

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Polynomials [0.7]

Workshop

Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mistake/Misconception #3		Mistake/Misconception #4	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	

Section A: Recap

Roots of Polynomial Functions

$$Roots = x$$
-intercepts

$$\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}$$

TIPS:

- Always focus on the highest degree term first.
- Always remember to fill in any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Remainder Theorem

- Definition:
 - Find the remainder of the long division without needing long division.

When P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$.

- Steps:
 - 1. Find x-values which make the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Factor Theorem

For every *x*-intercept, there is a factor.

If
$$P(\alpha) = 0$$
, then $(x - \alpha)$ is a factor of $P(x)$.

remainder =0

Definition

Factorising Cubic Polynomials

- > Steps:
 - 1. Find a single root by trial and error. ± 1 , ± 2 , ± 3 (Start small)
 - (Factor theorem: Substitute into the function and see if we get zero.)
 - 2. Use long division to find the quadratic factor.
 - **3.** Factorise the remaining factor.

Rational Root Theorem

Rational root theorem narrows down the possible roots.

Potential noots =
$$\pm \frac{1,2,3,6}{1}$$

 $Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$

If the roots are rational numbers, the roots can only be $\pm \frac{\text{factors of constant term } a_0}{\text{factors of leading coefficient } a_n}$.

Sum and Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

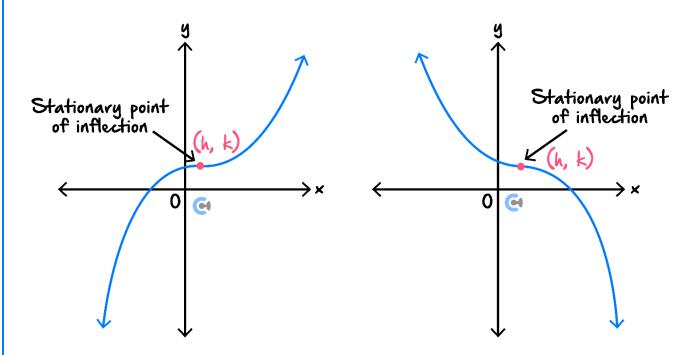
$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$
$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

CONTOUREDUCATION

3,5,7,9 ---

Graphs of $a(x-h)^{\frac{1}{n}}+k$, where n is Odd and Positive

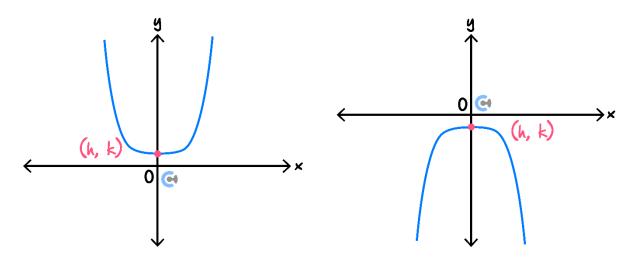
All graphs look like a "cubic".



- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- \blacktriangleright n cannot be 1 for this shape to occur!

2, 4ር b / δ ር 10 - x. Graphs of $a(x-h)^n + k$, where n is Even and Positive

All graphs look like a "quadratic".



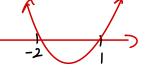
The point (h, k) gives us the turning point.

ONTOUREDUCATION

Graphs of Factorised Polynomials

- Steps:
 - 1. Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:

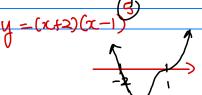
 - Non-repeated: Only x-intercept.



Even repeated: x-intercept and a turning point. $(y = (x+2)(x-1)^{\frac{1}{2}}$

Odd repeated: x-intercept and a stationary point of inflection.

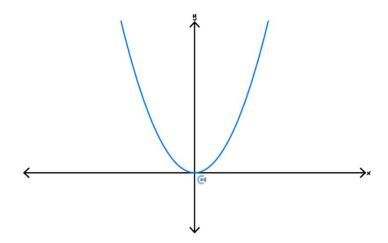
Odd Functions



- E.g., x^3 , x^5 , $x^7 x^3$. They are all odd powers.
- Property: Reflecting around the y-axis is the same as reflecting around the x-axis.

