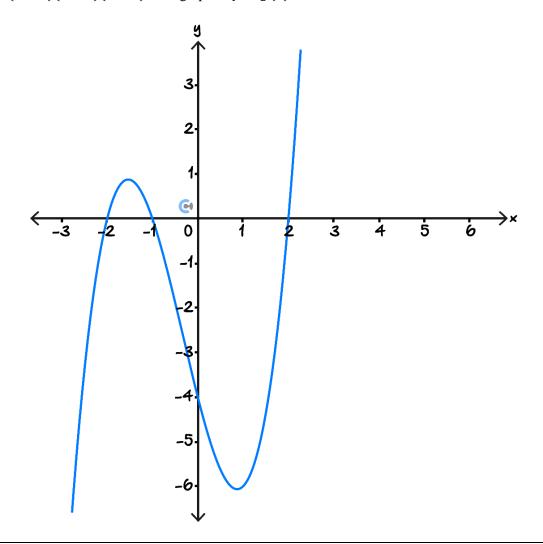
c. The domain of g is restricted to $x \in (-\infty, a]$. Find the largest value of a such that f(g(x)) exists and write down its rule. (3 marks) [1.1.2] [1.2.1]



d.	Define f^{-1} , the inverse function of f . (2 marks) [1.1.3]
e.	Find all points of intersection between f and f^{-1} . (2 marks) [1.1.3]
Sp	ace for Personal Notes

Question 4 (3 marks) [1.5.5]

The graphs of quadratic functions f and g are sketched on the axes below. Sketch the graph of f+g on the same axes.


Question 5 (4 marks)			
Consider the functions $f(x) = 2 \log_2(x)$ and $g(x) = -4 \log_2(3x - 6)$.			
a.	Using dilations, reflections, and horizontal translations only, describe a sequence of transformations that map $f(x)$ to $g(x)$. (2 marks) [1.4.5]		
b.	Without using any dilations from the y-axis, describe a sequence of transformations that map $g(x)$ to $f(x)$. (2 marks) [1.4.6]		
Sp	pace for Personal Notes		

Question 6 (7 marks)

a. Let $f(x) = x^3 - 2x^2 - 11x + 12$. Solve the equation f(x) = 0. (2 marks) [1.7.2]

Let g(x) = (x-2)(x+1)(x+2). The graph of y = g(x) is shown on the axes below:

VCE Methods 3/4 Questions? Message +61 440 138 726

	escribe the transformations that map $g(x)$ to $h(x) = -\frac{1}{2}g(2-x)$. (2 marks) [1.3.1]
_	
_	
_	
_	
	and the factored form of $h(x)$ and sketch the graph of $h(x)$ on the same axes as $g(x)$. Label all axes attercepts. (3 marks) [1.3.2]
	atercepts. (3 marks) [1.3.2]

Sub-Section: Exam 2

INSTRUCTION: 30 Marks. 5 Minutes Reading. 35 Minutes Writing.

Question 7 (1 mark) [1.1.4]

Consider the function $f: [-3, \infty) \to \mathbb{R}$, $f(x) = (x+3)^2 - 5$. Which of the following is the rule and domain of $f(f^{-1}(x))$?

A.
$$f(f^{-1}(x)) = x, x \in [-3, \infty)$$

B.
$$f(f^{-1}(x)) = x, x \in [-5, \infty)$$

C.
$$f(f^{-1}(x)) = -x, x \in (-\infty, -5]$$

D.
$$f(f^{-1}(x)) = x, x \in (-\infty, -3]$$

Question 8 (1 mark) [1.2.2]

The range of the function $f(x) = \log_2(\sqrt{x^2 + 4})$ is:

A. [2,∞)

B. (2, ∞)

C. [1,∞)

D. (1, ∞)

Question 9 (1 mark) [1.2.3]

The function f has an inverse function f^{-1} . It is known that f(1) = 2, f(2) = 3 and f'(2) = 3, f'(3) = 5. Find the gradient of f^{-1} when x = 3.

