

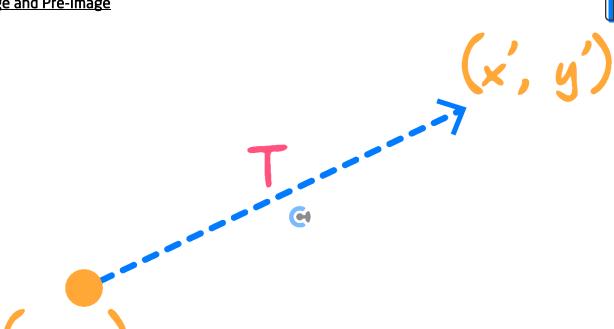
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Transformations Exam Skills [0.4]
Workshop

Section A: Recap

Sub-Section: Image and Pre-Image

Image and Pre-Image



- The original coordinate is called the ______.
- The transformed coordinate is called the ______.

Pre-Image: (x, y)

Image: (x', y')

Sub-Section: Dilation

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y'=y+d

Space	for	Personal	Notes
-------	-----	----------	--------------

MM34 [0.4] - Transformations Exam Skills - Workshop

Sub-Section: Interpreting the Transformation of Points

Interpretation of Transformations

When the _____ x' and y' are the subjects, we can read the transformation ____

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- When the $\underline{\hspace{1cm}} x$ and y are the subjects instead, we must read the transformation in the $\underline{\hspace{1cm}} way$.
- This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

NOTE: This includes the order of transformation!

TIP: It is best to make x' and y' the subject before you interpret the transformations.

Sub-Section: Applying Transformations to Functions

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - **2.** Make x and y the subjects.
 - **3.** Substitute them into the function.

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - 1. Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Quick Method

- The transformation of x in the function is represented in the opposite way in the final function.
- For applying transformation in a quick method,

Apply everything for x in the opposite direction. Including the order!

For interpreting transformation in a quick method,

Read everything for x in the opposite direction. Including the order!

CONTOUREDUCATION

Finding Opposite Transformations

- Order is ______.
- All transformations are ______.

Finding Domain, Range, Points, and Tangents of Transformed Functions

- Everything moves together as a function.
- Steps:
 - 1. Find the transformations between two functions.
 - 2. Apply the same transformations to domain, range, points, and tangents.

Finding Transformation of Inverse Functions

$$f(x) \rightarrow f(x-2)$$
: 2 Right

$$f^{-1}(x) \rightarrow f^{-1}(x) + 2:2 \text{ Up}$$

- Steps:
 - 1. Find the transformation between two original functions.
 - 2. Inverse the transformations found in 1.

Multiple Pathways.

- \triangleright Same transformations can be done differently by either putting it in or out of the f().
- Commonly, look for basic algebra, index and log laws.

Manipulating the Function to Find Appropriate Transformations

- Steps:
 - 1. Identify the region of x.
 - **2.** Identify the region of y.
 - **3.** Manipulate the function so that all the changes are within the region of x or y.

Space for Personal Notes	

Section B: Warmup

Qι	estion 1
a.	Apply the following sequence of transformations to $y = cos(x)$.
	• A dilation by factor 2 from the <i>x</i> -axis.
	• A dilation by factor 3 from the <i>y</i> -axis.
	• A reflection in the y-axis.
	• A translation 2 units left.
	• A translation 4 units down.
b.	State the transformations required to transform $y = \cos(x)$ into $y = -3\cos(2x + \pi) - 2$ in the order DRT.

c.	The graph of $y = f(x)$ has a tangent line $y = 3x - 2$ when $x = 2$.
	Find the equation of the tangent to the graph of $y = 2f\left(\frac{x}{3}\right) + 1$ when $x = 6$.

Space for Personal Notes

Section C: Exam 1 (21 Marks)

INSTRUCTION: 21 Marks. 28 Minutes Writing.

