

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Transformations [0.3]

Workshop Solutions

Section A: Recap

Sub-Section: Image and Pre-Image

Image and Pre-Image

The original coordinate is called the ____ pre-image ___

The transformed coordinate is called the _____ image ____

Pre-Image: (x, y)

Image: (x', y')

Sub-Section: Dilation

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d

Sub-Section: The Order of Transformations

The Order of Transformation

Order = BODMAS Order

Space for Personal Notes		

Sub-Section: Interpreting the Transformation of Points

Interpretation of Transformations

When the __ new variables x' and y' are the subjects, we can read the transformation directly

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- When the ____ original variables ___ x and y are the subjects instead, we must read the transformation in the ____ opposite ___ way.
- > This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

NOTE: This includes the order of transformation!

TIP: It is best to make x' and y' the subject before you interpret the transformations.

<u>Sub-Section</u>: Applying Transformations to Functions

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - **2.** Make x and y the subjects.
 - **3.** Substitute them into the function.

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - **1.** Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Section B: Warmup

Question 1

Consider the transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + 1, 3y - 2)$$

a. Find the image of the point P(1,2) under T.

$$P' = (2+1, 6-2) = (3,4)$$

b. Describe the transformation, T, in DRT order.

A dilation by factor 2 from the y-axis

A dilation by factor 3 from the x-axis

A translation 1 unit to the right

A translation 2 units down.

c. Find the image of the curve, $y = \frac{1}{3}x^2$ under the transformation *T*.

Solution:
$$x' = 2x + 1 \implies x = \frac{1}{2}(x - 1)$$

$$y' = 3y - 2 \implies y = \frac{1}{3}(y' + 2)$$
Therefore, the image is

$$\frac{1}{3}(y+2) = \frac{1}{3} \left(\frac{1}{2}(x-1)\right)^2$$

$$y+2 = \frac{1}{4}(x-1)^2$$

$$y = \frac{1}{4}(x-1)^2 - 2$$

Section C: Exam 1 (21 Marks)

Question 2 (4 marks)

Let
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 - 4$.

a. Find the coordinates of all the axes intercepts of f. (1 mark)

Solution: x-intercepts: (-2,0) and (2,0) y-intercept: (0,-4)

- **b.** Let g be the image of the graph of f under the following sequence of transformations:
 - ightharpoonup Dilation by a factor of $\frac{1}{2}$ from the y-axis.
 - \triangleright Dilation by a factor of 3 from the x-axis.
 - Translation 1 unit to the left.

Find the rule for g(x). (2 marks)

$$g(x) = 3f(2(x+1)) = 3(2(x+1))^2 - 12 = 12(x+1)^2 - 12$$

c. State the coordinates for the axes intercepts of g. (1 mark)

Solution: x-intercepts: (-2,0) and (0,0)y-intercept: (0,0)

Question 3 (3 marks)

Consider the function: $f(x) = \frac{1}{2}(x+1)^2 - \frac{3}{2}$

Apply the following sequence of transformations to f(x):

Dilation by a factor 3 from the x-axis. Translated 4 units in the negative direction of the x-axis. Reflection in the y-axis.

Translated 2 units in the positive direction of the *y*-axis.

Dilation by a factor of $\frac{1}{3}$ from the y-axis.

 Solution: $x' = -\frac{1}{3}(x-4) \implies -3x' = x-4 \implies x = -3x'+4$	
 $y' = 3y + 2 \implies y = \frac{1}{3}(y' - 2)$	
Therefore, $\frac{1}{3}(y'-2) = \frac{1}{2}(-3x'+4+1)^2 - \frac{3}{2}$	
$\frac{3}{3}(y-2) = \frac{3}{2}(-3x^2 + 4 + 1) - \frac{5}{2}$ $y' - 2 = \frac{3}{2}(5 - 3x')^2 - \frac{9}{2}$	
$y' = \frac{3}{2}(3x' - 5)^2 - \frac{5}{2}$	
so $f(x) = \frac{3}{2}(3x - 5)^2 - \frac{5}{2}.$	
$f(x) - \frac{1}{2}(3x - 3) - \frac{1}{2}$	

Question 4 (4 marks)

Let
$$f(x) = \frac{1}{3x+3}$$
.

a. The transformation T_1 given by:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2, T_1(x, y) = (x + a, by),$$

maps the graph of y = f(x) onto the graph of $y = \frac{1}{x}$.