ONTOUREDUCATION

Even Functions



E.g., x^2 , x^4 , $-x^{10}$, $x^4 - 4$. They are all even powers.

$$\int_{a}^{x} f(-x) = f(x)$$

Property: It is **symmetrical** around the *y*-axis.

Power Functions

$$y=\chi \frac{n}{m}$$

- m: Dictates the number of tails.
 - Odd m = Two tails.

- e.g. y=x =
- Even m =One tail.
- n: Dictates the range.
 - Odd *n*: The range could be all real.
- Even n: The range must be non-negative.
- $ightharpoonup \frac{n}{m}(Power)$:

- on/above x-axis
- Power > 1: Looks like a polynomial function.
- Power < 1: Looks like a root function.
- eg. \$, \frac{1}{8}

 e-g. \frac{1}{2}, \frac{7}{4}, \frac{7}{8}

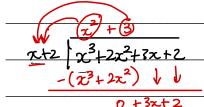
Section B: Warm Up

Question 1

a. Find the remainder of the division $\frac{f(x)}{g(x)}$ where $f(x) = x^3 + 3x^2 + 2$ and g(x) = x - 1.

$$f(i) = 1^2 + 3\omega^2 + 2$$

b. Use polynomial long division to write $f(x) = \frac{x^3 + 2x^2 + 3x + 2}{x + 2}$ in the form $f(x) = Q(x) + \frac{a}{x + 2}$ for quadratic function Q and integer a.



$$- f(x) = x^2 + 3 + \frac{-4}{x+2}$$

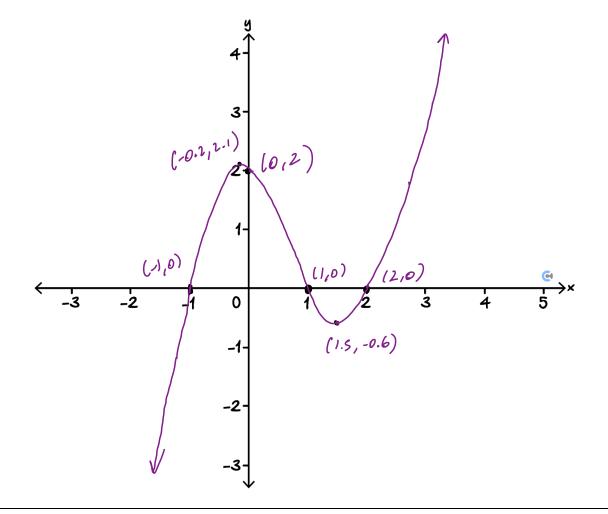
$$-(3x+6)$$

c.

i. Find all the roots of $f(x) = x^3 - 2x^2 - x + 2$.

$\chi^3 - 2\chi^2 - \chi + 2 = 0$	Try: x=±1, ±2, ±3
$x^2(x-2)-(x-2)=0$	
$\frac{x^{2}(x-2) - (x-2) = 0}{(x^{2}-1)(x-2) = 0} for do free$	
J-T- J	
$x^{2}-1=0$ $x-2=0$	
x=± x=2	

ii. Sketch the graph of y = f(x) on the axes below. Turning points occur at approximately (-0.2, 2.1) and (1.5, -0.6).



d. Factorise the expression $x^3 + 27$.

 $= x^3 + 3^3$

 $= (x+3)(x^2-3x+9)$

e. Expand the expression $(x-2)^3$.

