

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials [0.7]

Workshop Solutions

Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2		
Question #:	Page #:	Question #:	Page #:	
Notes:		Notes:		
Mistake/Misconception #3		Mistake/Misconception #4		
Mistake/Misco	nception #3	ויוואנמגפיויוואנט	ncepuon #4	
Mistake/Misco	nception #3	MISTAKE/MISCO	nception #4	
MISTAKE/MISCO Question #:	Page #:	Question #:	Page #:	
	•			
Question #:	•	Question #:		

Section A: Recap

Roots of Polynomial Functions

Roots = x-intercepts

$$\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}$$

TIPS:

- Always focus on the highest degree term first.
- Always remember to fill in any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Remainder Theorem

- Definition:
 - Find the remainder of the long division without needing long division.

When P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$.

- Steps:
 - 1. Find x-values which make the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Factor Theorem

For every *x*-intercept, there is a factor.

If
$$P(\alpha) = 0$$
, then $(x - \alpha)$ is a factor of $P(x)$.

Definition

Factorising Cubic Polynomials

- Steps:
 - 1. Find a single root by trial and error.
 - (Factor theorem: Substitute into the function and see if we get zero.)
 - 2. Use long division to find the quadratic factor.
 - **3.** Factorise the remaining factor.

Rational Root Theorem

Rational root theorem narrows down the possible roots.

$$Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$$

If the roots are rational numbers, the roots can only be $\pm \frac{\text{factors of constant term } a_0}{\text{factors of leading coefficient } a_n}$.

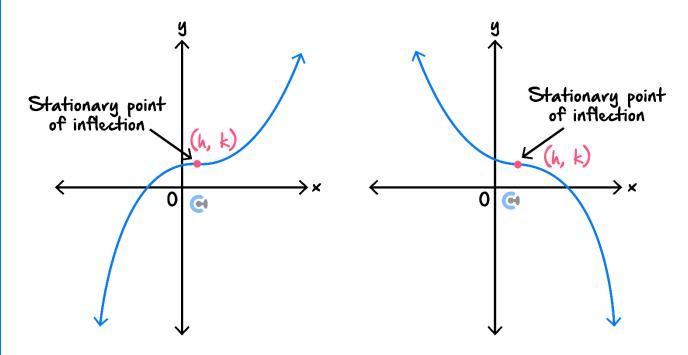
Sum and Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Graphs of $a(x-h)^n + k$, where n is Odd and Positive

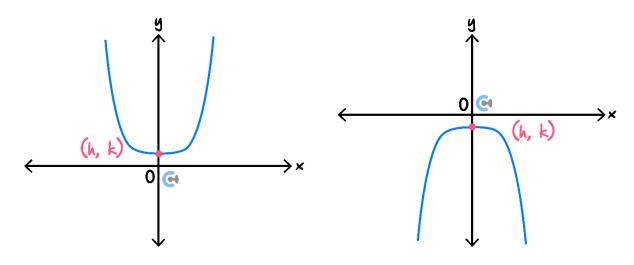
All graphs look like a "cubic".



- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- > n cannot be 1 for this shape to occur!

Graphs of $a(x-h)^n + k$, where n is Even and Positive

All graphs look like a "quadratic".

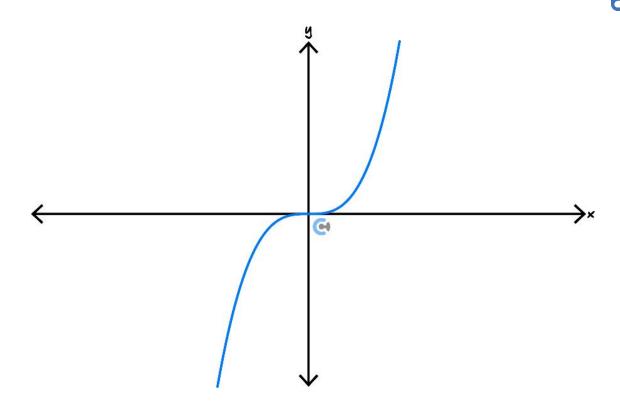


The point (h, k) gives us the turning point.