Question 2 (4 marks)

a. Describe a sequence of transformations that map the function $f(x) = 2(x-1)^2 + 3$ to $g(x) = 4x^2 - 24x + 43$. (2 marks)

y= 2(x-1)2+3	
1	DII 2 from 21 axh
4[x26x]+43	Tranlete 1 up
4[(x-3)²-9] +43	
[= 4 (x-3)2+7	Transible 2 right

b. Hence, describe a sequence of transformations that map g(x) to f(x). (2 marks)

$$g \rightarrow f$$

Translot: 2 left.

Translot: 1 down

Dil 2 from x axis

Question 3 (5 marks)

It is known that the function f(x) has a domain of [1, 6) and a range of [-4, 12).

f(x) is transformed to become the function $g(x) = -2f\left(\frac{x}{3} + 6\right) + 2$.

a. Describe a sequence of transformations that map f(x) to g(x). (2 marks)

f(x)	Dil 2 from x axh	
	Reflection in 11 axh -	
-2f(3 +6)+2	Translate 2 unto up	
	Dil 3 from y an	
$\frac{21}{3}$ + $\zeta = 2$	Transet 18 left	
171 = n-G		
pc = 3x 18		

b. State the domain of g(x). (1 mark)

→ [3,18) → [-15,0)

c. State the range of g(x). (2 marks)

<u> </u>	
L	
[-8,24)	
[-24, 8]	
(-22, lo]	

Question 4 (5 marks)

It is known that the function f(x) has an x-intercept at the (4,0) and the tangent line of y = 3x - 2 when x = 4.

The function f is transformed to become the function g, where g(x) = 2f(3x - 2).

a. Describe a sequence of transformations that map f(x) to g(x). (2 marks)

f(x)	
•	Dil 2 fmm n axh
2f(3x-2)	Dil & from y aven Trankt & right
•	Transete 2 right
	3 7

b. State the x-intercept of g(x). (1 mark)

$$\frac{(4,0)}{(\frac{3}{3},0)} = (2,c)$$

c. Find the tangent to the graph y = g(x) when x = 2. (2 marks)

1) Find from
$$f
ightharpoonup g$$

$$f(x)
ightharpoonup 2f(3n-2)$$
21 Aprily the traff to the factor of the factor

Question 5 (4 marks)

Consider the functions $f(x) = 2 \log_2(x-3) + 1$ and $g(x) = 4 \log_2(x+1) + 3$.

a. Describe a sequence of transformations that map the function f to the function g. (2 marks)

2 bg (x-3) +1	Dil 2 from 2 an
2692 (21-3) +1 4692 (21-3) +2	Trealed (unle up
	Tradeb 4 cush (eff-
4692 (20+1) +3	

x1+1 = x-3

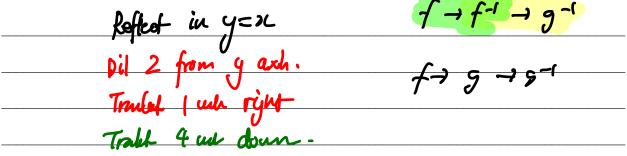
b. Hence, describe a sequence of transformations that map the inverse function f^{-1} to the inverse function g^{-1} (1 mark)

Dil 2 from y axh.

Tradet 1 wh right

Tradet 4 we down.

c. Hence, describe a sequence of transformations that map the inverse function f to the inverse function g^{-1} . (1 mark)



Question 6 (3 marks)

The image of the graph $y = 2\sqrt{(x-1)^2 + 4}$ and a transformation T, has the equation $y = 6\sqrt{4x^2 + 12x + 13}$.

Describe the sequence of transformations that make up T, with dilations and reflections before translations.