 $= x^3 - 3x^2(2) + 3x(2)^2 - 2$

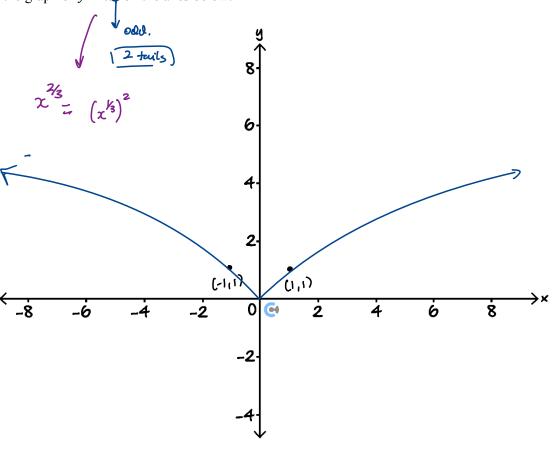
 $= x^3 - 6x^2 + 12x - 8$

f. Show that the function $f(x) = x^3 - 3x$ is odd.

want: f(x) = -f(x)

f(-x) = f(x)f is odd fretion!

g. Sketch the graph of y = x on the axes below.



Section C: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 25 Minutes Writing.

Question 2 (3 marks)

$$f(2) = -4$$

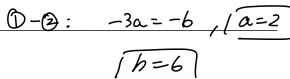
Let $f(x) = x^3 - ax^2 - 5x + b$, where a and b are constants. When f(x) is divided by x - 2, the remainder is -4 and when f(x) is divided by x + 1, the remainder is 8. Find the value of a and b.

$$(2)^{2}-3(2)^{2}-5(2)+b=-4$$

$$(-1)^3 - \alpha(-1)^2 - 5(-1) + b = 8$$

$$8-4a-10+b=-4$$
 $6-4a=-2$ --0

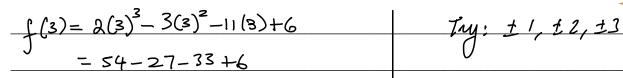
$$-3a = -6$$



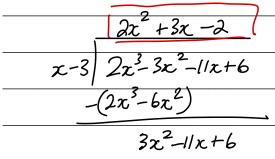
Question 3 (5 marks)

Consider the function given by $f(x) = 2x^3 - 3x^2 - 11x + 6$.

a. Find all x-intercepts of f(x). (3 marks)



= 0 : (x-3) is a factor



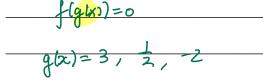
 $f(x) = (x-3)(2x^2+3x-2)$

 $= (x-3)(\lambda x-1)(x+2)$

3x2-8x_

f(x)=0 $|x=3, \frac{1}{2}, -2|$

b. Hence, find all x-intercepts for f(g(x)) where $g(x) = x^2 + 1$. (2 marks)

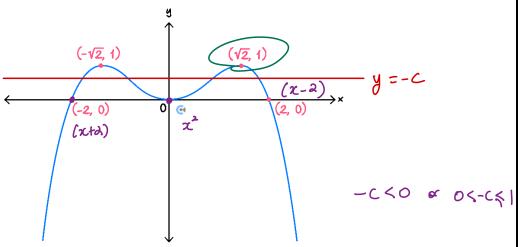


ONTOUREDUCATION

Question 4 (3 marks)

The function $f: R \to R$, f(x) is a polynomial function of degree 4. Part of the graph of f is shown below.

The graph of f touches the x-axis at the origin.



a. Find the rule of f. (2 marks)

$$f(x) = \alpha x^{2}(x+a)(x-a)$$

$$passes (52,1):$$

$$| = \alpha(52)^{2}(52+2)(52-2)$$

$$= a(\sqrt{2})^{2}(\sqrt{2}+2)(\sqrt{2}-2)$$

 $= 2a(52^2-2^2)$

$$1 = 2a(2-4)$$

1 = 2a - 2, -4a = 1, $a = -\frac{1}{4}$

b. Find the values of c for which f(x) + c = 0, where $c \in \mathbb{R}$, has an even number of real solutions. (1 mark)

C & [-1, 10) \ 20}

Question 5 (3 marks)

