

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Transformations [0.3]

Workshop

Section A: Recap

Sub-Section: Image and Pre-Image

T______(x', y')

Image and Pre-Image

- The original coordinate is called the ______.
- The transformed coordinate is called the ______.

Pre-Image: (x, y)

Image: (x', y')

Sub-Section: Dilation

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d

Sub-Section: The Order of Transformations

The Order of Transformation

Order = BODMAS Order

Space for Personal Notes		

Sub-Section: Interpreting the Transformation of Points

Interpretation of Transformations

 \blacktriangleright When the ______ x' and y' are the subjects, we can read the transformation _____

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- \blacktriangleright When the ______ x and y are the subjects instead, we must read the transformation in the _____ way.
- This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

NOTE: This includes the order of transformation!

TIP: It is best to make x' and y' the subject before you interpret the transformations.

Sub-Section: Applying Transformations to Functions

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - 2. Make x and y the subjects.
 - **3.** Substitute them into the function.

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - **1.** Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Section B: Warmup

Question 1		
Consider the transformation:		
	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + 1, 3y - 2)$	
a.	Find the image of the point $P(1,2)$ under T .	
b.	Write out what the transformation T does in the order DRT.	
c.	Find the image of the curve, $y = \frac{1}{3}x^2$ under the transformation T.	

Section C: Exam 1 (21 Marks)

Question 2 (4 marks)

Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 4$.

a. Find the coordinates of all axis intercepts of f. (1 mark)

(-2,0)	(a,-4)
(2,0)	·

- **b.** Let the graph of g be a transformation of the graph of f where the transformations have been applied in the following order:
 - Dilation by a factor of $\frac{1}{2}$ from the y-axis.
 - \triangleright Dilation by a factor of 3 from the x-axis.
 - Translation 1 unit to the left.

Find the rule for g(x). (2 marks)

3) $\frac{1}{3}y' = (2(x^{1}+1))^{2} - 4$ $\frac{1}{3}y' = 3y' - 12$ $\frac{1}{3}y' = (2(x^{1}+1))^{2} - 4$ $\frac{1}{3}y' = (2(x^{1}+1))^{2} - 4$ $\frac{1}{3}y' = 3y' - 12$ $\frac{1}{3}y' = 3y' - 12$ $\frac{1}{3}y' = 3y' - 12$

c. State the coordinates for the axis intercepts of g. (1 mark)

(-2,0)	
(0,0)	

Question 3 (3 marks)

Consider the function: $f(x) = \frac{1}{2}(x+1)^2 - \frac{3}{2}$

Apply the following transformation to f(x):

Dilation by a factor 3 from the *x*-axis.

Translated 4 units in the negative direction of the *x*-axis.

Reflection in the *y*-axis.

Translated 2 units in the positive direction of the *y*-axis.

Dilation by a factor of $\frac{1}{3}$ from the *y*-axis.

	1
$y = -\frac{1}{2}(x-4)$	3)
3,	$y = \frac{1}{2}(x+1)^2 - \frac{3}{2}$
y = 3y+2	0
	$\frac{4^{1-2}}{3} = \frac{1}{2} \left(-3x^{1} + 4 + 1 \right)^{2} - \frac{3}{2}$
$-3x^{1}=x-4$	3
-31+4=76	$4^{1-2} = \frac{3}{2} (-3x^{1}+5)^{2} = \frac{9}{2}$
$\frac{y_{1-2}}{3} = y$	$y = \frac{2}{3} \left(-3n + 5 \right)^2 - \frac{3}{2}$
	$=\frac{3}{2}(3x-2)^{2}-\frac{2}{2}$

Question 4 (4 marks)

Let
$$f(x) = \frac{1}{3x+3}$$
.

a. The transformation T_1 given by:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2, T_1(x, y) = (x + a, by),$$

maps the graph of y = f(x) onto the graph of $y = \frac{1}{x}$.

transch

Find the values of a and b. (2 marks)

Dil 3 fran 1c.