Find the values of a and b. (2 marks)

Solution: $y = \frac{1}{3} \times \frac{1}{x+1}$ maps to $y' = \frac{1}{x'}$ Therefore, y' = 3y and x' = x+1a = 1 and b = 3.

b. The transformation T_2 given by:

$$T_2\colon \mathbb{R}^2 \to \mathbb{R}^2, T_2(x,y) = (c(x+d),y),$$

maps the graph of $y = \frac{1}{x}$ onto the graph of y = f(x).

Find the values of c and d. (2 marks)

Solution: $y = \frac{1}{x}$ maps to $y' = \frac{1}{3(x'+1)}$ Therefore, y = y' and $x = 3(x'+1) \implies x' = \frac{x}{3} - 1 = \frac{1}{3}(x-3)$ $c = \frac{1}{3}$ and d = -3.

Question 5 (7 marks)

Consider the cubic function:

$$f(x) = x^3 - 2x^2 - x + 2$$

a. Find the x-intercepts of the graph y = f(x). (3 marks)

Solution: Note that f(1) = 0, therefore (x - 1) is a factor of f(x). So we factorise

$$f(x) = (x-1)(x^2 - x - 2)$$

= $(x-1)(x-2)(x+1)$

Therefore, $f(x) = 0 \implies x = -1, 1, 2$

Let g(x) = 2f(2x - k).

b. Find the sequence of transformations required for f(x) to transform to g(x). Give your answer in DRT order. (2 marks)

Solution: $g(x) = 2f\left(2\left(x - \frac{k}{2}\right)\right)$

- A dilation by factor 2 from the x-axis
- A dilation by factor $\frac{1}{2}$ from the y-axis
- A translation $\frac{k}{2}$ to the right

c. Find the value(s) of k such that, there is only one negative x-intercept for g(x). (2 marks)

Solution:

$$x\text{-intercept of }f: \quad x=-1, \qquad \quad x=1, \qquad \quad x=2$$

x-intercept of
$$g: \quad x=-\frac{1}{2}+\frac{k}{2}, \quad x=\frac{1}{2}+\frac{k}{2}, \quad x=1+\frac{k}{2}$$

We need that $-\frac{1}{2}+\frac{k}{2}<0 \implies k<1$ and also that $\frac{1}{2}+\frac{k}{2}\geq 0 \implies k\geq -1$. Therefore, $k\in [-1,1)$

Question 6 (3 marks)

The image of the curve $y = \sqrt{16 - x^2}$ under a transformation T, has the equation $y = \sqrt{55 - 6x - x^2}$.

Find the sequence of transformations that make up T, with dilations before translations.

Solution:

$$y = \sqrt{16 - x^2}$$
 maps to $y' = \sqrt{64 - (x+3)^2}$
= $2\sqrt{16 - \frac{1}{4}(x+3)^2}$
= $2\sqrt{16 - \left(\frac{1}{2}(x+3)\right)^2}$

Therefore T can be described as:

- A dilation by factor 2 from the x-axis
- A dilation by factor 2 from the y-axis
- A translation 3 units to the left.

Section D: Tech Active Exam Skills

CAS CH

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

CAS CH

Mathematica UDF:

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x-\pi/2, 2y, y-1\}$]

$$Sin\left[\frac{x}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

In[*]:= ApplyTransformInvList[x^2 , {x, y}, {x-1, 2*x, y+3}]
Out[*]=

 $1 - 8 x + 4 x^2$

In[-]: ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2*x, y+3\}$]

-3 + f[2 (-1 + x)]

Sin[x]

TI UDF:

Out[0]=

transform()

Transform a Function

transform $\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir. 2·cos(x)-1

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

transform_inv()

Invert a Transformation

$$transform_inv(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir. x^2 -3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

▶ Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section E: Exam 2 (21 Marks)

Question 7 (1 mark)

Find the possible transformation(s) for the function $f(x) = x^2$ to transform into $g(x) = 4x^2 + 4$.