Consider the function given by $f(x) = x^4 + x^2 + 2$. (2 marks)

a. Show that f(x) is an even function. Symmetry about y-axis

$$f(-x) = f(x)$$

$$f(-x) = (-x)^{4} + (-x)^{2} + 2$$

$$= x^{4} + x^{2} + 2 \qquad f(x) \text{ is even.}$$

$$= f(x)$$

$$= x^{4} + x^{2} + 2$$

b. The gradient of f when x = 3 is 114. State the gradient of f when x = -3. (1 mark)

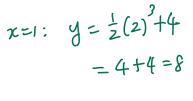
ONTOUREDUCATION

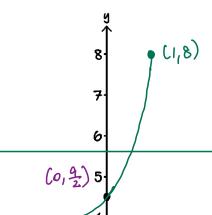
Question 6 (6 marks)

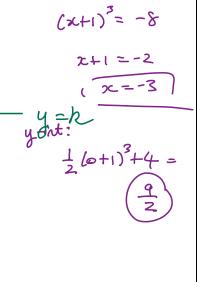
Consider the function $h: [-3,1] \to \mathbb{R}, h(x) = \frac{1}{2}x^3 + \frac{3}{2}x^2 + \frac{3}{2}x + \frac{9}{2}$.

- **a.** Given that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, write h(x) in the form of $a(x + b)^3 + c$. (3 marks)
 - $h(x) = \frac{1}{2} \left(x^3 + 3x^2 + 3x + 9 \right)$ $= \frac{1}{2} \left(x^{3} + 3x^{2} + 3x + 1 + 8 \right)$ $= \frac{1}{2} \left((x+1)^{3} + 8 \right)$
 - = 1 (x+1) 2 + 4 (-1,4) P.O.I

b. Sketch y = h(x) on the axes below. Label any endpoints Jaxes, intercepts, and stationary points. (2 marks)







 $\frac{1}{2}(x+1)^3+4=0$

c.	How many solution(s) will $h(x) = k$ always have for $k \in [0,8]$? (1 mark)		

Spac	e for Personal Notes	

Section D: Tech Active Exam Skills

G

Calculator Commands: Factor and Expand

- All the technologies have a "factor" and "expand" function.
- \blacktriangleright The general syntax is factor(expr), or expand(expr).

$$MPMU \rightarrow 3 \rightarrow 2,3$$

- **Example:** Factorise the expression $2x^3 23x^2 + 33x + 108$ and expand the expression $(x+1)^5(x-2)^3$.
- TI:

Casio:

factor
$$(2x^3-23x^2+33x+108)$$
 $(x-4)\cdot(x-9)\cdot(2\cdot x+3)$ expand $((x+1)^5(x-2)^3)$ $x^8-x^7-8\cdot x^6+2\cdot x^5+25\cdot x^4+11\cdot x^3-26\cdot x^2-28\cdot x-8$

Mathematica:

In[7]:= Factor [108 + 33 x - 23
$$x^2$$
 + 2 x^3]
Out[7]:= $(-9 + x) (-4 + x) (3 + 2 x)$
In[8]:= Expand [$(x + 1) ^5 (x - 2) ^3$]
Out[8]:= $-8 - 28 x - 26 x^2 + 11 x^3 + 25 x^4 + 2 x^5 - 8 x^6 - x^7 + x^8$

CONTOUREDUCATION

Calculator Commands: Turning Point

- ALWAYS sketch the graph first to get an idea of the nature of the turning point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and subbing the result into f.
- **Example:** Find the turning point for $f(x) = e^{-x^2 + 2x}$.
- TI:

Define
$$f(x) = e^{-x^2 + 2 \cdot x}$$

$$\operatorname{Solve}\left(\frac{d}{dx}(f(x)) = 0, x\right)$$
 $x = 1$

(1) **e**

Casio:

define
$$f(x) = e^{-x^2+2x}$$
 done $solve(\frac{d}{dx}(f(x))=0,x)$ $\{x=1\}$

Mathematica:

In[4]:=
$$f[x_] := Exp[-x^2 + 2x]$$

In[5]:= $Solve[f'[x] == 0 && y == f[x], Reals]$
Out[5]= $\{\{x \to 1, y \to e\}\}$

TI UDF: We can use the analyse function.

