

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Coordinate Geometry [0.5]

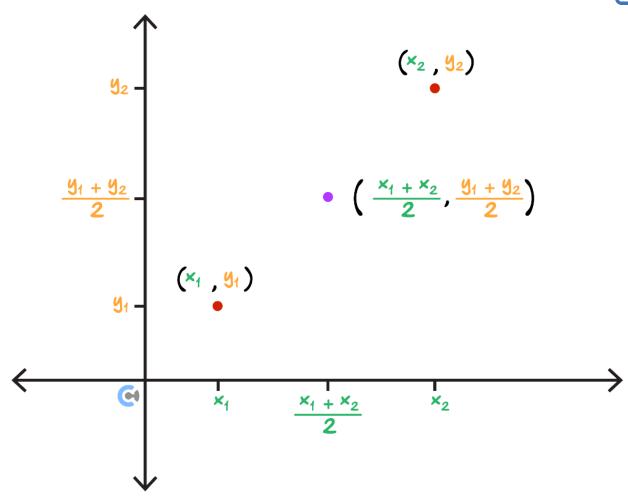
Workshop Solutions

Error Logbook:

Mistake/Misconception #1		Mistake/Misconception #2	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Mistake/Misco	nception #3	Mistake/Misco	nception #4
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	

Section A: Recap

Midpoint



 \blacktriangleright The midpoint, M, of two points A and B is simply the point halfway between A and B.

$$M(x_m, y_m) = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

The midpoint can be found by taking the average of the *x*-coordinate and *y*-coordinate of the two points.

Distance Between Two Points

The distance between two points (x_1, x_2) and (y_1, y_2) can be found using Pythagoras' theorem:

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Horizontal Distance

(x₁, y₁)

Horizontal Distance = $x_2 - x_1$, where $x_2 > x_1$

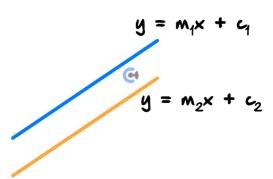
 \blacktriangleright Find the difference between their x-values.

Vertical Distance

Vertical Distance = $y_2 - y_1$, where $y_2 > y_1$

Find the difference between their y-values.

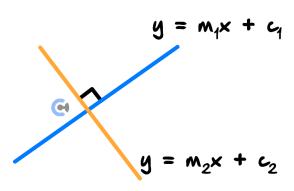
Parallel Lines



> Parallel lines have the same gradient.

$$m_1 = m_2$$

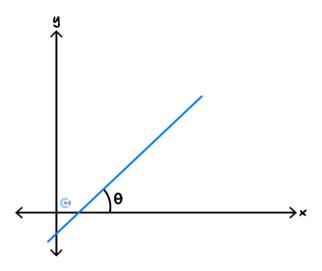
Perpendicular Lines



A line that is perpendicular to another line has a gradient which is the negative reciprocal of the gradient of the first line.

$$m_{\perp} = -\frac{1}{m}$$

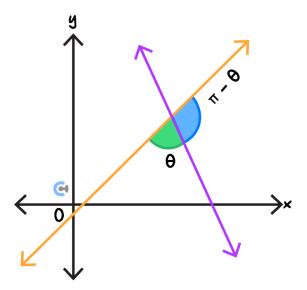
Angle Between a Line and the x-axis



 \blacktriangleright The angle between a line and the **positive direction of the** x-axis (anticlockwise) is given by:

$$tan(\theta) = m$$

Acute Angle Between Two Lines



$$\boldsymbol{\theta} = |\tan^{-1}(\boldsymbol{m}_1) - \tan^{-1}(\boldsymbol{m}_2)|$$

Alternatively:

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Simultaneous Linear Equations

- Elimination Method
- Substitution Method

General Solutions of Simultaneous Linear Equations

- Two linear equations are either:
 - The same line, expressed in a different form. In this case, they have infinite solutions.
 - Unique lines that are **parallel**. In this case, they have NO solutions.
 - Unique lines which are not parallel. In this case, they have exactly one solution.