$y = 2 \int (2-1)^2 + 4$	4 x2 +3x 7 +13
J	
\sim	= 4[(x+2)?-2]+13
y=654(n+3)2+4	$=4(x+\frac{3}{2})^2+4$
$=6\int (2x+3)^2 + 4$	Dil 3 from 21 am
	Dil 1 m y an
2111+3 = 21-1	Traff 2 leff
221 = 7-4	
メニュラスー2	

Space	for	Personal	Notes
-------	-----	----------	-------

Section D: Tech Active Exam Skills

GI

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

CAS C-1

Mathematica UDF:

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms] Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x-\pi/2, 2y, y-1\}$]

$$Sin\left[\frac{x}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

In[\circ]:= ApplyTransformInvList[x^2, {x, y}, {x-1, 2*x, y+3}]
Out[\circ]=

 $1 - 8 \times + 4 \times^{2}$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2*x, y+3\}$]

Out[*]= -3 + f [2 (-1 + x)]

ApplyTransformInvList[2 * Cos[x] - 1, {x, y}, {x - Pi / 2, 2 * y, y - 1}]

Sin[x]

<u>e</u>

TI UDF:

Out[0]=

Transform()

Transform a Function

transform $\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir. $2 \cdot \cos(x) - 1$

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

Transform_inv()

Invert a Transformation

$$transform_inv(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir. x^2 -3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

▶ Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section E: Exam 2 (29 Marks)

INSTRUCTION: 29 Marks, 37 Minutes Writing.

Question 7 (1 mark)

The graph of the function f passes through the point (3, -4). If h(x) = 4(x - 3), then the graph of the function *h* must pass through the point:

- **A.** (0, -4)
- **B.** (3, -16)
- C. (6, -16)
- **D.** (6, -4)

$$(6, -16.$$

Question 8 (1 mark)

20=-21+3 21- -1 +3

The graph of the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3^x - 2$, is reflected in the y-axis and then translated 3 units to the right and 1 unit up. Which one of the following is the rule of the transformed graph?

A. $y = 3^{-x} + 1$

- **B.** $v = 3^{-x+3} + 1$
- C. $y = \left(\frac{1}{3}\right)^{x-3} 1$
- 1) defle $f(x) = 3^{n} 2$ 2) "f(-x+3) + 1" "ewler"
- **D.** $y = \frac{1}{3} \cdot 3^{-x+3} + 1$

Question 9 (1 mark)

The graph of the function g is obtained from the graph of the function:

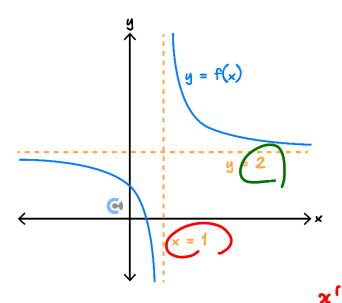
$$f: [-1,2] \to \mathbb{R}, f(x) = 3x^2 - 6x + 6,$$

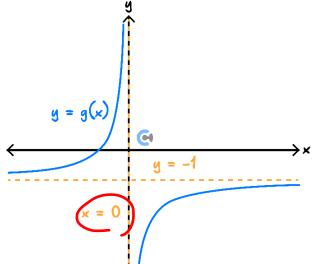
by a dilation of factor 3 from the y-axis, followed by a dilation of factor $\frac{1}{3}$ from the x-axis, followed by a reflection in the x-axis, and finally followed by a translation of 2 units in the positive direction of the y-axis. The domain and range of g are respectively:

- **A.** [-6,3] and [0,3]
- **B.** [-3,6] and [-3,0]
- C. [-3,6] and [-3,1]
- **D.** [-6,3] and [-3,3]

Question 10 (1 mark)

Consider the graphs of f and g, which have the same scale.