Analyse a Function

analysed
$$\frac{x^{4}-2\cdot x^{3}-3\cdot x^{2}+3\cdot x+1}{-3\cdot x^{3}-6\cdot x^{2}-x+1}, x, -5, 5$$

- ▶ Start Point: -5 262
- ▶ End Point: 5 = -316
- Maximal Domain:

 $x \neq -1.68469$ and

 $x \neq -0.629579$ and

 $x \neq 0.314273$ and

-5≤x≤5

Asymptotes: (4)

x = -1.68469 (Vertical)

x = -0.629579 (Vertical)

x=0.314273 (Vertical)

$$y = \frac{4}{3} - \frac{x}{3}$$
 (Oblique)

x -Intercepts: (4)

[-1.3772 0],[-0.273891 0],

[1 0],[2.65109 0]

- ▶ Vertical Intercept: [0 1]
- Derivative:

$$\frac{-(3 \cdot x^6 + 12 \cdot x^5 - 26 \cdot x^3 - 24 \cdot x^2 - 6 \cdot x - 4)}{(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2}$$

$$(3 \cdot x^3 + 6 \cdot x^2 + x - 1)^2$$

▶ Inflection Points: (2)

[-1.11377 1.48672] (Increasing)

[-0.11198 0.604642] (Increasing)

▶ Stationary Points: (2)

-3.45719 3.17894 (Local min.)

[1.6173 0.124612] (Local max.)

Done

- Overview:
- This program will find for a given function:
 - Coordinates of endpoints.
 - The maximal domain.
 - The equations of straight-line asymptotes.
 - The rule of the derivative.
 - Inflection points and their nature.
 - Stationary points and their nature.
- There are two analysis programs:
 - Analyse which analyses a function over the domain R or the maximal domain.
 - Analysed which analyses over a domain with specified start and end points.
 - Both are found in the methods func library. You can switch between the two on the calculator page by adding/removing the 'd' to reference the appropriate program.

Input:

analyse(< function >, < variable >)

analysed(< function >, < variable >, < lower bound >, < upper bound >)

Other notes:

- It is recommended to use the analysed program when working with trigonometric functions.
- Be careful when using functions with parameters since some parts of the programs may not be able to give a solution.:/
- If at least one of the bounds is "?", the asymptote finder will be disabled and the program will analyse over the maximal domain.

Calculator Commands: Using Sliders/Manipulate on CAS

CAS

Mathematica

Manipulate[Plot[function, {x, xmin, xmax}],

{unknown, lowerbound, upperbound}]

• **NOTE:** The function **must** be typed out instead of using its saved name.

> TI-Nspire

 $\int f1(x)=function$ with unknown

Create Sliders

Create a slider for:

Cancel

OK

unknown = type any num

Casio Classpad

CONTOUREDUCATION

Calculator Commands: Finding the equation of a polynomial that passes through points.

- \blacktriangleright Given n points, we can find a degree n-1 polynomial that passes through all these points.
- **Example:** Find the equation of the quadratic function that passes through the points (0,6), (2,2), and (3,3).
- TI:

men > 3 -> 7 (sole system of multiple egrs

equations) solving for multiples

Define $f(x)=a \cdot x^2 + b \cdot x + c$

solve(f(0)=6 and f(2)=2 and f(3)=3,a,b,c) a=1 and b=-4 and c=6

$$f(x)|a=1 \text{ and } b=-4 \text{ and } c=6$$

Casio:

define
$$f(x) = a*x^2 + b*x + c$$
 done
$$\begin{cases} f(0)=6 \\ f(2)=2 \\ f(3)=3 \\ a,b,c \end{cases}$$

$$\{a=1,b=-4,c=6\}$$

$$x^2-4\cdot x+6$$

Mathematica:

In[9]:=
$$f[x_{-}] := a x^2 + b x + c$$

In[10]:= $Solve[f[0] := 6 && f[2] := 2 && f[3] := 3]$

Out[10]= $\{\{a \to 1, b \to -4, c \to 6\}\}$

In[11]:= $f[x] /. \{a \to 1, b \to -4, c \to 6\}$

Out[11]:= $6 - 4 \times + x^2$

Section E: Exam 2 (27 Marks)

INSTRUCTION: 27 Marks. 34 Minutes Writing.

Question 7 (1 mark)

Let $f(x) = x^3 + ax^2 + bx + 2$. It is known that $\frac{f(x)}{4-x}$ has a remainder of 20, and f has a factor of 3x - 1. Find the values of a and b.

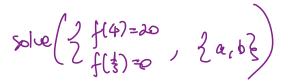
A.
$$\alpha = -\frac{97}{66}$$
 and $b = -\frac{371}{66}$.

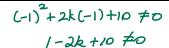
B.
$$a = -\frac{17}{6}$$
 and $b = -\frac{1}{6}$.

C.
$$a = \frac{7}{2}$$
 and $b = -\frac{13}{2}$.

D.
$$a = \frac{259}{78}$$
 and $b = -\frac{563}{78}$.

A. $k < -2\sqrt{10} \cup k > 2\sqrt{10}$.

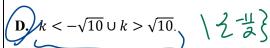




Consider the following quadratic $y = (x + 1)^2(x^2 + 2kx + 10)$. It is known that the quadratic has three distinct x-intercepts. What are the possible value(s) of k?

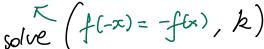
B.
$$k = \pm 2\sqrt{10}$$
.

C.
$$k = \pm \sqrt{10}$$
.



Question 9 (1 mark)

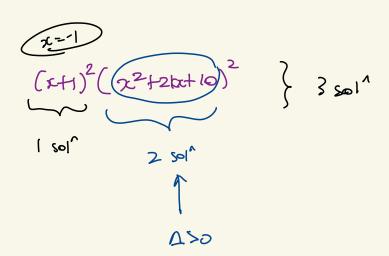
The function $f(x) = x^5 + (k-1)x^4 + 3x^3 + x$ is an odd function when:



B.
$$k = -1$$
.

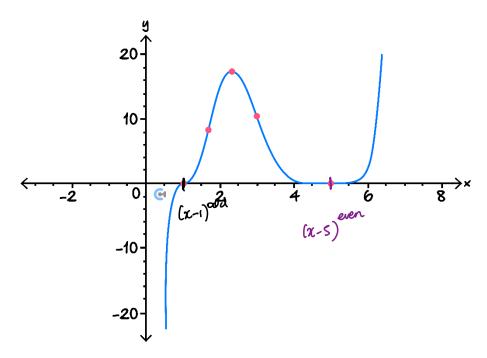
$$C = 1$$

D.
$$k \le 0$$
.



Question 10 (1 mark)

Given that a < 0, which one of the following equations can correspond to the given graph?



A.
$$y = -a(x+1)^3(x-5)^2$$
.

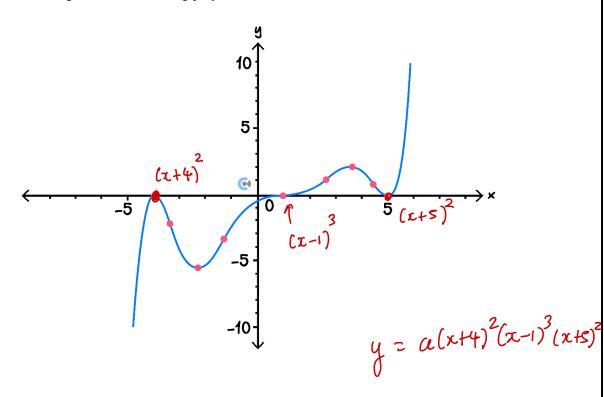
B.
$$y = a(5-x)(x-1)!_{X}$$

C.
$$y = a(5-x)^4(x-1)^{1/2}$$

D.
$$y = -a(5-x)^6(x-1)^3$$
.

Question 11 (1 mark)

What is the minimum degree of the following polynomial?