Solving Systems of Linear Equations with Parameters

Occurs when solving for three variables with two equations. We simply,

Let
$$x = k$$
, or

Let
$$y = k$$
, or

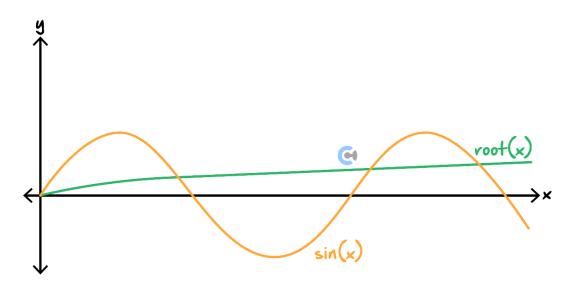
Let
$$z = k$$

And solve simultaneously.

Addition of Ordinates

- Definition:
 - G Technique used to graph the sum/difference of two functions.

e.g.
$$y = \sin(x) + \sqrt{x}$$



- \blacktriangleright The addition of ordinates involves adding the y-values of two functions.
- > Steps to sketching f(x) + g(x):
 - **1.** Sketch f(x) and g(x) on the same axes.
 - **2.** Plot points for f(x) + g(x) by adding the **y-values** of f(x) and g(x).
 - At *x*-intercepts, the sum equals to the other function.
 - \blacktriangleright At intersections, the sum equals to the y-value.
 - \blacktriangleright When functions are equidistant from x-axis, the sum equals to 0.
 - **3.** Join the plotted points.

Section B: Warm Up

Question 1

a. Find the midpoint of the points (2,5) and (-4,3).

(-1,4)

b. Find the distance between the points (3,5) and (-4,2).

 $\sqrt{58}$

c. Find the equation of the line parallel to y = 2x + 3 that passes through (1,3).

y = 2x + 1

d. Find the perpendicular bisector of the line through the points (2,4) and (6,2).

y = 2x - 5

e. The distance between a point (a, b) that lies on the line y = x - 2 and the point (2, 4) is $2\sqrt{2}$. Find the point (a,b). (a,b) = (4,2)

Section C: Exam 1 (23 Marks)

Question 2 (5 marks)

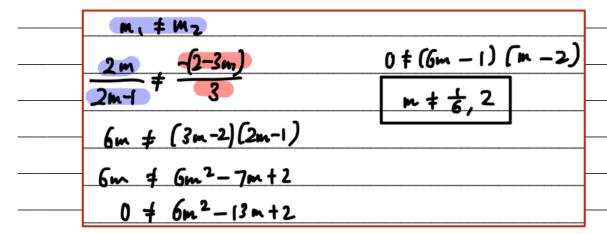
Two linear equations can be written in the form:

$$2mx + (2m - 1)y = 2m + 3$$

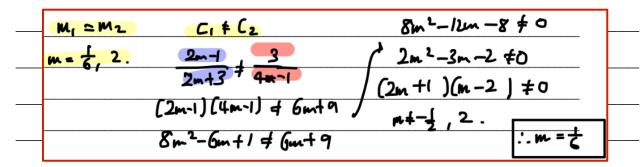
$$-(2-3m)x + 3y = 4m - 1$$

Where m is a real constant.

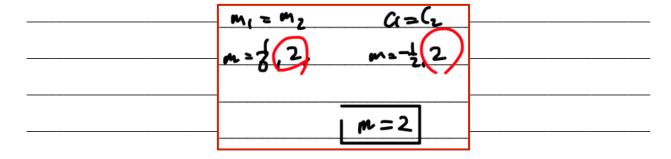
a. Find the value(s) of m such that the graphs of the two lines have a unique solution. (2 marks)



b. Find the value(s) of m such that the graphs of the two lines have no solution. (2 marks)