- **A.** $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (1 x, y 3)$
- **B.** $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x 1, y 3)$
 - $1.10 \rightarrow 10, 1(x,y) (x-1,y-3)$
- C. $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x-1,3,y)$
- **D.** $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (1 x, 3 y)$
- = 0
- 41= 3-49

Question 11 (1 mark)

If the graphs of y = f(x) and y = g(x) intersect at (a, b), then the graphs of $y = 3f\left(\frac{x}{2}\right)$ and $y = 3g\left(\frac{x}{2}\right)$ intersect

- **A.** $\left(2a,\frac{3b}{2}\right)$
- **B.** $\left(\frac{a}{2},3b\right)$
- C. (2a, 3b)
- **D.** $\left(3a, \frac{b}{2}\right)$

Question 12 (1 mark)

The line $y = -\frac{1}{2}x + 6$ is tangent to the graph of f when x = 2. The following sequence of transformations maps the graph of f onto the graph of g:

- 1. A dilation by a factor of 3 from the y-axis, followed by,
- 2. A translation of 4 units in the positive direction of the y-axis.

Which of the following statements is true?

All points are differt-

- A. The line $y = -\frac{1}{6}x + 8$ is tangent to g at the point (2,10).
- **B.** The line $y = -\frac{1}{6}x + 10$ is tangent to g at the point (6,9).

C. The line $y = -\frac{1}{4}x + 8$ is tangent to g at the point (6,10).

(6,9)

D. The line $y = \frac{1}{4}x + 10$ is tangent to g at the point (2,8).

Question 13 (1 mark)

The image of the function $g(x) = 3x^5$ is $y = -\frac{4}{5}(\frac{x}{2} - 2)^5$. The transformations that could have been applied are:

- A. Reflection in the x-axis, then translation in the positive direction of the x-axis by 2 units, followed by a dilation from the y-axis by a factor of $\frac{1}{2}$.
- **B.** Reflection in the x-axis, then translation in the negative direction of the x-axis by 2 units, followed by a dilation from the x-axis by a factor of 5.
- C. Reflection in the x-axis, then a dilation from the x-axis by a factor of $\frac{4}{15}$, followed by a translation in the positive direction of the x-axis by 2 units, and finally, a dilation from the y-axis by a factor of 2.
- **D.** Reflection in the x-axis, then a dilation from the y-axis by a factor of $\frac{4}{5}$, followed by a translation in the negative direction of the x-axis by 3 units, and finally, a dilation from the x-axis by a factor of $\frac{1}{2}$.

Space for Personal Notes 1) dofter
$$g(x) = -$$

2) Apply each transform on (A)

3) for if yough $-\frac{9}{5}(\frac{2}{2}-2)^{5}$

Question 14 (12 marks)

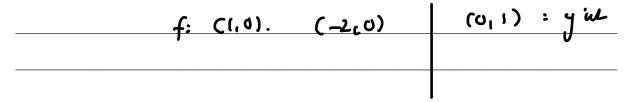
Consider the functions,

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{2}x^3 - \frac{3}{2}x + 1 = \frac{1}{2}(x-1)^2(x+2)$$

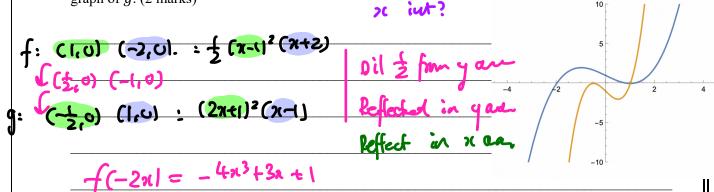
$$g: \mathbb{R} \to \mathbb{R}, g(x) = (2x+1)^2(x-1)$$
= $4x^2 - 3x - 1$

a.

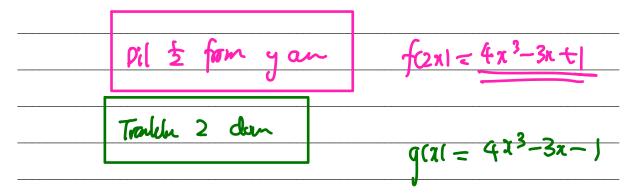
i. Find the coordinates of the axial intercepts of f. (1 mark)



ii. Hence of the wise, describe a sequence of **reflections and dilations** that map the graph of f onto the graph of g. (2 marks)



iii. Describe a sequence of dilations and translations that map the graph of f onto the graph of g. (2 marks)



b. The equation to the tangent of g at x = 1 is y = 9x - 9. Use this to find the equation of the tangent to f when x = -2. (2 marks)

	ij
define $t(n) = 9n-9$	Dil 1 fm y
\	Pil 1 fm y Reflect in both own
21 -t(-f2)	g→ f
	peffech in both are
y = 321+9	Dil 2 fm y