Graphs of Factorised Polynomials

- > Steps:
 - 1. Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:
 - Non-repeated: Only *x*-intercept.
 - Even repeated: x-intercept and a turning point.
 - \blacktriangleright Odd repeated: x-intercept and a stationary point of inflection.

Odd Functions

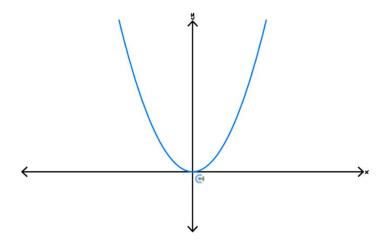


E.g., x^3 , x^5 , $x^7 - x^3$. They are all odd powers.

$$f(-x) = -f(x)$$

 \blacktriangleright Property: Reflecting around the y-axis is the same as reflecting around the x-axis.

Even Functions



 \blacktriangleright E.g., x^2 , x^4 , $-x^{10}$, x^4-4 . They are all even powers.

$$f(-x) = f(x)$$

Property: It is symmetrical around the *y*-axis.

Power Functions

$$y = x$$

- \rightarrow m: Dictates the number of tails.
 - \bigcirc Odd m =Two tails.
 - \bullet Even m =One tail.
- n: Dictates the range.
 - Odd *n*: The range could be all real.
 - \bullet Even n: The range must be non-negative.
- $ightharpoonup \frac{n}{m}(Power)$:
 - Power > 1: Looks like a polynomial function.
 - Power < 1: Looks like a root function.

Section B: Warm Up

Question 1

a. Find the remainder of the division $\frac{f(x)}{g(x)}$ where $f(x) = x^3 + 3x^2 + 2$ and g(x) = x - 1.

f(1) = 6

b. Use polynomial long division to write $f(x) = \frac{x^3 + 2x^2 + 3x + 2}{x + 2}$ in the form $f(x) = Q(x) + \frac{a}{x + 2}$ for quadratic function Q and integer a.

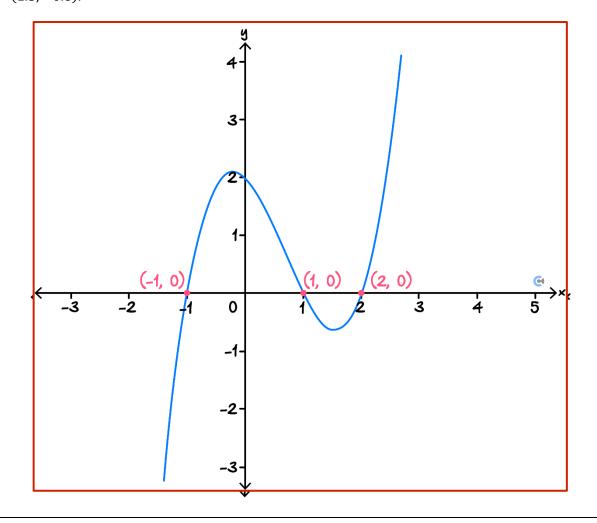
 $f(x) = x^2 + 3 - \frac{4}{x+2}$

c.

i. Find all the roots of $f(x) = x^3 - 2x^2 - x + 2$.

f(x) = (x-1)(x+1)(x-2) so roots are $x = \pm 1, 2$

ii. Sketch the graph of y = f(x) on the axes below. Turning points occur at approximately (-0.2, 2.1) and (1.5, -0.6).



d. Factorise the expression $x^3 + 27$.

 $x^3 + 27 = (x+3)(x^2 - 3x + 9)$

e. Expand the expression $(x-2)^3$.

 $x^3 - 6x^2 + 12x - 8$

f. Show that the function $f(x) = x^3 - 3x$ is odd.

 $f(-x) = (-x)^3 - 3(-x)$ $= -x^3 + 3x$ $= -(x^3 - 3x)$ = -f(x)

g. Sketch the graph of $y = x^{\frac{2}{3}}$ on the axes below.



Section C: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 25 Minutes Writing.