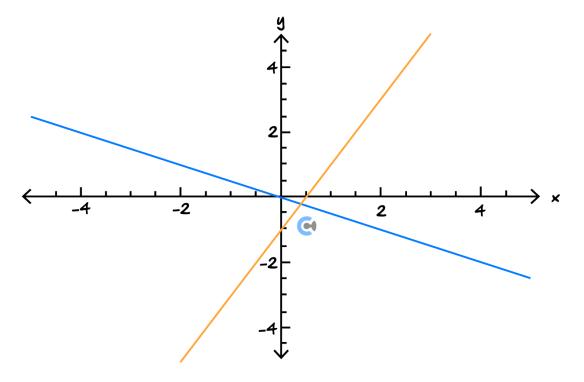
c. Find the value(s) of *m* such that the graphs of the two lines have infinite solutions. (1 mark)



Question 3 (6 marks)

Consider two lines:

$$f(x) = kx$$
, where k is a constant.
 $g(x) = 2x - 1$



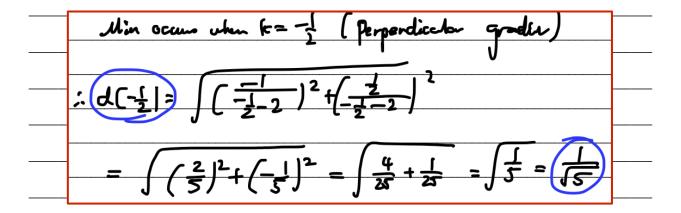
a. Solve for the intersection between f(x) and g(x) in terms of k. (2 marks)

, , , , , ,		
7	(1 = =)	
tween $f(x)$ and $g(x)$ in terms of k	:. (2 marks) 2-k, 2-k	
k-x = 2x-1	Y = (-(글)	
(K-2)x=-1		
n= -1 k-2	$\therefore \left(\frac{-1}{k-2}, \frac{-k}{k-2}\right)$	

b. Find the rule for d(k), the distance between the intersection found in **part a.**, and the origin, in terms of k. (1 mark)

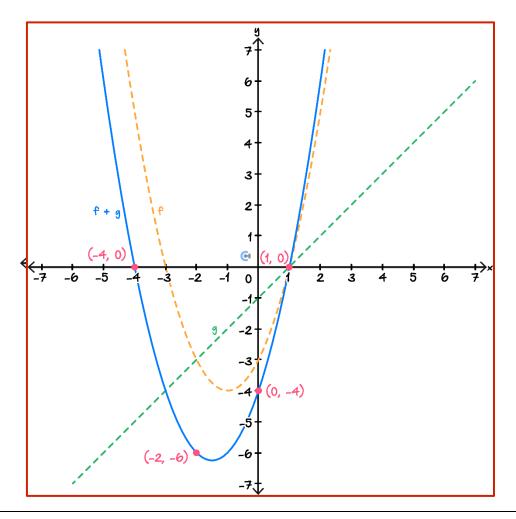
$$d(k) = \sqrt{\left(\frac{-1}{k-2}\right)^2 + \left(\frac{-k}{k-2}\right)^2}$$

c. Solve for the minimum value of d(k) and the value of k. (3 marks)



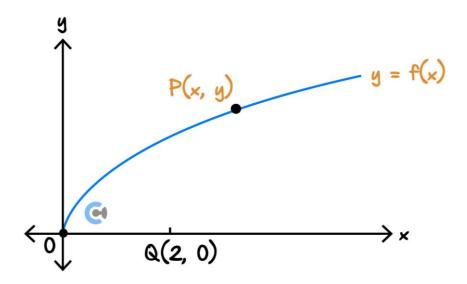
Question 4 (3 marks)

The graphs of the functions f and g are sketched on the axes below. Sketch the graph of f + g on the same set of axes and label its axis intercepts with coordinates.



Question 5 (3 marks)

Let $f: [0, \infty) \to R$, $f(x) = \sqrt{x}$. The graph of f is shown below.



The point P lies on the graph of f.

The point Q(2,0) lies on the x-axis.