Consider the following transformations:

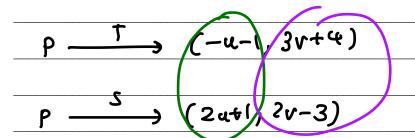
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (-x - 1, 3y + 4)$$

$$S: \mathbb{R}^2 \to \mathbb{R}^2, S(x, y) = (2x + 1, 2y - 3)$$

c. Find the rule for the image of g after it has undergone the transformation T followed by the transformation S. \square marks)

(M) Transfor T	<u>(42)</u>
Trobe 5.	(2(-x-1)+1,2(3y44)-3)
- Hape 3:	
	(-2x-1, 6y+5)
	69(-24) 1+5
	$y = -3x^3 - 9x^2 + 5$

d. Find the coordinates of the point P(u,v), if the image of the point P under T and S is the same. (2 marks)

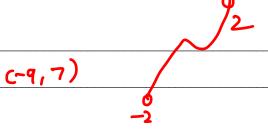


 $p: \left(-\frac{2}{3}, -7\right)$

Question 15 (10 marks)

Consider the function $f: (-2,2) \to \mathbb{R}$, $f(x) = (x-1)^2(2x+3)$.

a. State the range of f. (1 mark)



- **b.** The following sequence of transformations, T, map the graph of f onto the graph of g.
 - A dilation by a factor of 2 from the x-axis, followed by,
 - A translation of 3 units down and 2 units left, followed by,
 - A reflection in the *y*-axis.
 - i. State the rule of g. (2 marks)

$$g(x) = 2f(-x+2) - 3$$

$$= -4x^3 + 22x^2 - 32x + 1$$

ii. State the domain of g. (1 mark)

iii. State the range of g. (1 mark)

CONTOUREDUCATION

c. The tangent to the graph of f at the point A(-1,4) is given by the equation,

$$y = 4x + 8$$

i. Find the point B, the image of A under T. (1 mark)

B: (3,5)

ii. Find the equation of the tangent to the graph of g at point B. (1 mark)

95+x8-=4

d. A transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$, S(x, y) = (a - x(b - y)) maps the graph of f onto itself. Determine the values of f and f and f and f are f and f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f are f are f and f are f and f are f are f and f are f and f are f are f and f are f are f are f and f are f and f are f and f are f and f are f and f are f are f are f are f are f are f

f(x) = (x-1) 2(2x+3)

(-3, 27) fiso

- $ln[11]:= f[x_] := (x-1)^2 * (2 x + 3)$
- In[20]:= **SolveAlways**[f[x] == b f[a x], x] 변수의 모든 값 방정식의 성립하는 메개 변수

)ut[20]= $\left\{ \left\{ b \rightarrow \frac{125}{27}, a \rightarrow \frac{1}{3} \right\} \right\}$

fcx1 = (x+1)2(22-3)

trabele a rylu b up.

: a= \$ b= 27

Section F: Extension Exam 1 (17 Marks)

INSTRUCTION: 17 Marks. 22 Minutes Writing.