 $c = \frac{1}{3}, d = -3.$

$$x^{l} = xt!$$

b = 3.

b. The transformation T_2 given by:

 $T_2: \mathbb{R}^2 \to \mathbb{R}^2, T_2(x, y) = (c(x+d), y),$

maps the graph of $y = \frac{1}{x}$ onto the graph of y = f(x).

Find the values of c and d. (2 marks)

t	32143= 2
y = 7.	3×1= 11-3
y= 3x+3 .	$n' = \frac{1}{3}(x-3)$
3213.	

Question 5 (7 marks)

Consider the cubic function:

$$f(x) = \frac{x^3 - 2x^2 - x + 2}{x^3 - x + 2}$$

a. Find the x-intercepts of the graph y = f(x). (3 marks)

$f(x) = \frac{x^2(x-2) - (x-2)}{x^2}$	
$= (21^2-1)(21-2)$	
= (1+1)(2-1)(2-2)	
-	
(4,0) (1,0). (2,0)	

Let g(x) = 2f(2x - k).

b. Find the transformations required for f(x) to transform to g(x). Give your answer in DRT order. (2 marks)

	Supplies (S)
2f(2n-k)	July Dll 2 from x auch
	Dil & from y aven
2x1-k=x	Trouble & units right.
-2x'=21+14	
スニューナルナを.	

c. Find the value(s) of k such that, there is only one negative x-intercept for g(x). (2 marks)

$$-\frac{1}{2} + \frac{1}{k} < 0, \quad 0 \leq \frac{1}{2} + \frac{1}{k}$$

4 Check the dem of K.

Question 6 (3 marks)

The image of the curve $y = \sqrt{16 - x^2}$ under a transformation T, has the equation $y = \sqrt{55 - 6x - x^2}$.

Find the transformations that make up T, with dilations before translations.

55-671-×2	y = \[\(\(\left(\frac{16 - 21^2}{2} \right) \)
$= -\left[x^2 + 6x - 55 \right]$	
_	y= \(\begin{align*} 64 - (\chi \chi +3)^2 \end{align*}
$= -[(31+3)^2-64]$	
$= (4-(n+3)^2)$	$= 2 \int 16 - \frac{1}{4} (2+3)^2$
	$=2\int_{0}^{\infty} \frac{(2+3)^{2}}{(2+3)^{2}}$
$\frac{x^{1}\pm3}{2}=x$	
	DI 2 from or ach
a +3=2x	Dil 2 for y are
$\alpha' = 2\alpha - 3$	Traveloke 3 units left

Section D: Tech Active Exam Skills

Calculator Tip: Finding Transformed Functions

Save the function as f(x).

Substitute the x and y in terms of x' and y'.

2fc 25) ent

Solve for y!

Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

Mathematica UDF:

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

 $ApplyTransformInvList[f[x], \{x, y\}, \{x-1, 2x, y+3\}]$

$$-3 + f[2(-1 + x)]$$

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x - \pi/2, 2y, y - 1\}$]

$$\operatorname{Sin}\left[\frac{\mathsf{X}}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

In[\circ]:= ApplyTransformInvList[x^2 , {x, y}, {x-1, 2*x, y+3}]
Out[\circ]=

 $1 - 8 x + 4 x^2$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2*x, y+3\}$]

-3+f[2(-1+x)]

Sin[x]

TI UDF:

Out[0]=

transform()

Transform a Function

transform $\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir.
 2·cos(x)-1

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

transform_inv()

Invert a Transformation

$$transform_inv(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir. x^2 -3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

▶ Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

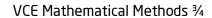
Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions



Section E: Exam 2 (21 Marks)

€(2) ±4.)

Question 7 (1 mark)

Find the possible transformation(s) for the function $f(x) = x^2$ to transform into $g(x) = 4x^2 + 4$.