It is known that the function f has a gradient of $\frac{1}{2\sqrt{a}}$ at the point where x = a.

Find the minimum distance from P to Q. Express your answer in the form $\frac{\sqrt{a}}{b}$ where a and b are positive integers.

In[239]:=
$$f[x_{-}] := \sqrt{x}$$

In[240]:= $Solve\left[\frac{f[a] - 0}{a - 2} * \frac{1}{2\sqrt{a}} == -1, a\right]$

Out[240]= $\left\{\left\{a \to \frac{3}{2}\right\}\right\}$

In[241]:= EuclideanDistance[{3/2, f[3/2]}, {2, 0}]

Out[241]= $\frac{\sqrt{7}}{2}$

Question 6 (2 marks)	
Consider the following function:	
$f: \mathbb{R} \to \mathbb{R}, f(x) = kx$ where $k \in \mathbb{R}^+$	
Find the value(s) of k for which the acute angle between the $f(x)$ and $f^{-1}(x)$ is 30° .	
$\therefore k = \sqrt{3} \text{ or } \frac{1}{\sqrt{3}}$	

Space for Personal Notes

Question 7 (4 marks)

a. Find the minimum distance between the lines y = -2x and y = -2x + 5. (2 marks)

Solution: Perp line: $y = \frac{1}{2}x$. Two lines intersect at (2,1). Min distance is $\sqrt{5}$

b. The line y = -2x + 5 runs tangent to the parabola $y = (x - 3)^2$ when x = 2. Find the minimum distance between the point (-2, -1) and the parabola $y = (x - 3)^2$. (2 marks)

Solution: Min distance between (0,0) and parabola is $\sqrt{5}$ from part a. since (2,1) is on the line $y=\frac{1}{2}x$ and on the parabola. The distance from (-2,-1) to origin is $\sqrt{5}$. Therefore distance from (-2,-1) to parabola is $2\sqrt{5}$.

Section D: Tech-Active Exam Skills

©

Calculator Commands: Simultaneous Equations on CAS

System of Linear Equations

Example:

The simultaneous linear equations ax - 3y = 5 and 3x - ay = 8 - a have no solution for:

A. a=3

B. a = -3

C. Both a = 3 and a = -3.

D. $a \in R \setminus \{3\}$

 $\mathsf{E.} \quad a \in R \setminus [-3,3]$

system_solve
$$(a \cdot x - 3 \cdot y = 5, 3 \cdot x - a \cdot y = 8 - a, a)$$

Solving: $\begin{bmatrix} a \cdot x - 3 \cdot y = 5 \\ 3 \cdot x - a \cdot y = 8 - a \end{bmatrix}$

Unique Solution: $a \neq -3$ and $a \neq 3$

No Solutions: $a = -3$

Infinite Solutions: $a = 3$

Overview:

This program takes two linear equations and a parameter and finds the parameter values for the system to obtain a unique solution, no solution, or infinite solutions.

Input:

system_solve(< equation 1 >, <
equation 2 >,
< parameter >)

Other Notes:

The program can only handle one parameter.

➤ Or menu –3 – 7.

UDF line functions:

Normal Line

normal_line
$$(x^3-x,x,2)$$

Derivative: $3 \cdot x^2-1$

Gradient: 11

Perpendicular Gradient: $\frac{-1}{11}$

Passes Through: $\begin{bmatrix} 2 & 6 \end{bmatrix}$
 x -Intercept: $\begin{bmatrix} 68 & 0 \end{bmatrix}$

Vertical Intercept: $\begin{bmatrix} 0 & \frac{68}{11} \end{bmatrix}$

Normal Line: $\frac{68}{11} - \frac{x}{11}$

Overview:

This program will find all the necessary information related to a normal line at a point on a function, which includes:

- The derivative.
- The gradient and perpendicular gradient.
- The point on the function the normal line passes through.
- The axis intercepts of the normal line.
- The equation of the normal line.