- **A.** 5.
- **B.** 6.

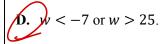
D. 8.

Question 12 (1 mark)

$$\omega^3 - 9x^2 + 15x = -\omega$$

The equation $x^3 - 9x^2 + 15x + w = 0$ has only one solution for x when:

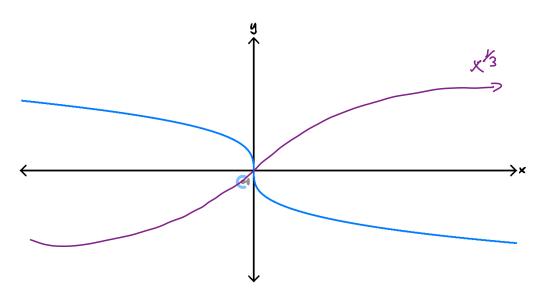
- **A.** -7 < w < 25.
- **B.** $w \le -7$.
- **C.** $w \ge 25$.



CONTOUREDUCATION

Question 13 (1 mark)

The following graph could have a rule:



A. $y = x^{1/3}$.

B. $v = x^{2/3}$

C. $y = -x^{2/3}$

D. $y = -x^{1/3}$

Question 14 (1 mark)

P < 1

<u>m</u> >1

Consider the function $f: R^+ \to R$, $f(x) = x^{\frac{p}{q}}$ and $g: R^+ \to R$, $g(x) = x^{\frac{m}{n}}$, where p, q, m, and n are positive integers, and $\frac{p}{q}$ and $\frac{m}{n}$ are fractions in simplest form.

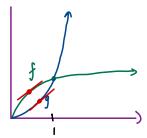
If $\{x: f(x) > g(x)\} = (0, 1)$ and $\{x: g(x) > f(x)\} = (1, \infty)$, which of the following must be **false**?

A. m > p and q = n.

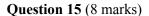
B. pn < qm.

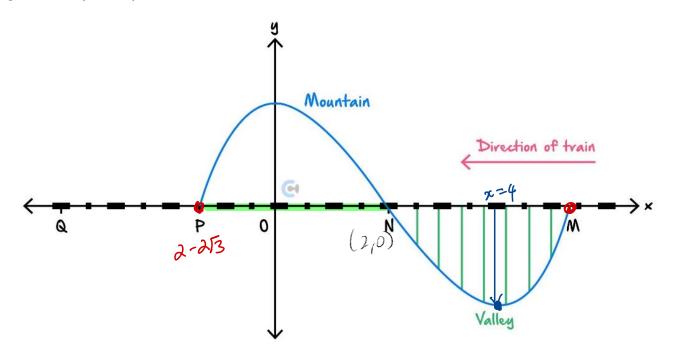
C. f'(c) = g'(c) for some $c \in (0,1)$.

 $(D) f'(d) = g'(d) \text{ for some } d \in (1, \infty).$



Derivative = gracient





A train is travelling along a straight-level track from M towards Q.

The train will travel along a section of track MNPQ.

Section MN passes along a bridge over a valley.

Section NP passes through a tunnel in a mountain.

Section PQ is 6.2 km long.

From *M* to *P*, the curve of the valley and the mountain, directly below and above the train track, is modelled by the graph:

$$y = \frac{1}{200}(ax^3 + bx^2 + c)$$
 where a, b, and c are real numbers.