- **A.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **B.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the negative direction of the y-axis.
- C. Dilation by a factor of $\frac{1}{4}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **D.** Dilation by a factor of $\frac{1}{2}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.

Question 8 (1 mark)

Given that f(x) is a function with a local minimum point at (-2,3). The graph of y = -2f(3x + 2) - 2 must have which of the following?

- A. Local minimum at -4-8
- og: f(-21=3
- $3x^{1}+2=x$

B. Local minimum at $\left(-\frac{4}{3}\right)$ – 8).

 $x' = \frac{1}{3}(x-2)$

- C. Local maximum at (-4) +8).
- Mer: f(3(=3)+2)
- x1= 3 (2)-2)

D. Local maximum at $\left(-\frac{4}{3}\right)$ -8

= 4

Question 9 (1 mark)

There exists a function where dilating by a factor of 2 from the x-axis gives the same image as dilating it by a factor of $\frac{1}{4}$ from the y-axis. Which of the following could be the function?

 $\mathbf{A.} \ f(x) = x^2$

- Use
- fen.
- い(= 点え

B. $f(x) = 2\sqrt{x}$

x= 4×

 $\mathbf{C.} \ \ f(x) = \sqrt{x} - 4$

 $2 \cdot f(x) = f(4n)$

- **D.** $f(x) = \frac{1}{x}$
- TI: Math, 1) fave each option as for
 - 2) 2 f(x) = f(4x): "True".
- MM34 [0.3] Transformations Workshop
- 1)

2)

(O=O)

Question 10 (1 mark)

Which one of the following sequences of transformations is different from the rest?

- A. Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, reflection in the y-axis, translation 2 right, translation 4 up.
- **B.** Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, translation 2 left, translation 4 up, reflection in the y-axis.
- C. Reflection in the y-axis, translation 6 left, translation 2 up, dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis. $x = \frac{1}{3}(-x 6) = -\frac{1}{3}x 2$
- **D.** Translation 6 left, translation 2 up, reflection in the y-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, dilation by a factor of 2 from the x-axis.

Question 11 (1 mark)

o o

The graph of the function f is obtained from the graph of the function g with rule $g(x) = 3\cos\left(x - \frac{\pi}{6}\right)$ by a dilation of a factor of $\frac{1}{2}$ from the x-axis, a reflection in the y-axis, a translation of $\frac{\pi}{6}$ units in the negative x-direction and a translation of 4 upits in the negative y-direction, by that order.

The rule of f is:

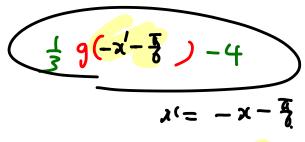
A.
$$f(x) = \frac{3}{2} \cos\left(-x - \frac{\pi}{3}\right) - 4$$

B.
$$f(x) = \frac{3}{2} \cos(-x) - 4$$

C.
$$f(x) = \frac{3}{2}\cos(x) - 4$$

D.
$$f(x) = -3\cos\left(\frac{x}{2} - \frac{\pi}{3}\right) - 4$$

E.
$$f(x) = \frac{3}{2} \cos\left(-x + \frac{\pi}{3}\right) - 4$$



Question 12 (1 mark)

The curve with the equation $y = e^x$ is transformed by a dilation from the y-axis by a scale factor of 2, a translation by one unit to the left in the x-direction and a translation of two units downwards in the y-direction. The equation of the transformed curve is:

- **A.** $y = 0.5e^{x-1} 2$
- **B.** $y = 2e^{x-1} 2$
- C. $y = e^{0.5(x+1)} 2$

f(= (x+1)) -2

D. $y = e^{2(x+1)} - 2$

Question 13 (7 marks)

Consider the function, $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x+1)(2x-1)(x+2).

a. State the values of x for which, f(x) = 0. (1 mark)

$$y_{c} = -2, -1, \frac{1}{2}, 1$$

- b. The graph of y = f(x) is translated a units to the right, where $a \in \mathbb{R}$ to become the graph y = g(x). Find the values of a for which, the graph y = g(x) has:
 - i. Three positive x-intercepts. (2 marks)

of Check Rum

46(1,2]

ii. Four negative x-intercepts. (1 mark)