Input:

normal_line(< function >,< variable >,
< x point >)

Tangent Line

tangent_line
$$(x^3-x,x,2)$$

Derivative: $3 \cdot x^2-1$

Gradient: 11

Passes Through: $\begin{bmatrix} 2 & 6 \end{bmatrix}$
 x -Intercept: $\begin{bmatrix} \frac{16}{11} & 0 \end{bmatrix}$

Vertical Intercept: $\begin{bmatrix} 0 & -16 \end{bmatrix}$

Tangent Line: $11 \cdot x - 16$

Overview:

This program will find all the necessary information related to a tangent line at a point on a function, which includes:

- The derivative.
- The gradient of the tangent line.
- The point on the function the tangent line passes through.
- The axis intercepts of the tangent line.
- The equation of the tangent line.

Input:

tangent_line(< function >, < variable >,
 < x point >)

Calculator Commands: Finding the Angle Between Two Lines

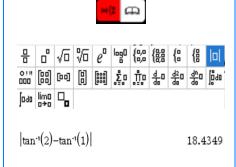
 \blacktriangleright The angle between two lines with gradients m_1 and m_2 respectively is:

$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

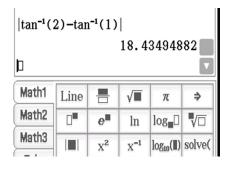
- Mathematica
 - Use the Abs[] function.

in[126]:= Abs[ArcTan[2] - ArcTan[1]] / Degree // N
Out[126]:= 18.4349

- TI-Nspire
 - Find the modulus sign.



- Casio Classpad
 - Modulus sign under Math1.



Calculator Commands: Finding the Gradients of Lines Given the Angle They Make

If we know the angle and one of the gradients m_1 or m_2 then we can find the other gradient by solving,

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

- e.g. Find the gradient of the line that makes an angle of 60° with y = -x.
- Mathematica

Solve
$$\left[\text{Tan} \left[60 \, \text{Degree} \right] = \text{Abs} \left[\frac{\text{m1} + 1}{1 - \text{m1}} \right] , \text{ m1} \right]$$

Solve: Inverse functions are being used by Solve, so so Reduce for complete solution information.

 $\left\{ \left[\text{m1} \rightarrow 2 - \sqrt{3} \right], \left[\text{m1} \rightarrow 2 + \sqrt{3} \right] \right\}$

- ➤ TI-Nspire
 - Find the modulus sign.

solve
$$\left(\tan(60) = \left| \frac{mI+1}{1-mI} \right|, mI \right)$$

 $mI = -\left(\sqrt{3} - 2\right) \text{ or } mI = \sqrt{3} + 2$

- Casio Classpad
 - Modulus sign under Math1.

solve
$$(\tan (60) = \left| \frac{\text{m1+1}}{1-\text{m1}} \right|, \text{m1})$$

 $\left\{ \text{m1} = \frac{\sqrt{3}-1}{\sqrt{3}+1}, \text{m1} = \frac{\sqrt{3}+1}{\sqrt{3}-1} \right\}$

CONTOUREDUCATION

Section E: Exam 2 Questions (31 Marks)

Question 8 (1 mark)

The simultaneous linear equations 2y + (m-1)x = 2 and my + 3x = k have infinitely many solutions for:

- **A.** m = 3 and k = 2
- **B.** m = 3 and k = 3
- **C.** m = -2 and k = 2
- **D.** m = -2 and k = 3

Question 9 (1 mark)

The simultaneous linear equations ax - 3y = 5 and 3x - ay = 6 - a have **no solution** for:

- **A.** a = 3
- **B.** a = -3
- C. Both a = 3 and a = -3
- **D.** $a \in R \setminus \{3\}$

Question 10 (1 mark)

Which of the following lines is **NOT** parallel to the rest?

- **A.** Line joining (2,3) and (5,-3).
- **B.** Perpendicular bisector of the line segment joining (-10, 4) and (0, 9).
- C. The shortest path between (2,0) and 2y = x 4.
- **D.** (k-2)x + (k-1)y = 10 where k = 3.