All measurements are in kilometres.

$$f(x) = \frac{\perp}{200} \left(a \cdot x^3 + b \cdot x^2 + c \right)$$

a. The curve defined from M to P passes through N(2,0). The gradient of the curve at N is -0.06 and the the curve has a turning point at x = 4.

From this information, write down three simultaneous equations in a, b, and c, and hence, show that a = 1, b = -6, and c = 16. (4 marks)

$$f(a)=0 \longrightarrow 0 = \frac{1}{200} (8a + 4b + c)$$

$$f'(a)=-0.06 = \frac{1}{200} (12a + 4b)$$

$$f'(4)=0 = \frac{1}{200} (48a + 8b)$$

$$0 = \frac{1}{200} \left(48a + 8b \right)$$

$$-12 = 12a + 4(-6a)$$

$$-12 = -12a$$
, $(a=1)$

- **b.** Find giving exact values:
 - i. The coordinates of M and P. (2 marks)

f(x)=0

M (2+253,0) p (2-253,0)

ii. The length of the tunnel. (1 mark)

Leryth = 2 - (2-253)

= 253 km

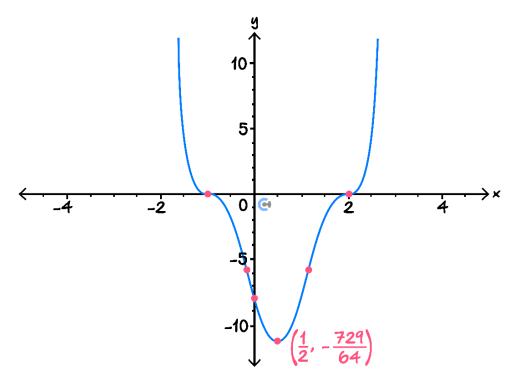
iii. The maximum depth of the valley below the train track. (1 mark)

f(4) = -0.08

vecex clepth = 0.08 km.

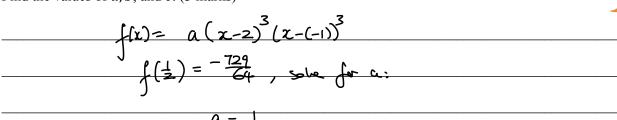
Question 16 (11 marks)

Consider the following function of the form $f(x) = a(x-b)^3(x-c)^3$ where b > c.



The turning point of the graph is given as $\left(\frac{1}{2}, -\frac{729}{64}\right)$.

a. Find the values of a, b, and c. (3 marks)



$$a=1, b=2, C=-1$$

CONTOUREDUCATION

b.

i. Show that f(m+2) = f(-m-1) is true for all values of m. (2 marks)

$$f(m+a) = (m+a-a)^3 (m+a+1)^3$$

= $m^3 (m+3)^3$

$$f(-m-1) = (-m-1-a)^{3}(-m-1+1)^{3}$$

$$= (-m-3)^{3}(-m)^{3}$$

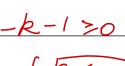
$$= -m^{3}(-(m+3))^{3} = -m^{3}$$

f(-m-1)
as reg.

ii. State the value of r such that f(r+m)=f(r-m) for all values of m. (1 mark)

- c. Consider g(x) = x + k.
 - i. Find the value(s) of k such that there are no negative x-intercepts for f(g(x)). (2 marks)

$$f(g(x)) = 0$$
 $f(x) = (x-2)^2(x+1)^3$



ii. Find the value(s) of k such that there is only one negative x-intercept for f(g(x)). (2 marks)

$$f(g(x)) = (x+k-2)^3(x+k+1)^3$$
= $(x-(a-k))^3(x-(-k-1))^3$

$$2-k > 0$$
 $n - k - 1 < 0$
 $k \le 2$ $n + k > -1$ $k \in (-1, a]$

iii. Find the value of k such that f(g(x)) is an even function. (1 mark)

symetrical about y-axis.

· nove /2 left.

CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