(ta < 0

a <-1

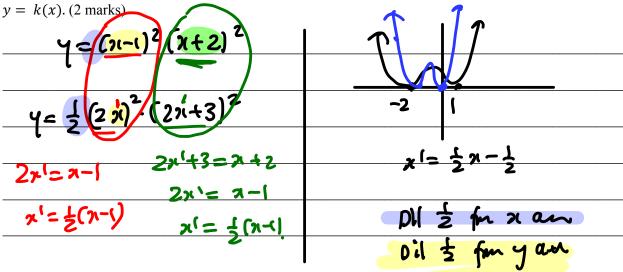
Let h be the function, $h: \mathbb{R} \to \mathbb{R}$, $h(x) = (x-1)^2(x+2)^2$, which has a local maximum at

Let k be the function, $k : \mathbb{R} \to \mathbb{R}$, $k(x) = 2x^2(2x+3)^2$, which has a local maximum at

c. Using translations only, describe a sequence of transformations of k, for which its image would have a local maximum at the same coordinates as that of h. (1 mark)

<u>-3</u> → -½	$\frac{\mathcal{S}I}{32} \rightarrow \frac{\mathcal{S}I}{\mathcal{C}}.$
Crawlet & units right	Translet 81 unles up

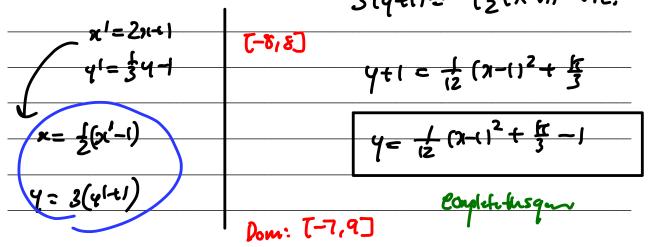
d. Find a sequence of transformations in the order DRT that maps the graph of y = h(x) to the graph of



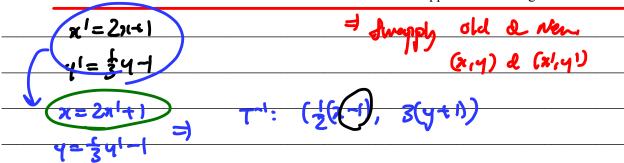
Question 14 (8 marks)

Consider the function, $f(-4,4] \rightarrow R$, $f(x) = x^2 + k$, where k is a real number.

a. Consider the transformation, $T(x,y) = (2x + 1, \frac{1}{3}y - 1)$. Find the transformed function of y = f(x) under the transformation T, and also state its domain. (3 marks) $3(y+1) = (\frac{1}{2}(x+1))^2 + K.$

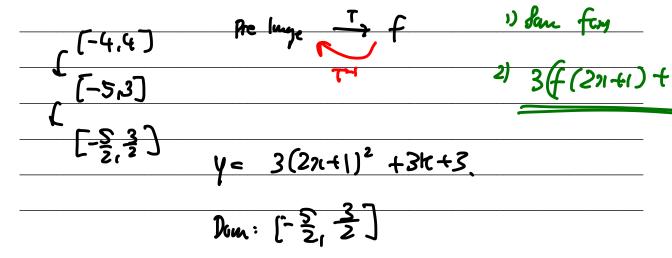


b. Find the inverse transformation of T and call it T^{-1} . (2 marks) **NOTE:** The inverse transformation is a transformation which works in opposite to the original transformation.



c. Using T^{-1} , find the equation of the pre-image of y = f(x) under the transformation T. State the domain also. (3 marks)

NOTE: Pre-image is the function you would have had before the transformation.