- **A.** $\frac{1}{2}$
- **B.** $\frac{1}{3}$
- **C.** 2
- **D.** $\frac{1}{5}$

Question 10 (1 mark) **[1.4.1]**

The function $T: \mathbb{R}^2 \to \mathbb{R}^2$ maps the graph of $y = (x-1)^2$ onto the graph $y = 2(x-3)^2 + 6$. The rule for T could be:

- **A.** T(x,y) = (x-2,2y-6)
- **B.** T(x,y) = (x+2,2y+3)
- C. T(x, y) = (x + 2, 2y 3)
- **D.** T(x,y) = (x+2,2y+6)

Question 11 (1 mark) **[1.7.1]**

The polynomial $x^3 + ax^2 + bx + 5$ is perfectly divisible by x + 3 and has a remainder of 1 when divided by x - 2. The values (a, b) are:

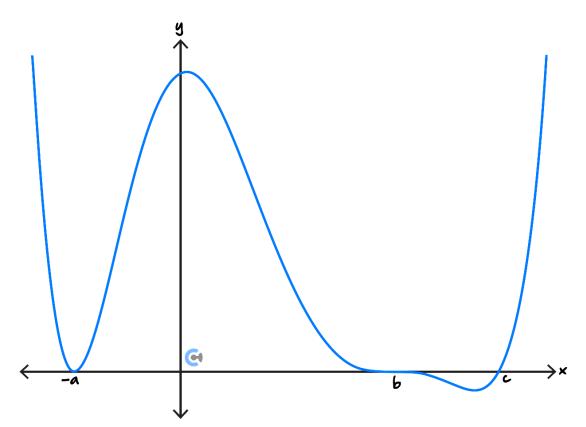
- **A.** (4, 12)
- **B.** $\left(\frac{4}{15}, -\frac{98}{15}\right)$
- C. $\left(\frac{16}{3}, -\frac{26}{3}\right)$
- **D.** $\left(-\frac{14}{3}, \frac{10}{3}\right)$

Question 12 (1 mark) **[1.8.2]**

The function $f(x) = x^3 - x^2 + (k - 6)x + 2k$, where $k \in \mathbb{R}$, has exactly one root for:

- **A.** $k < \frac{9}{4}$
- **B.** $k > \frac{9}{4}$
- C. $-\frac{9}{4} < k < \frac{9}{4}$
- **D.** $k = \frac{9}{4}$

Question 13 (1 mark) [1.4.2]


Let f(x) and $g(x) = -\frac{1}{3}f(4x + 8)$ be functions. A sequence of transformations that maps g(x) to f(x) is:

- **A.** A dilation by a factor $\frac{1}{3}$ from the *x*-axis, a dilation by a factor $\frac{1}{4}$ from the *y*-axis, a reflection in the *x*-axis, and a translation 2 units to the left.
- **B.** A dilation by a factor 3 from the x-axis, a dilation by a factor 4 from the y-axis, a reflection in the x-axis. And a translation 2 units to the left.
- C. A translation 2 units to the right, a reflection in the x-axis, a dilation by a factor 4 from the y-axis, and a dilation by a factor 3 from the x-axis.
- **D.** A translation 2 units to the left, a reflection in the x-axis, a dilation by a factor 3 from the y-axis, and dilation by a factor 4 from the x-axis.

Question 14 (1 mark)

Consider the graph of a function f shown below, where a, b, c > 0. A possible rule for f(x) is:

A.
$$f(x) = -(x+a)^2(x-b)^3(x-c)$$

B.
$$f(x) = (x+a)^2(x-b)^3(x-c)$$

C.
$$f(x) = (x - a)^2 (x - b)^3 (x - c)$$

D.
$$f(x) = (x+a)^2(x+b)^3(x-c)$$

Question 15 (1 mark) [1.7.4] [1.8.4]