Question 2 (3 marks)	
Let $f(x) = x^3 - ax^2 - 5x + b$, where a and b are constants. When $f(x)$ is divided by $x - 2$, the remainder is -4 and when $f(x)$ is divided by $x + 1$, the remainder is 8 . Find the value of a and b .	•
	_
	_
	_
a = 2 and b = 6.	_
	_
	_
	_

Space for Personal Notes				

Question 3 (5 marks)

Consider the function given by $f(x) = 2x^3 - 3x^2 - 11x + 6$.

a. Find all x-intercepts of f(x). (3 marks)

Solve [$(2 \times -1) * (x - 3) * (x + 2) = 0, x$]

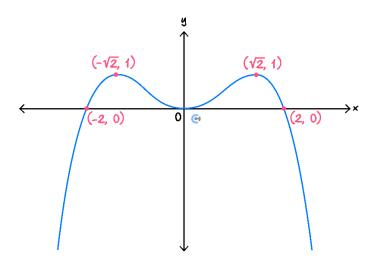
$$\left\{\left.\left\{\left.x\rightarrow-2\right.\right\},\;\left\{x\rightarrow\frac{1}{2}\right\},\;\left\{x\rightarrow3\right.\right\}\right\}$$

b. Hence, find all *x*-intercepts for f(g(x)) where $g(x) = x^2 + 1$. (2 marks)

Question 4 (3 marks)

The function $f: R \to R$, f(x) is a polynomial function of degree 4. Part of the graph of f is shown below.

The graph of f touches the x-axis at the origin.



a. Find the rule of f. (2 marks)

$$f(x) = -\frac{1}{4}x^2(x-2)(x+2)$$

b. Find the values of c for which f(x) + c = 0, where $c \in \mathbb{R}$, has an even number of real solutions. (1 mark)

Ce lis/Fa]

NOTE: 0 is an even number. $c \in R - \{0\}$

Question 5 (3 marks)

Consider the function given by $f(x) = x^4 + x^2 + 2$. (2 marks)

a. Show that f(x) is an even function.

$$f(-x) = (-x)^4 + (-x)^2 + 2$$

= $x^4 + x^2 + 2$
= $f(x)$

b. The gradient of f when x = 3 is 114. State the gradient of f when x = -3. (1 mark)

-114

Question 6 (6 marks)

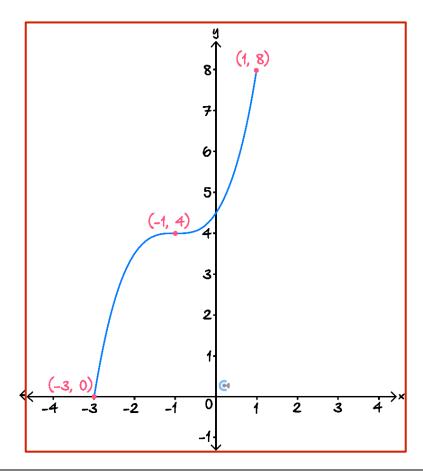
Consider the function $h: [-3,1] \to \mathbb{R}, h(x) = \frac{1}{2}x^3 + \frac{3}{2}x^2 + \frac{3}{2}x + \frac{9}{2}$.

a. Given that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, write h(x) in the form of $a(x + b)^3 + c$. (3 marks)

 $a = \frac{1}{2}$, b = 1 and c = 4.

$$h(x) = \frac{1}{2}(x+1)^3 + 4$$

b. Sketch y = h(x) on the axes below. Label any endpoints, axes, intercepts, and stationary points. (2 marks)



VCE Methods ¾ Questions? Message +61 440 138 726

c.	How many solution(s) will $h(x) = k$ always have for $k \in [0,8]$? (1 mark)
	1 solution.