Question 11 (1 mark)

The length of the line segment that joins (-1,3) to (2,-3) is:

- A. $\sqrt{3}$
- **B.** $5\sqrt{3}$
- C. $3\sqrt{5}$
- **D.** $\sqrt{37}$

Question 12 (1 mark)

It is known that exactly one point on the line y = -x + k has a distance of $2\sqrt{2}$ from the point (2, 2). Find the value(s) of k.

A. k = 0 and 8

- **B.** k = 2 and 4
- **C.** k = 8
- **D.** k = 2

Question 13 (1 mark)

Himalaya is standing on top of Mt. Everest at (1,3) and wants to take the shortest path to a straight road defined by the relation 3x - 4y = 2. Find the shortest distance Himalaya can travel to reach the road.

- A. $\frac{11}{5}$
- **B.** $\frac{7}{5}$
- **C.** 2
- **D.** $\frac{7}{10}$

ONTOUREDUCATION

Question 14 (1 mark)

The linear function $f: [-1,3] \to R$, f(x) = mx + 2 has a range of [-7,5].

The value of m is:

A. -3

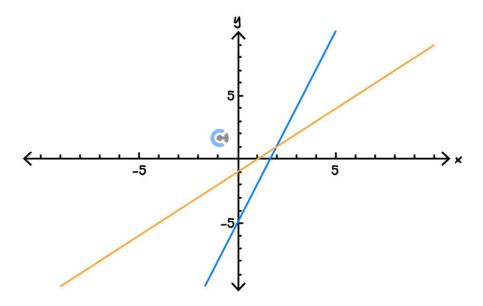
B. −1

C. 1

D. 3

Question 15 (13 marks)

Part of the graphs of $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x - 5 and $g: \mathbb{R} \to \mathbb{R}$, g(x) = x - 1 are shown below.



a.

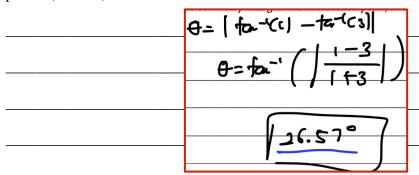
i. Find the coordinates of the point of intersection. (1 mark)

(2, 1)

ii. Find the distance between the origin and the intersection. (1 mark)

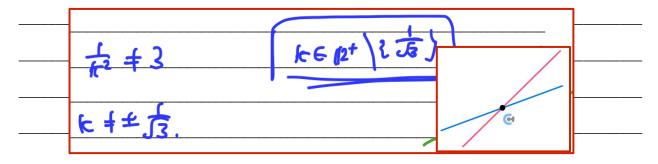
 $\sqrt{5}$

iii. Find the size of the acute angle between f and g at the intersection point, in degrees correct to 2 decimal places. (2 marks)

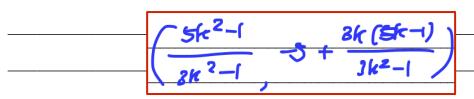


Consider another function $h: \mathbb{R} \to \mathbb{R}, h(x) = \frac{1}{k^2}x - \frac{1}{k}$ where $k \in \mathbb{R}^+$.

b. Find the value(s) of k such that f(x) and h(x) have a unique solution. (2 marks)



c. Find the coordinates of the point of intersection between y = f(x) and y = h(x) in terms of k. (2 marks)

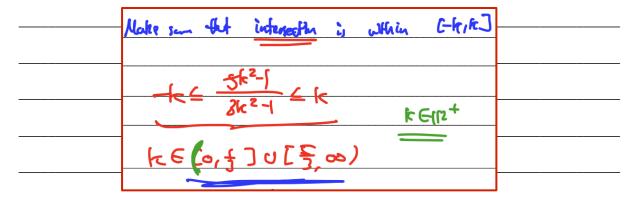


ONTOUREDUCATION

Consider another function $l: [-k, k] \to R$, $l(x) = \frac{1}{k^2}x - \frac{1}{k}$ where $k \in \mathbb{R}^+$.