- **A.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **B.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the negative direction of the y-axis.
- C. Dilation by a factor of $\frac{1}{4}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **D.** Dilation by a factor of $\frac{1}{2}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.

Question 8 (1 mark)

Given that f(x) is a function with a local minimum point at (-2,3). The graph of y = -2f(3x + 2) - 2 must have which of the following?

- **A.** Local minimum at (-4, -8).
- **B.** Local minimum at $\left(-\frac{4}{3}, -8\right)$.
- C. Local maximum at (-4, -8).
- **D.** Local maximum at $\left(-\frac{4}{3}, -8\right)$.

Question 9 (1 mark)

There exists a function where dilating by a factor of 2 from the *x*-axis gives the same image as dilating it by a factor of $\frac{1}{4}$ from the *y*-axis. Which of the following could be the function?

- **A.** $f(x) = x^2$
- $\mathbf{B.} \ \ f(x) = 2\sqrt{x}$
- **C.** $f(x) = \sqrt{x} 4$
- **D.** $f(x) = \frac{1}{x}$

Question 10 (1 mark)

Which one of the following sequences of transformations is different from the rest?

- **A.** Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, reflection in the y-axis, translation 2 right, translation 4 up.
- **B.** Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, translation 2 left, translation 4 up, reflection in the y-axis.
- C. Reflection in the y-axis, translation 6 left, translation 2 up, dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{2}$ from the y-axis.
- **D.** Translation 6 left, translation 2 up, reflection in the *y*-axis, dilation by a factor of $\frac{1}{3}$ from the *y*-axis, dilation by a factor of 2 from the *x*-axis.

Question 11 (1 mark)

The graph of the function f is obtained from the graph of the function g with rule $g(x) = 3\cos\left(x - \frac{\pi}{6}\right)$ by a dilation of a factor of $\frac{1}{2}$ from the x-axis, a reflection in the y-axis, a translation of $\frac{\pi}{6}$ units in the negative x-direction and a translation of 4 units in the negative y-direction, in that order.

The rule of f is:

A.
$$f(x) = \frac{3}{2} \cos\left(-x - \frac{\pi}{3}\right) - 4$$

B.
$$f(x) = \frac{3}{2}\cos(-x) - 4$$

C.
$$f(x) = \frac{3}{2}\cos(x) - 4$$

D.
$$f(x) = -3\cos\left(\frac{x}{2} - \frac{\pi}{3}\right) - 4$$

E.
$$f(x) = \frac{3}{2} \cos\left(-x + \frac{\pi}{3}\right) - 4$$

CONTOUREDUCATION

Question 12 (1 mark)

The curve with the equation $y = e^x$ is transformed by a dilation from the y-axis by a scale factor of 2, a translation by one unit to the left in the x-direction and a translation of two units downwards in the y-direction. The equation of the transformed curve is:

- **A.** $y = 0.5e^{x-1} 2$
- **B.** $y = 2e^{x-1} 2$
- C. $y = e^{0.5(x+1)} 2$
- **D.** $y = e^{2(x+1)} 2$

Question 13 (7 marks)

Consider the function, $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x+1)(2x-1)(x+2).

a. State the values of x for which, f(x) = 0. (1 mark)

 $x = -2, -1, \frac{1}{2}, 1$

- **b.** The graph of y = f(x) is translated a units to the right, where $a \in \mathbb{R}$, to become the graph y = g(x). Find the values of a for which, the graph y = g(x) has:
 - **i.** Three positive x-intercepts. (2 marks)

 $a \in (1, 2]$

ii. Four negative x-intercepts. (1 mark)

a < -1

Let h be the function, $h: \mathbb{R} \to \mathbb{R}$, $h(x) = (x-1)^2(x+2)^2$, which has a local maximum at $\left(-\frac{1}{2}, \frac{81}{16}\right)$.