Spa	ce for Personal Notes

Section D: Tech Active Exam Skills

G

Calculator Commands: Factor and Expand

- All the technologies have a "factor" and "expand" function.
- The general syntax is factor(expr), or expand(expr).
- **Example:** Factorise the expression $2x^3 23x^2 + 33x + 108$ and expand the expression $(x+1)^5(x-2)^3$.
- TI:

$$\frac{\left(x-9\right)\cdot\left(x-4\right)\cdot\left(2\cdot x+3\right)}{\left(x-4\right)\cdot\left(x-4$$

Casio:

factor
$$(2x^3-23x^2+33x+108)$$
 $(x-4)\cdot(x-9)\cdot(2\cdot x+3)$ expand $((x+1)^5(x-2)^3)$ $x^8-x^7-8\cdot x^6+2\cdot x^5+25\cdot x^4+11\cdot x^3-26\cdot x^2-28\cdot x-8$

Mathematica:

In[7]:= Factor [108 + 33 x - 23
$$x^2$$
 + 2 x^3]
Out[7]:= $(-9 + x) (-4 + x) (3 + 2 x)$
In[8]:= Expand [$(x + 1) ^5 (x - 2) ^3$]
Out[8]:= $-8 - 28 x - 26 x^2 + 11 x^3 + 25 x^4 + 2 x^5 - 8 x^6 - x^7 + x^8$

CAS GI

Calculator Commands: Turning Point

- ALWAYS sketch the graph first to get an idea of the nature of the turning point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and subbing the result into f.
- **Example:** Find the turning point for $f(x) = e^{-x^2 + 2x}$.
- TI:

Define
$$f(x) = e^{-x^2 + 2 \cdot x}$$

$$\operatorname{solve}\left(\frac{d}{dx}(f(x)) = 0, x\right)$$
 $x = 1$

f(1) **e**

> Casio:

define
$$f(x) = e^{-x^2+2x}$$

done
 $solve(\frac{d}{dx}(f(x))=0,x)$
 $\{x=1\}$
 $f(1)$

Mathematica:

In[4]:=
$$f[x_] := Exp[-x^2 + 2x]$$

In[5]:= $Solve[f'[x] == 0 && y == f[x], Reals]$
Out[5]= $\{\{x \to 1, y \to e\}\}$

TI UDF: We can use the analyse function.

Analyse a Function

analysed
$$\frac{x^{4}-2\cdot x^{3}-3\cdot x^{2}+3\cdot x+1}{-3\cdot x^{3}-6\cdot x^{2}-x+1}, x, -5, 5$$

- ▶ Start Point: -5 262
- Maximal Domain:

 $x \neq -1.68469$ and

 $x \neq -0.629579$ and

 $x \neq 0.314273$ and

-5≤x≤5

Asymptotes: (4)

x = -1.68469 (Vertical)

x=-0.629579 (Vertical)

x=0.314273 (Vertical)

$$y = \frac{4}{3} - \frac{x}{3}$$
 (Oblique)

x -Intercepts: (4)

[-1.3772 0],[-0.273891 0],

[1 0],[2.65109 0]

- ▶ Vertical Intercept: [0 1]
- Derivative:

$$\frac{-(3 \cdot x^6 + 12 \cdot x^5 - 26 \cdot x^3 - 24 \cdot x^2 - 6 \cdot x - 4)}{(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2}$$

$$(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2$$

▶ Inflection Points: (2)

[-1.11377 1.48672] (Increasing)

[-0.11198 0.604642] (Increasing)

▶ Stationary Points: (2)

-3.45719 3.17894 (Local min.)

[1.6173 0.124612] (Local max.)

Done

Overview:

- This program will find for a given function:
 - Coordinates of endpoints.
 - The maximal domain.
 - The equations of straight-line asymptotes.
 - The rule of the derivative.
 - Inflection points and their nature.
 - Stationary points and their nature.
- There are two analysis programs:
 - Analyse which analyses a function over the domain R or the maximal domain.
 - Analysed which analyses over a domain with specified start and end points.
 - Both are found in the methods func library. You can switch between the two on the calculator page by adding/removing the 'd' to reference the appropriate program.

Input:

analyse(< function >, < variable >)

analysed(< function >, < variable >, < lower bound >, < upper bound >)

Other notes:

- It is recommended to use the analysed program when working with trigonometric functions.
- Be careful when using functions with parameters since some parts of the programs may not be able to give a solution.:/
- If at least one of the bounds is "?", the asymptote finder will be disabled and the program will analyse over the maximal domain.