Section F: Extension Exam 1 (14 Marks)

Question 15 (5 marks)

$$f(x) = (2x)^2 + 4$$

$$g(x) = (4x - 3)^2 - 1$$

or value

a. Identify a sequence of transformations that take f(x) to g(x) without the use of dilation from the y-axis (2 marks)

$y = 2(x)^2 + 4$	12- 18 - 141	x1-3 = >1
y'= (16)(x'-३)2-1	8(4-4)=41+1	

84-33=41	भ्रां= भ्रम दे
oil 9 fam	
Dil 8 from	
Tramlate 33	
Trankly 3	9-7-

b. Identify a sequence of transformations that take f(x) to g(x) without the use of dilation from the x-axis. (2 marks)

2 x 2,	y valu
y= ([])2+4	
	Translate 5 down
$y' = (421-3)^2 - 1$	Dil 13 y aut
	Trach & ryn.
$4n^{(-3)} = \sqrt{2}n$	
4x'= J2n+3	
スーニ 追れ十分	

c. Assume that the domain of f and the domain of g are appropriately restricted such that, f^{-1} and g^{-1} both exist. Identify the transformations that take $f^{-1}(x)$ to $g^{-1}(x)$ without the use of dilation from the x-axis (1 mark)

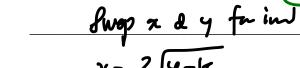
a) $f \rightarrow 5$	1 al 4→	g withat	all feg
Dil 8 from ®	b) ++0	J 14 1	
Trambate 33 dum	9 1.0		7
Tomach 3 Mut			

f-1 -> g-1. Dil 8 from y	
Transp 33 left	
Tranker of up	

Question 16 (5 marks)

Consider the function, $f(x) = 2\sqrt{x - k}$, where $k \in R$.

a. Find a sequence of transformations that may $y = x^2$ o $y = f^{-1}(x)$. (2 marks)

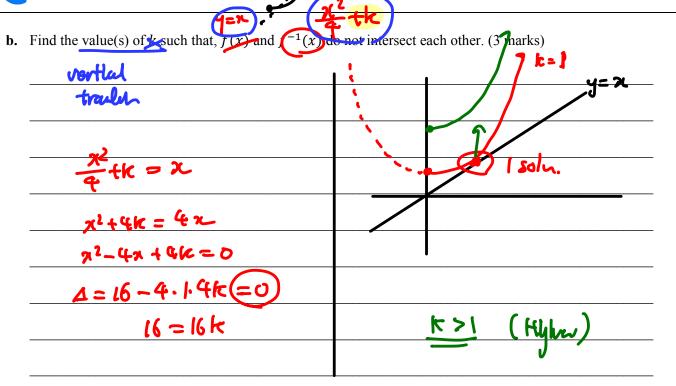


		- 0 [
<u>)(</u>		4-	ما
2	T.	9	rC

$$\frac{x^2}{4} = y - k$$

$$=\left(\frac{x}{2}\right)^2+\kappa$$

DÜ



Question 17 (4 marks)

The image of the curve, $y = 3\sqrt{x^2 + 4x + 7} - 1$ under a transformation T, has the equation $y = \sqrt{4x^2 - 16x + 19}$. Find the transformations that make up T, with dilations before translations.

e from y
for ne
te 3 unh rfyt
et 3 wh up
V

Section G: Extension Exam 2 (17 Marks)

Question 18 (1 mark)

The function tangent to g(x) at x = 1 has an equation y = 2x - 4. What is the equation of the tangent of 2g(2x) + 1 at $x = \frac{1}{2}$?

- **A.** y = 4x 4
- **B.** y = 4x 5
- C. y = 8x 7
- **D.** y = 8x 11

Question 19 (1 mark)

The transformation which maps $f(x) = \log_2(x)$ to $g(x) = 2\log_2(2x)$ is:

- A. Dilated by factor 2 from the x-axis, translated 2 units in the positive direction of the y-axis.
- **B.** Dilated by factor 2 from the x-axis, dilated by factor 2 from the y-axis.
- C. Dilated by factor 2 from the x-axis, translated 1 unit in the positive direction of the y-axis.
- **D.** Dilated by factor 2 from the x-axis, dilated by factor $\frac{1}{2}$ from the y-axis.