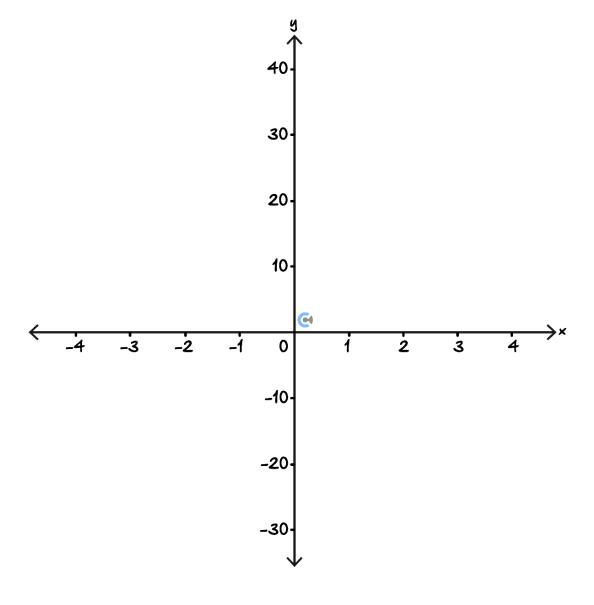
Consider the function $f(x) = x^5 + 3x^3 + (k^2 - 3k - 4)x^2 + 2kx + 2k^2 + k - 1$. The value(s) of k for which f(x) is an odd function are:

A.
$$k = 1$$

B.
$$k = 1$$
 or $k = -1$

C.
$$k = -1$$

D.
$$k = 4$$



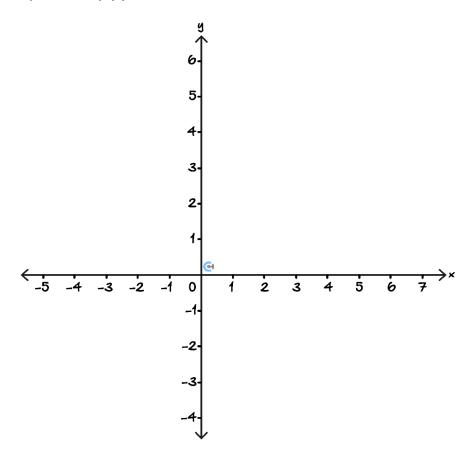
Question 16 (12 marks)

Consider the quadratic function $f(x) = x^4 - 9x^2 + 4x + 12$.

a. Fully factorise f and hence, find all its roots. (2 marks) [1.7.2]

b. Sketch the graph of y = f(x) on the axes below. Label all axes, intercepts, and turning points correct to two decimal places where appropriate. (3 marks) [1.7.3]

i.	Find all values of $k \in \mathbb{R}$ such that $f(x - k) = 0$ has two positive solutions. (2 marks) [1.8.1]
ii.	The equation $f(x) = a$, $a \in \mathbb{R}$ has no solutions. Find all possible values of a , exactly. (1 mark) [1.8.3]
iii	• Find the shortest horizontal distance between two points on the graph of $y = f(x)$ when $y = 10$. Give
111	your answer correct to two decimal places. (2 marks) [1.5.1]


VCE Methods ¾ Questions? Message +61 440 138 726

d.	The graph of $y = f(x)$ and the graph of $y = -f(x) + k$ has exactly one point of intersection. Find the exact value of k . (2 marks) [1.3.3]	et
Spa	ace for Personal Notes	

Question 17 (9 marks)

Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{3}x + 3 - 3\sqrt{3}$.

a.

i. Sketch the graph of f and f^{-1} on the axes above. Label the point of intersection with coordinates. (2 marks) [1.1.3]

ii. Find the distance between the origin and the intersection. (1 mark) [1.5.1]

iii. Find the exact size of the acute angle between f and f^{-1} at their intersection point. (1 mark) [1.5.3]

CONTOUREDUCATION

VCE Methods ¾ Questions? Message +61 440 138 726

Consider the functions g(x) = 2x - 5 and $h: [-\sqrt{k}, \sqrt{k}] \to \mathbb{R}, h(x) = \frac{1}{\sqrt{k}}x - k$, where $k \in \mathbb{R}^+$. **b.** Find the coordinates for any point of intersection between g and h in terms of k. (1 mark) **c.** Find the values of k for which g(x) = h(x) has a unique solution. (2 marks) **d.** Find the shortest distance from any intersection of g and h to the origin. Give your answer correct to two decimal places. (2 marks) [1.5.1]

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