Calculator Commands: Using Sliders/Manipulate on CAS

CAS C-I

Mathematica

Manipulate[Plot[function, {x, xmin, xmax}],

{unknown, lowerbound, upperbound}]

• NOTE: The function must be typed out instead of using its saved name.

> TI-Nspire

 $\int f1(x)=function$ with unknown

Create Sliders Create a slider for: unknown OK Cancel

-5.00000 5.00000

Casio Classpad

G

<u>Calculator Commands:</u> Finding the equation of a polynomial that passes through points.

- \blacktriangleright Given n points, we can find a degree n-1 polynomial that passes through all these points.
- **Example:** Find the equation of the quadratic function that passes through the points (0,6), (2,2), and (3,3).
- TI:

Define
$$f(x)=a \cdot x^2 + b \cdot x + c$$

Solve $(f(0)=6 \text{ and } f(2)=2 \text{ and } f(3)=3, a, b, c)$
 $f(x)|a=1 \text{ and } b=-4 \text{ and } c=6$
 $f(x)|a=1 \text{ and } b=-4 \text{ and } c=6$

Casio:

define
$$f(x) = a*x^2 + b*x + c$$
 done
$$\begin{cases} f(0)=6 \\ f(2)=2 \\ f(3)=3 \\ a,b,c \end{cases}$$

$$\{a=1,b=-4,c=6\}$$

$$\{a=1,b=-4,c=6\}$$

Mathematica:

In[9]:=
$$f[x_{-}] := a x^2 + b x + c$$

In[10]:= $Solve[f[0] := 6 && f[2] := 2 && f[3] := 3]$

Out[10]:= $\{\{a \to 1, b \to -4, c \to 6\}\}$

In[11]:= $f[x] /. \{a \to 1, b \to -4, c \to 6\}$

Out[11]:= $6 - 4x + x^2$

Section E: Exam 2 (27 Marks)

INSTRUCTION: 27 Marks. 34 Minutes Writing.

Question 7 (1 mark)

Let $f(x) = x^3 + ax^2 + bx + 2$. It is known that $\frac{f(x)}{4-x}$ has a remainder of 20, and f has a factor of 3x - 1. Find the values of a and b.

A.
$$a = -\frac{97}{66}$$
 and $b = -\frac{371}{66}$.

B.
$$a = -\frac{17}{6}$$
 and $b = -\frac{1}{6}$.

C.
$$a = \frac{7}{2}$$
 and $b = -\frac{13}{2}$.

D.
$$a = \frac{259}{78}$$
 and $b = -\frac{563}{78}$.

Question 8 (1 mark)

Consider the following quadratic $y = (x + 1)^2(x^2 + 2kx + 10)$. It is known that the quadratic has three distinct x-intercepts. What are the possible value(s) of k?

A.
$$k < -2\sqrt{10} \cup k > 2\sqrt{10}$$
.

B.
$$k = \pm 2\sqrt{10}$$
.

C.
$$k = \pm \sqrt{10}$$
.

D.
$$k < -\sqrt{10} \cup k > \sqrt{10}$$
.

Question 9 (1 mark)

The function $f(x) = x^5 + (k-1)x^4 + 3x^3 + x$ is an odd function when:

A.
$$k \in R$$
.

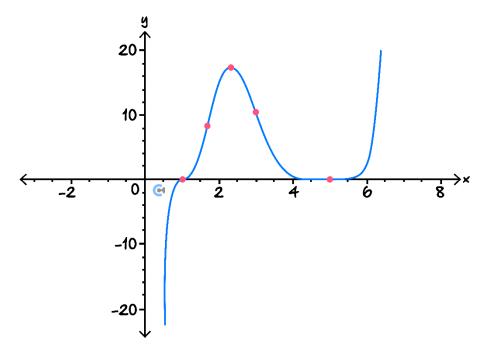
B.
$$k = -1$$
.

C.
$$k = 1$$
.

D.
$$k \le 0$$
.

Question 10 (1 mark)

Given that a < 0, which one of the following equations can correspond to the given graph?