Let k be the function, $k : \mathbb{R} \to \mathbb{R}$, $k(x) = 2x^2(2x+3)^2$, which has a local maximum at $\left(-\frac{3}{4}, \frac{81}{32}\right)$.

c. Using translations only, describe a sequence of transformations on k, for which its image would have a local maximum at the same coordinates as that of h. (1 mark)

Solution:	
• A translation $\frac{1}{4}$ units right	
• A translation $\frac{81}{32}$ units up.	

d. Find a sequence of transformations in the order DRT that maps the graph of y = h(x) to the graph of y = k(x). (2 marks)

Solution: We note that $h(2x+1) = 4x^2(2x+3)^2 \implies k(x) = \frac{1}{2}h(2x+1)$ • A dilation by factor $\frac{1}{2}$ from the x-axis

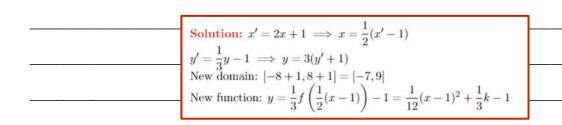
• A dilation by factor $\frac{1}{2}$ from the y-axis

• A translation $\frac{1}{2}$ units to the left.

Question 14 (8 marks)

Consider the function, $f: [-4,4] \to R$, $f(x) = x^2 + k$, where k is a real number.

a. Consider the transformation, $T(x, y) = \left(2x + 1, \frac{1}{3}y - 1\right)$. Find the transformed function of y = f(x) under the transformation T, and also state its domain. (3 marks)



b. Find the inverse transformation of T and call it T^{-1} . (2 marks) **NOTE:** The inverse transformation is a transformation which works in opposite to the original transformation.

Solution:
$$x = 2x' + 1 \implies x' = \frac{1}{2}(x - 1)$$

$$y = \frac{1}{3}y' - 1 \implies y' = 3(y + 1)$$
Therefore, $T^{-1}(x, y) = \left(\frac{1}{2}(x - 1), 3(y + 1)\right)$

c. Using T^{-1} , find the equation of the pre-image of y = f(x) under the transformation T. State the domain also. (3 marks)

NOTE: Pre-image is the function you would have had before the transformation.

Solution:
$$x' = \frac{1}{2}(x-1) \implies x = 2x' + 1$$

$$y' = 3(y+1) \implies y = \frac{1}{3}y' - 1$$
Domain: $\left[-\frac{5}{2}, \frac{3}{2}\right]$
Preimage: $y = 3f\left((2x+1)\right) + 3 = 3(2x+1)^2 + 3k + 3$

Section F: Extension Exam 1 (14 Marks)

Question 15 (5 marks)

$$f(x) = 2x^2 + 4$$

$$q(x) = (4x - 3)^2 - 1$$

a. Identify a sequence of transformations that take f(x) to g(x) without the use of dilation from the y-axis. (2 marks)

> Solution: $y = 2x^2 + 4$ $y' = \left(4\left(x' - \frac{3}{4}\right)\right)^2 - 1 = 16\left(x' - \frac{3}{4}\right)^2 - 1$

Therefore, a sequence of transformations that takes f(x) to g(x) is:

- A dilation by factor 8 from the x-axis
- A translation $\frac{3}{4}$ units to the right
- A translation 33 units down.
- **b.** Identify a sequence of transformations that take f(x) to g(x) without the use of dilation from the x-axis. (2 marks)

Solution: $y = (\sqrt{2}x)^2 + 4$ $y' = (4x' - 3)^2 - 1$

$$y' = (4x' - 3)^2 - 1$$

$$\sqrt{2}x = 4x' - 3 \implies x' = \frac{\sqrt{2}}{4}x + \frac{3}{4} = \frac{1}{2\sqrt{2}}x + \frac{3}{4}$$

Therefore, a sequence of transformations that takes $f(x)$ to $g(x)$ is:

- A dilation by factor $\frac{1}{2\sqrt{2}}$ from the y-axis
- A translation $\frac{3}{4}$ units to the right
- A translation 5 units down.

c. Assume that the domain of f and the domain of g are appropriately restricted such that, f^{-1} and g^{-1} both exist. Identify the transformations that take $f^{-1}(x)$ to $g^{-1}(x)$ without the use of dilation from the x-axis. (1 mark)

Solution:

- A dilation by factor 8 from the y-axis
- A translation $\frac{3}{4}$ units up
- A translation 33 units left.