Question	16	(5	marke	۱
Question	10	IJ	IIIarks)

Let $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 4x^3 + 1$, and let $g: \mathbb{R} \to \mathbb{R}$, where g(x) = 2 - 2x.

a.

i. Find g(f(x)). (1 mark)

ii. Find f(g(x)) and express it in the form $k - m(x - d)^3$, where m, k, and d are integers. (2 marks)

CONTOUREDUCATION

b.	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule $T(x,y) = (x+b,ay+c)$ where a,b , and c are integers, maps the graph of $y = g(f(x))$ onto the graph of $y = f(g(x))$.
	Find the values of a , b , and c . (2 marks)
Sp	pace for Personal Notes

Question 17 (3 marks)
Consider the functions,
$f: [-4, \infty) \to \mathbb{R}, f(x) = x^2 + 4x + 2$
$g:(-\infty,2] \to \mathbb{R}, g(x) = 4(2x-3)^2 + 3$
Describe a sequence of dilation followed by two translations and, lastly, a reflection that maps the graph of f onto the graph of g .
Space for Personal Notes

Question 18 (4 marks)
Consider the function $f(x) = \sqrt{4x + c} - 1$ defined on its maximal domain and where c is a real number.
a. State the translation that maps the function $g(x) = \sqrt{4x} - 1$ to the function $f(x)$. (1 mark)
b. Find the values of c for which the graphs of $y = f(x)$ and $y = f^{-1}(x)$ intersect twice. (3 marks)
Space for Personal Notes

Question 19 (5 marks)
Let $f: (-\infty, 2] \to \mathbb{R}$, $f(x) = 3x^2 - 12x + 20$ and $g: [-1, \infty) \to \mathbb{R}$, $g(x) = 2\sqrt{x+1} + 3$.
a. Describe a sequence of transformations that map the graph of f onto the graph of g^{-1} . (3 marks)
b. Hence or otherwise, describe a sequence of transformations that map the graph of g onto the graph of f^{-1} .
(2 marks)

Section G: Extension Exam 2 (16 Marks)

INSTRUCTION: 17 Marks. 22 Minutes Writing.

Question 20 (1 mark)

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 5 - \log_e\left(\frac{x+3}{4}\right)$ onto the graph of $y = \log_e(x)$ has the rule:

A.
$$T(x,y) = \left(\frac{x+3}{4}, 5-y\right)$$

B.
$$T(x, y) = (4x - 3, y - 5)$$

C.
$$T(x,y) = (4x - 3, 5 - y)$$

D.
$$T(x,y) = \left(\frac{x+3}{4}, y+5\right)$$

Question 21 (1 mark)

The image of the parabola $y = 2x^2 - 4x + 5$ after it is reflected in the line x = p and then in the line y = q is $y = -2x^2 + 20x - 51$.

The values of p and q are:

A.
$$p = 3$$
 and $q = -1$

B.
$$p = -3$$
 and $q = 1$

C.
$$p = 3 \text{ and } q = 1$$

D.
$$p = 1$$
 and $q = 3$

Question 22 (1 mark)

The mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(\frac{12-3x-4y}{5}, \frac{6-4x+3y}{5}\right)$ reflects a point (x,y) in the line:

- **A.** y = 2x + 3
- **B.** y = -2x + 3
- C. y = -2x 3
- **D.** y = 2x 3

Question 23 (1 mark)

The image of the curve $y = \sqrt{x^2 + 4}$ under the transformation T, the equation $y = \frac{3}{2}\sqrt{x^2 + 6x + 25}$.

The transformation *T* could be described as:

- A. A dilation by factor 3 from the y-axis followed by a dilation by factor 2 from the x-axis and a translation 3 units to the right.
- **B.** A dilation by factor $\frac{1}{3}$ from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the right.
- C. A dilation by factor 2 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 3 units to the left.
- **D.** A dilation by factor 3 from the y-axis followed by a dilation by 3 from the x-axis and a translation 2 units to the left.

Question 24 (1 mark)

The area bounded by a quadratic function f(x) and the x-axis is 12 square units.

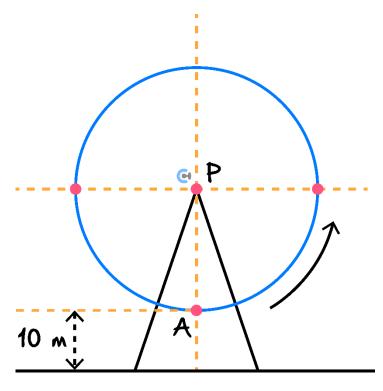
Determine the area bounded by the function $\frac{1}{2}f\left(\frac{x}{4}\right)$ and the x-axis.