A.
$$y = -a(x+1)^3(x-5)^2$$
.

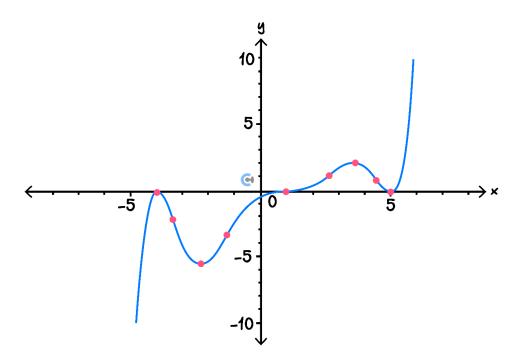
B.
$$y = a(5 - x)(x - 1)$$
.

C.
$$y = a(5-x)^4(x-1)$$
.

D.
$$y = -a(5-x)^6(x-1)^3$$
.

Question 11 (1 mark)

What is the minimum degree of the following polynomial?



- **A.** 5.
- **B.** 6.
- C. 7.
- **D.** 8.

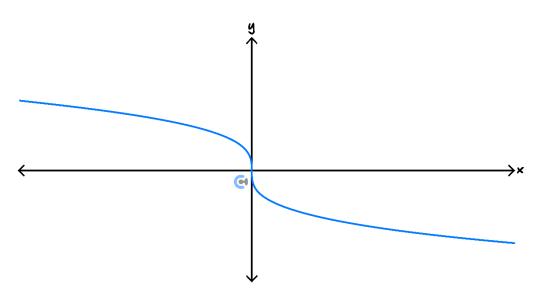
Question 12 (1 mark)

The equation $x^3 - 9x^2 + 15x + w = 0$ has only one solution for x when:

- **A.** -7 < w < 25.
- **B.** $w \le -7$.
- **C.** $w \ge 25$.
- **D.** w < -7 or w > 25.

Question 13 (1 mark)

The following graph could have a rule:



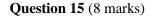
- **A.** $y = x^{1/3}$.
- **B.** $y = x^{2/3}$.
- C. $y = -x^{2/3}$.
- **D.** $y = -x^{1/3}$.

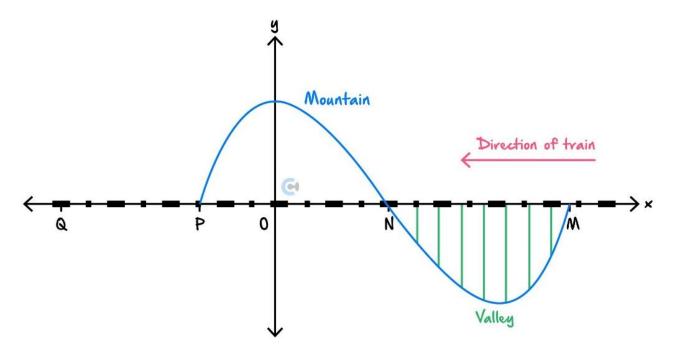
Question 14 (1 mark)

Consider the function $f: R^+ \to R$, $f(x) = x^{\frac{p}{q}}$ and $g: R^+ \to R$, $g(x) = x^{\frac{m}{n}}$, where p, q, m, and n are positive integers, and $\frac{p}{q}$ and $\frac{m}{n}$ are fractions in simplest form.

If $\{x: f(x) > g(x)\} = (0, 1)$ and $\{x: g(x) > f(x)\} = (1, \infty)$, which of the following must be **false**?

- **A.** m > p and q = n.
- **B.** pn < qm.
- C. f'(c) = g'(c) for some $c \in (0,1)$.
- **D.** f'(d) = g'(d) for some $d \in (1, \infty)$.





A train is travelling along a straight-level track from M towards Q.

The train will travel along a section of track MNPQ.

Section MN passes along a bridge over a valley.

Section NP passes through a tunnel in a mountain.

Section PQ is 6.2 km long.

From M to P, the curve of the valley and the mountain, directly below and above the train track, is modelled by the graph:

$$y = \frac{1}{200}(ax^3 + bx^2 + c)$$
 where a, b, and c are real numbers.

All measurements are in kilometres.

a. The curve defined from M to P passes through N(2,0). The gradient of the curve at N is -0.06 and the the curve has a turning point at x=4.