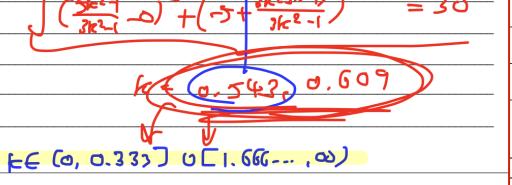
d.

Find the value(s) of k for which l(x) = f(x) has a unique solution. (3 marks)



ii. Hence, could the intersection between l(x) and f(x), and the origin have a distance between them of 30 units? (2 marks)

Hence, could the intersection between l(x) and f(x) and the origin have a distance between them of 30 units? (2 marks)



Space for F for Personal Notes

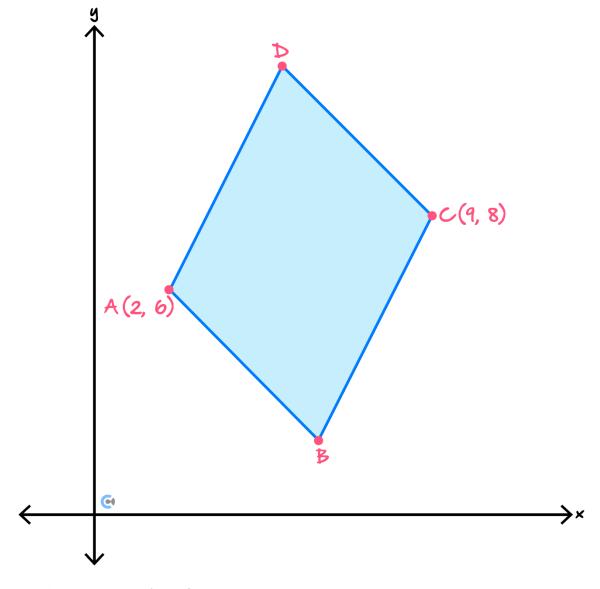
NO. It b impossion

(* The values of k are not within the values of k which gives us the \ intersection point in the first place. It is impossible to \ have a distance of 30 *)

Question 16 (11 marks)

The parallelogram ABCD with two known points A(2,6) and C(9,8) is shown in the diagram below.

It is known that the line segment AB has gradient -1 and that the line segment AD has gradient 2.



a. Find the distance between A and C. (1 mark)

b. **i.** Find the Cartesian equation of the line segment *AB*. (1 mark) **ii.** Find the Cartesian equation of the line segment BC. (1 mark) y = 2x - 10iii. Hence, find the coordinates of B and D. (2 marks) B(6,2) and D(5,12)**c.** Find the angle $\angle ABC$. Give your answer correct to two decimal places. (1 mark) $\angle ABC = 71.57^{\circ}$

d. Find the shortest distance between the line segments AB and DC. (3 marks)

Solution: The shortest distance will be on the line with gradient 1 through A. This line is

$$y = x + 4$$

The segment DC follows the line y = 17-x. These two lines intersect at $I = \left(\frac{13}{2}, \frac{21}{2}\right)$. So our shorest distance is the distance from A to I

$$d = \frac{9}{\sqrt{2}}$$

e. Hence, or otherwise, find the area of *ABCD*. (2 marks)

Solution: $b = |AB| = 4\sqrt{2}$ and $h = \frac{9}{\sqrt{2}}$ Therefore Area = bh = 36

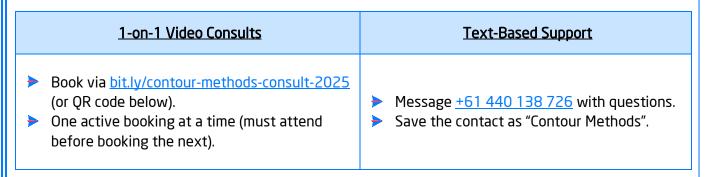
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