Question 16 (5 marks)

Consider the function, $f(x) = 2\sqrt{x - k}$, where $k \in R$.

a. Find a sequence of transformations that map $y = x^2$ where $x \ge 0$, to $y = f^{-1}(x)$. (2 marks)

Solution: Let $y = f^{-1}(x)$

$$x = 2\sqrt{y - k}$$

$$y - k = \frac{x^2}{4}$$

$$y = \frac{x^2}{4} + k$$

Therefore,

- A translation k units up.

b. Find the value(s) of k such that, f(x) and $f^{-1}(x)$ do not intersect each other. (3 marks)

Solution: f(x) is an increasing function so intersections with $f^{-1}(x)$ will be on the line y = x. Solve

$$x = 2\sqrt{x - k}$$
$$x^2 = 4x - 4k$$

$$x^2 - 4x + 4k = 0$$

Consider the discriminant to find the values of k for which the above equation has no solutions

$$\Delta = 16 - 16k < 0$$
$$k > 1$$

Question 17 (4 marks)

The image of the curve, $y = 3\sqrt{x^2 + 4x + 7} - 1$ under a transformation T, has the equation $y = \sqrt{4x^2 - 16x + 19}$. Find the sequence of transformations that make up T, with dilations before translations.

the second second	
Sections	

$$y = 3\sqrt{x^2 + 4x + 7} - 1$$
$$= 3\sqrt{(x+2)^2 + 3} - 1$$

$$y' = \sqrt{4(x')^2 - 16x' + 19}$$
$$= \sqrt{4(x'-2)^2 + 3}$$

Dilate by factor $\frac{1}{3}$ from $x \implies y = \sqrt{(x+2)^2 + 3} - \frac{1}{3}$

$$(x+2)^2 = 4(x'-2)^2 = (2(x'-2))^2 = (2x'-4)^2$$

$$x + 2 = 2x' - 4 \implies 2x' = x + 6 \implies x' = \frac{1}{2}x + 3$$

Therefore T can be described as:

- A dilation by factor $\frac{1}{3}$ from the x-axis
- \bullet A dilation by factor $\frac{1}{2}$ from the y-axis
- A translation 3 units to the right.
- A translation $\frac{1}{3}$ units up.

Section G: Extension Exam 2 (17 Marks)

Question 18 (1 mark)

The function tangent to g(x) at x = 1 has an equation y = 2x - 4. What is the equation of the tangent of 2g(2x) + 1 at $x = \frac{1}{2}$?

- **A.** y = 4x 4
- **B.** y = 4x 5
- C. y = 8x 7
- **D.** y = 8x 11

Question 19 (1 mark)

The transformation which maps $f(x) = \log_2(x)$ to $g(x) = 2\log_2(2x)$ is:

- **A.** Dilated by factor 2 from the x-axis, translated 2 units in the positive direction of the y-axis.
- **B.** Dilated by factor 2 from the x-axis, dilated by factor 2 from the y-axis.
- C. Dilated by factor 2 from the x-axis, translated 1 unit in the positive direction of the y-axis.
- **D.** Dilated by factor $\frac{1}{2}$ from the x-axis, dilated by factor 2 from the y-axis.

Question 20 (1 mark)

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 3 - \sqrt{\frac{x+1}{2}}$, onto the graph of $y = \sqrt{x}$ has the rule:

- **A.** T(x, y) = (2x + 1, -y 3)
- **B.** $T(x,y) = \left(\frac{x+1}{2}, 3-y\right)$
- C. T(x, y) = (2x 1, 3 y)
- **D.** $T(x,y) = \left(\frac{x+1}{2}, -y 3\right)$

Question 21 (1 mark)

The image of the curve, $y = \sqrt{x^2 + 4}$ under the transformation T, has the equation $y = \sqrt{x^2 + 4x + 40}$. The transformation T could be described as:

- **A.** A dilation by factor 3 from the y-axis followed by dilation by factor 2 from the x-axis and a translation 3 units to the right.
- **B.** A dilation by factor $\frac{1}{3}$ from the *y*-axis followed by a dilation by factor 3 from the *x*-axis and a translation 2 units to the right.
- C. A dilation by factor 2 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.
- **D.** A dilation by factor 3 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.