From this information, write down three simultaneous equations in a, b, and c, and hence, show that a = 1, b = -6, and c = 16. (4 marks)

f(2) = 0. $0 = \frac{1}{200} (8u + 9b + c)$ $f'(2) = -0.06 = \frac{1}{200} (12a + 4b)$ f'(4) = 0 $0 = \frac{1}{200} (48a + 8b)$

- **b.** Find giving exact values:
 - i. The coordinates of M and P. (2 marks)

- ii. The length of the tunnel. (1 mark)



iii. The maximum depth of the valley below the train track. (1 mark)

$$f(x) = \frac{1}{200}(x^3 - 6x^2 + 16)$$

$$f'(x) = \frac{1}{200}(3x^2 - 12x)$$

Turning points at f'(x) = 0

$$(3x^2 - 12x) = 0$$

$$x = 0.4$$

From the graph we see that maximum at x = 0

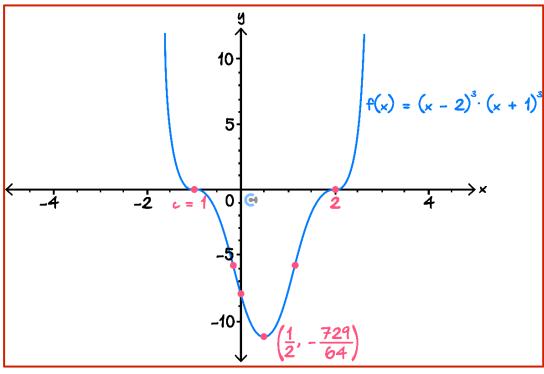
Hence minimum at x = 4

$$f(4) = \frac{1}{200}(4^3 - 6 \times (4)^2 + 16) = -0.08$$

Hence depth of valley: 0.08 km

Question 16 (11 marks)

Consider the following function of the form $f(x) = a(x-b)^3(x-c)^3$ where b > c.



The turning point of the graph is given as $\left(\frac{1}{2}, -\frac{729}{64}\right)$.

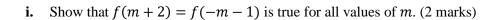
a. Find the values of a, b, and c. (3 marks)

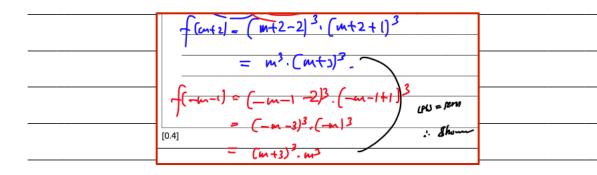
$$b=2$$

$$C=-1$$

$$Sub \left(\frac{1}{2}, \frac{-729}{64}\right) \quad sub \left(a=1\right)$$

b.

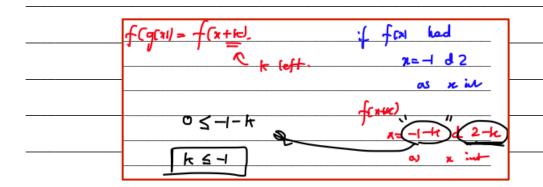




ii. State the value of r such that f(r+m) = f(r-m) for all values of m. (1 mark)

$$r = \frac{1}{2}$$

- c. Consider g(x) = x + k.
 - i. Find the value(s) of k such that there are no negative x-intercepts for f(g(x)). (2 marks)



ii. Find the value(s) of k such that there is only one negative x-intercept for f(g(x)). (2 marks)

iii. Find the value of k such that f(g(x)) is an even function. (1 mark)

f(g(x)) is f translated k units to the left. $f \text{ will be even if it is translated } \frac{1}{2} \text{ units left.}$ $Therefore, k = \frac{1}{2}.$

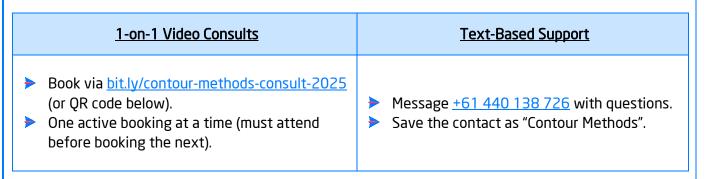
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