Question 20 (1 mark)

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 3 - \sqrt{\frac{x+1}{2}}$, onto the graph of $y = \sqrt{x}$ has the rule:

- **A.** T(x,y) = (2x + 1, -y 3)
- **B.** $T(x,y) = \left(\frac{x+1}{2}, 3-y\right)$
- C. T(x,y) = (2x 1,3 y)
- **D.** $T(x,y) = \left(\frac{x+1}{2}, -y 3\right)$

Question 21 (1 mark)

The image of the curve, $y = \sqrt{x^2 + 4}$ under the transformation T, has the equation $y = \sqrt{x^2 + 4x + 40}$. The transformation T could be described as:

- **A.** A dilation by factor 3 from the y-axis followed by dilation by factor 2 from the x-axis and a translation 3 units to the right.
- **B.** A dilation by factor $\frac{1}{3}$ from the *y*-axis followed by a dilation by factor 3 from the *x*-axis and a translation 2 units to the right.
- C. A dilation by factor 2 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.
- **D.** A dilation by factor 3 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.

2	Space for Personal Notes

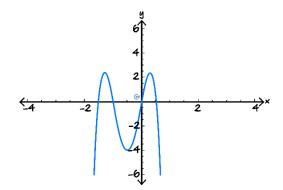
Question 22 (1 mark)

Part of the graph of y = f(x) is shown below.

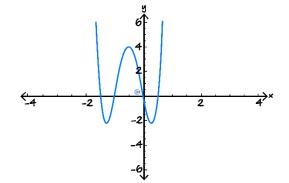


The corresponding part of the graph of y = -f(2x - 1) is best represented by:

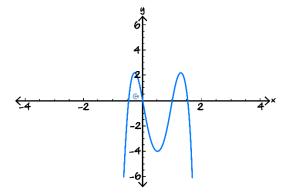
A.



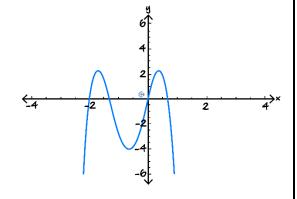
В.



C.



D.



Question 23 (12 marks)

Let $f(x) = \log_e(x+3) + \log_e(x)$.

a. State the domain of f(x). (1 mark)

Consider the function f_1 where, $f_1(x) = \log_e(x + 3 + k) + \log_e(x + k)$ and k is a negative real constant.

b. State the transformation required to get the graph of f to the graph of f_1 . Give your answer in terms of k. (1 mark)

c. When k = -2, the line $y = \frac{5x}{4} - \frac{15}{4} + \log_e(4)$ is tangent to the graph of $y = f_1(x)$ when x = 3. When k = -3, find the equation of the line that is tangent to the graph of $y = 2f_1(x) + 1$ when x = 4. (2 marks)

d. Find the value of x for which, $f_1'(x) = 1$. Express your answer in terms of k. (2 marks)

ov	w consider the function f_2 where, $f_2(x) = \log_e\left(\frac{x}{a} + 3\right) + \log_e\left(\frac{x}{a}\right)$ and a is a positive real constant.
ov	we consider the function f_2 where, $f_2(x) = \log_e\left(\frac{x}{a} + 3\right) + \log_e\left(\frac{x}{a}\right)$ and a is a positive real constant. State the transformation required to get the graph of f to the graph of f_2 . Give your answer in terms of a (1 mark)
	State the transformation required to get the graph of f to the graph of f_2 . Give your answer in terms of a

	point of intersection	. Give your answers	df_2^{-1} have only one correct to three dec	e point of intersect cimal places. (3 ma	ion. Give the coor	rdinate
pace for	Personal Notes					

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