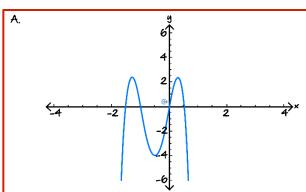
Space for Personal Notes

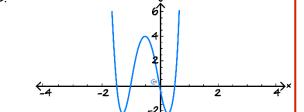
Question 22 (1 mark)

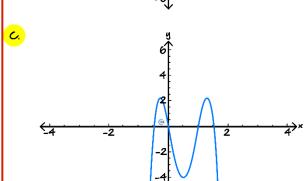
Part of the graph of y = f(x) is shown below.

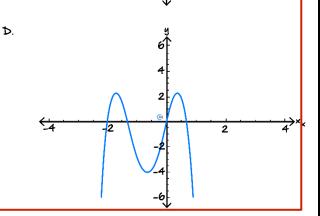


The corresponding part of the graph of y = -f(2x - 1) is best represented by:









Question 23 (12 marks)

Let
$$f(x) = \log_e(x+3) + \log_e(x)$$
.

a. State the domain of f(x). (1 mark)

Solution: $x \in (0, \infty)$

Consider the function f_1 where, $f_1(x) = \log_e(x + 3 + k) + \log_e(x + k)$ and k is a negative real constant.

b. State the transformation required to get the graph of f to the graph of f_1 . Give your answer in terms of k. (1 mark)

Solution: A translation k units left (-k units right)

c. When k = -2, the line $y = \frac{5x}{4} - \frac{15}{4} + \log_e(4)$ is tangent to the graph of $y = f_1(x)$ when x = 3. When k = -3, find the equation of the line that is tangent to the graph of $y = 2f_1(x) + 1$ when x = 4. (2 marks)

Solution:
$$y = 2\left(\frac{5(x-1)}{4} - \frac{15}{4} + \log_e(4)\right) + 1 = \frac{5x}{2} + 2\log_e(4) - 9$$

d. Find the value of x for which, $f'_1(x) = 1$. Express your answer in terms of k. (2 marks) **NOTE:** f'(x) is the derivative of f.

Solution:
$$f'(x) = 1 \implies x = -\frac{1}{2} - \frac{\sqrt{13}}{2} - k, -\frac{1}{2} + \frac{\sqrt{13}}{2} - k$$
But $f_1(x)$ is only defined for $x > -k$, therefore the only solution is
$$x = -\frac{1}{2} + \frac{\sqrt{13}}{2} - k$$

e. Hence or otherwise, find the value of k so that, the graphs of f_1 and f_1^{-1} have only one point of intersection. Give your answer correct to three decimal places. (2 marks)

NOTE: *f* and its inverse will be tangential if their point of intersection have the same gradient.

Solution: Solve
$$f_1\left(-\frac{1}{2} + \frac{\sqrt{13}}{2} - k\right) = -\frac{1}{2} + \frac{\sqrt{13}}{2} - k \implies k = -0.421$$

Now consider the function f_2 where, $f_2(x) = \log_e\left(\frac{x}{a} + 3\right) + \log_e\left(\frac{x}{a}\right)$ and a is a positive real constant.

f. State the transformation required to get the graph of f to the graph of f_2 . Give your answer in terms of a. (1 mark)

Solution: A dilation by factor a from the y-axis.

VCE Methods ¾ Questions? Message +61 440 138 726

 Solution: We solve	
Solution: We solve $f_2'(x) = 1$ and $f(x) = x$, where $a > 0$	
this yields $a \approx 1.395$ and $x \approx 1.227$. Therefore one point of intersection at $(1.227, 1.227)$ when $a = 1.395$.	
 (1121,1121)	

Space for	Personal	Notes
-----------	----------	-------

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