- **A.** 12
- **B.** 24
- **C.** 48
- **D.** 96

Space	IOIP	erzona	i norez	

Question 25 (11 marks)

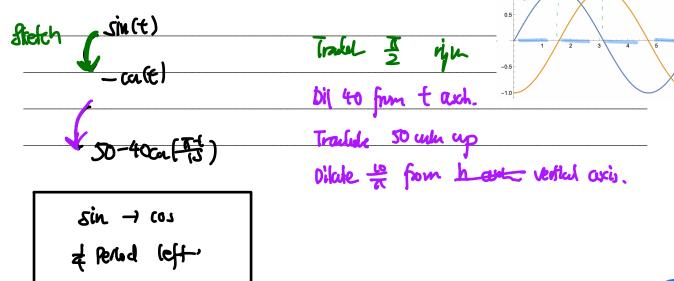
The following diagram represents a Ferris wheel, with its centre at point *P*. Passengers are seated in pods, which are carried around as the wheel turns. The wheel moves anticlockwise with constant speed and completes one full rotation every 20 minutes. When a pod is at the lowest point of the wheel (point *A*), it is 10 metres above the ground. The wheel has a radius of 40 metres.



The height of the bottom of a pod that was originally situated at the point A, t minutes after the start of a trip is given by,

$$h(t) = 50 - 40\cos\left(\frac{\pi t}{10}\right)$$

a. Describe a sequence of transformations, without using any reflections, that map the graph of $y = \sin(t)$ onto the graph of y = h(t). (2 marks)



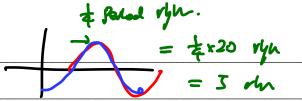
b. The horizontal displacement, d from the bottom of the pod to the centre of the Ferris Wheel t minutes after the start of a trip is,

$$d(t) = 40 \sin\left(\frac{\pi t}{10}\right)$$

The transformation T(t, y) = (t + a, y + b) maps the graph of d onto the graph of h.

i. Find *b*. (1 mark)

ii. Find all possible values of a. (2 marks)



Sheltway [== at]

c. 10 minutes into a trip on the Ferris Wheel, the Ferris Wheel malfunctions. This causes the Ferris Wheel to stop for 5 minutes before starting again at half speed. The height of the Ferris wheel in this trip, $h_1: [0, r] \to \mathbb{R}$ is given by the following functions.

n by the following function:
$$h(10) = 90$$

$$\text{Dil } 42 \text{ } 40$$

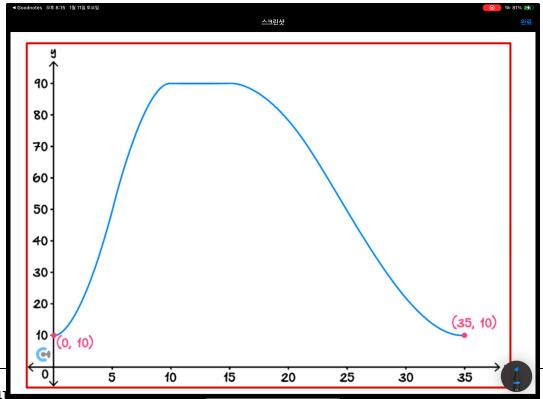
$$h_1(t) = \begin{cases} h(t) & 0 \le t < 10 \\ h(pt) + q) & 10 \le t < 15 \\ 15 \le t \le r \end{cases}$$

The Ferris Wheel stops once a full rotation has been completed.

Find a set of possible values of p, q, k and r. (3 marks)

$$h(t) = 0 = 0$$
 $h(t) = 0 = 0$
 $h(t) = 0 = 0$

d. Draw the graph of h_1 labelling endpoints with their coordinates. (3 marks)



CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

